Metrication in Building Design, Production, and Construction

Total Page:16

File Type:pdf, Size:1020Kb

Metrication in Building Design, Production, and Construction A111D3 07DbflQ vi S F ANDARDS 4 ECH R c '! ~| j|°| | | || ' ^ A1 11 £ um u 0307068b' M ( lca,lon in c?; building d 'S3 r QC10O .U57VSW«NO.530. 1978 C.2 NBS-PUB-C 19 i || NBS SPECIAL PUBLICATION OOU " """CM Of U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities 2 — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science. THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to users in the public and private sectors to address national needs and to solve national problems in the public interest; conducts research in engineering and applied science in support of objectives in these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the utlimate user. The Laboratory consists of the following centers: Applied Mathematics — Electronics and Electrical Engineering 2 — Mechanical Engineering and Process Technology 2 — Building Technology — Fire Research — Consumer Product Technology — Field Methods. THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal Agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal Agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following divisions: Systems and Software — Computer Systems Engineering — Information Technology. 'Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. ! Some divisions within the center are located at Boulder, Colorado, 80303. The National Bureau of Standards was reorganized, effective April 9, 1978. * RATIONAL BUREAU OF STANDARDS S'EF-fI 1978 METRICATION IN BUILDING DESIGN, PRODUCTION, AND CONSTRUCTION —————— —————-—________________ Spe_<2_t C\| P^^W (Lotion A Compendium of 10 Papers Hans J. Milton Building Economics and Regulatory Technology Division Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, DC 20234 U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology U- V NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director » »• Issued September 1978 Library of Congress Catalog Card Number: 78-600086 National Bureau of Standards Special Publication 530 Nat. Bur. Stand. (U.S.), Spec. Publ. 530, 188 pages (Sept. 1978) CODEN: XNBSAV U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1978 For Sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Stock No. 003-003-01971-2 Price $3.75 (Add 25 percent additional for other than U.S. mailing). Abstract This publication is a compendium of ten papers prepared during 1977 by Mr. Hans J. Milton, Technical Consultant on metrication and dimensional coordination to the NBS Center for Build- ing Technology. It may be used as an information and general reference document in the metric subject area. International experience has enabled the author to refer to precedent in other English-speak- ing countries which have preceded the United States in the change to metric (SI) . The papers are directed at the disciplines of building design, production, and construction. However, they contain much information which could be adapted for use in other sectors of the economy. Some of the subject areas addressed are: management and economics of metrication; specific product metrication; public construction sector role in metrication; building standards and codes in metrication; graphic design in metrication; and, United States' opportunities in metrication. A subject index has been included for ready reference to specific metric topics. Key words: Economics of metric conversion; harmonization; management of change; metric familiarization; metrication; rationalization; SI; standardization; transitional period. iii Preface Metric opportunities and benefits for the various sectors of the U.S. construction community form the central theme, -in this pu.bLLcati.on. The ten papers -in this compendium were written by Hans Hilton within the past yean, white serving as a Technical Consultant on metrication and dimensional, coordination to the MBS Centex for Building Technology. In the. period 1970 to 1974, Mr. Milton was a prominent figure In the Australian change to metric measurement In building design and construction. He was the author of the AustraLian Metric Handbook, "Metric Conversion In Building and Construction." Mr. Hilton also was the Chairman of the Government Construction Sector Committee of the AustraLian Metric. Conversion Board. Currently, Hans Hilton is an Assistant Secretary in the AustraLian department of Environment, Housing and Community development, on loan since August 1976 to the National Bureau of Standards of the U.S. Department of Commerce. Extensive assistance In the. compilation of this document was provided by Ms. Sandra A. Berry. Ms. Berry eduted and harmonized these ten papers, which were prepared each for a (Liferent audience, into a unified compendium. In addition, the cooperation of Ms. Laurie Ertter of the CBT Word Processing Center In typing this material is gratefully acknowledged. This Special Publication contains papers which reflect an authoritative and practical view of various aspects of metrication-- from managing the change Itself, to questions that should be addressed prior to converting a specific Industrial product group to the International System of Units. The papers provide a broad overview of how the change to metric (SI) could benefit the United States contraction community. James G. Gross, Cltlef Buil.du.ng Economics and Regulatory Technology division Center for Building Technology National Engineering Laboratory iv . Terms Used in Text Metric System. A measurement system developed in France during the 1790' s, based on the "meter" and a series of other fundamental units which traditionally have been standardized. The measurement system also contains a set of decimal prefixes which can be attached to ref- erence units to alter their magnitude. SI - The International System of Units. The "modern metric system," in which all units have a coherent (one-to-one) relationship; developed in 1960 by the General Conference on Weights and Measures (GCWM) , which is an international treaty organization, SI has been adopted by all countries which have changed to metric measurement since 1960, and countries using pre-SI systems are changing those; units that have been superseded. Metrication. A term coined in Britain to describe "metric conversion;" any process of change from customary measurement to SI, including the planning and coordination necessary for the change Exact Conversion. The change from a customary value to its "precise" metric equivalent, gen- erally expressed to a number of places of decimals. Soft Conversion. A change in description only, but no physical change; generally a soft con- version is the rounding of an exact conversion within tolerances to a more workable numerical value Hard Conversion. A physical change from an existing numerical value to a new and
Recommended publications
  • Colorado Metric Conversion Manual
    COLORADO OT . DEPARTMENT OF TRANSPORTATION METRIC CONVERSION MANUAL January 1994 This manual or any part thereof must not be reproduced in any form without the following disclaimer. The information presented in this publication haS been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a competent licensed engineer or other licensed professional. Publication of the material contained herein is not intended as a representation or warranty on the part of the Colorado Department of Transportation (CDOT) , that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use. Caution must be exercised when relying upon the specifications and codes developed by other bodies and incorporated herein, since such material may be modified or amended from time to time subsequent to the printing of this edition. COOT bears no responsibility for such material other than to incorporate it at the time of the initial publication of this edition, subject to the general comments set forth in the preceding paragraph. Table of Contents Preface ................................................... v Introduction . vii Chapter 1: Metric Units, Terms, Symbols, and Conversion Factors . ... 1-1 Basic Metric . 1-1 Length, Area, Volume and Temperature . 1-7 Civil and Structural Engineering . 1-10 Metric Project Definition ....................... .. 1-12 Chapter 2: Right-Of-Way ...................................
    [Show full text]
  • Metrication Leaders Guide 2009
    Metrication Leaders Guide This resource book will help make your inevitable upgrade to the metric system easy, smooth, cheap, and fast. Pat Naughtin 2009 2 of 89 Make your upgrade to the metric system easy, smooth, cheap, and fast Decision making for metrication leaders !! " ! # $ Appendices % & % ! !! ' ! ( )% ' !* " " + , -&..)--/& , - ,$ # ! ,, 0 * + # ( http://metricationmatters.com [email protected] 3 of 89 Make your upgrade to the metric system easy, smooth, cheap, and fast. Deciding on a metrication program confirms that you are a metrication leader – not a follower. You have the courage to stand aside from the crowd, decide what you think is best for yourself and for others, and you are prepared to differ from other people in your class, your work group, your company, or your industry. As a metrication leader, you will soon discover three things: 1 Metrication is technically a simple process. 2 Metrication doesn't take long if you pursue a planned and timed program. 3 Metrication can provoke deeply felt anti-metrication emotions in people who have had no measurement experience with metric measures, or people who have difficulty with change. The first two encourage confidence – it's simple and it won't take long – but the third factor can give you an intense feeling of isolation when you first begin your metrication program. You feel you are learning a new language (you are – a new measuring language), while people around you not only refuse to learn this language, but will do what they can to prevent you from growing and from making progressive developments in your life. The purpose of this book is to give you some supporting arguments to use in your metrication process.
    [Show full text]
  • What Is Metrication?
    What is metrication? Pat Naughtin Metrication is the process of upgrading from any of the many and various old pre-metric measurement methods to the modern metric system, which is technically known as The International System of Units (SI). Metrication began in France in the 1790s and then spread rapidly to all other nations in the world. Gradually, through the 1800s, the metric system replaced all of the numerous old historical weighing and measuring methods. By 1900, almost all nations had passed laws that accepted the metric system for use in trade, and during the late 1800s this usually translated into widespread use of the metric system by the public. The metric system is now used by all of the world's people in all nations. The philosopher, Condorcet, proved to be correct when, in 1791, he described the original metric system as: For all people; for all time. As examples, the USA has allowed metric measuring units since 1866, and the UK since 1873. Liberia and Myanmar are the only nations that have not yet passed specific metric laws but the metric system is used in both of those countries every day. Only in France, Japan, the United Kingdom, and the United States of America has there been any significant opposition to metrication, the main objections being based on history, tradition, aesthetics, economic conjecture, and a personal distaste for foreign ideas. In France and Japan the opposition faded as soon as people regularly used the metric system. This left only two nations, the UK and the USA, with citizens who have difficulty accepting the reality of worldwide metrication.
    [Show full text]
  • Or Rather, Kilometres – Away from a Uniform System of Measurement
    For Immediate Release Canadian Public Opinion Poll Page 1 of 9 Canada is miles – or rather, kilometres – away from a uniform system of measurement Young people use metric the most, but nearly everyone thinks of their height and weight in imperial. March 1, 2017 – How tall is Sidney Canada has officially been a metric-using Crosby? And how far is it from country since the 1970s, but lots of people Vancouver to Halifax? For most Canadians, the answers to these still use the imperial system of measurement questions are “5 feet, 11 inches,” and for different things. Overall, what do you “6,160 km,” respectively. think about this? Contained within these answers is a distinctly Canadian contradiction: 17% Although this country officially went metric in the 1970s, there are many day-to-day measurements for which 16% Canadians have not forgotten their 67% imperial roots. A new public opinion poll from the Angus Reid Institute finds this is It's okay for Canadians to keep using a mix of both systems especially true of older Canadians, who were schooled in a system of pounds Canada should go back to the imperial system and gallons instead of kilograms and Canada should work harder to use the official metric system litres. Conversely, younger (under 25) METHODOLOGY: Canadians' stated unfamiliarity with the imperial system suggests the shift The Angus Reid Institute conducted an online survey from January 9 - 12 among a representative randomized sample of 1,501 towards the metric system will continue Canadian adults who are members of the Angus Reid Forum.
    [Show full text]
  • Metric Guide for Federal Construction (4-93)
    METRIC GUIDE FOR FEDERAL CONSTRUCTION First Edition The Construction Subcommittee of the Metrication Operating Committee of the Interagency on Metric Policy Published by the NATIONAL INSTITUTE OF BUILDING SCIENCES 1201 L Street N.W. Washington, D.C. 20005 Call 202-289-7800 for ordering information. Copyright © 1991, 1992, 1993, National Institute of Building Sciences. First printing, December 1991 Second printing, March 1992 Third printing, August 1992 Fourth printing, April 1993 METRIC GUIDE FOR FEDERAL CONSTRUCTION First Edition The Construction Subcommittee of the Metrication Operating Committee of the Interagency Council on Metric Policy ACKNOWLEDGEMENTS The Construction Subcommittee of the Interagency Council on Metric Policy's Metrication Operating Committee has prepared this guide to aid the federal agencies in implementing the metric system of measurement in the federal construction process. I would like to express my appreciation to Arnold Prima of the Office of the Secretary of Defense, who first voiced a need for the guide and initiated its development; to William Brenner of the National Institute of Building Scienc- es, who wrote it; to Claret Heider, its editor; and to reviewers William Aird of the State Department, Valerie Antoine and Louis Sokol of the U.S. Metric Association, Bruce Barrow of the Defense Information Systems Agency, Maria Grazi Bruschi of the American Society of Civil Engineers, Ronald Clevenger of the Tennessee Valley Authority, Amitabha Datta of the General Services Admin- istration, Troy Estes of the National Aeronautics and Space Administration, Luther Flouton of the Public Health Service, James Gross of the National Institute of Standards and Technology, Leslie Hegyi, Stan Jakuba of S.I.
    [Show full text]
  • Metrication Problems in the Construction Codes and Standards Sector
    Lef©r©nce NBS Pubii - cations i vt NBS TECHNICAL NOTE 915 v ^&^ J 0ffBM Of NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics - — Cryogenics ~ — Electromagnetics " — Time and Frequency ". THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government: provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • Metrication Is SUCCESSFUL
    Metrication is SUCCESSFUL Metrication is SUCCESSFUL because it is: Simple The modern metric system, formally known as the International System of Units (SI), is the simplest and easiest-to-use system of measurement ever devised. In fact the metric system is the only system of measurement ever devised. All previous measuring methods were just a hodge-podge of randomly generated local measures. Unique The metric system is unique. Never before, has there been a method of measurement that has all the positive benefits as SI. Coherent The metric system uses the same decimal nature as our number system, and it uses the same mathematical rules and symbols that we use for the mathematic of numbers Capable The metric system is capable of measuring anything in any trade, profession, or other human activity. The metric system has no limitations. For example, you might measure the distance from here to the door in metres, the distance from between your home and your work in kilometres, the width of your little finger nail in millimetres, the diameter of the hairs on your head in micrometres, and the size of one of your cells in nanometres. Why stop there? With the SI prefixes, there is more than enough flexibility to measure from the size of sub-atomic particles – the diameter of an electron is about 6 femtometres – to the size of the whole Universe – the diameter of the Universe, as observed by the world's best telescopes, is about 250 yottametres. Equitable The key argument for using the metric system is that it is fair to all concerned.
    [Show full text]
  • Essence of the Metric System
    Outline of the metric system - Wikipedia https://en.wikipedia.org/wiki/Outline_of_the_metric_system From Wikipedia, the free encyclopedia The following outline is provided as an overview of and topical guide to the metric system: Metric system – various loosely related systems of measurement that trace their origin to the decimal system of measurement introduced in France during the French Revolution. 1 Nature of the metric system 2 Metric units of measure 3 History of the metric system 4 Politics of the metric system 5 Future of the metric system 6 Metric system organizations 7 Metric system publications 8 Persons influential in the metric system 9 See also "The metric system is for all people for all 10 References time." (Condorcet 1791) Four objects used in 11 External links making measurements in everyday situations that have metric calibrations are shown: a tape measure calibrated in centimetres, a thermometer calibrated in degrees Celsius, a kilogram mass, and an electrical multimeter The metric system can be described as all of the following: which measures volts, amps and ohms. System – set of interacting or interdependent components forming an integrated whole. System of measurement – set of units which can be used to specify anything which can be measured. Historically, systems of measurement were initially defined and regulated to support trade and internal commerce. Units were arbitrarily defined by fiat (see statutory law) by the ruling entities and were not necessarily well inter-related or self-consistent. When later analyzed and scientifically, some quantities were designated as fundamental units, meaning all other needed units of measure could be derived from them.
    [Show full text]
  • The United States and the Metric System
    NIST LC 1 1 36 May, 1992 THE UNITED STATES AND THE METRIC SYSTEM I A Capsule History The United States is the only industrialized relation to the meter and the kilogram ever country in the world not officially using since. the metric system. Because of its many advantages (e.g., easy conversion between In I960, the General Conference of units of the same quantity), the metric Weights and Measures, the governing body system has become the internationally that has overall responsibility for the metric accepted system of measurement units. system, and which is made-up of signatory nations to the Treaty of the Meter, Most Americans think that our involvement approved a modernized version of the with metric measurement is relatively new. metric system. The "modernized" system is In fact, the United States’ increasing use of called Le Systfeme International d’Unitfes or metric units has been underway for many the International System of Units, years, and the pace has accelerated in the abbreviated SI. past two decades. In the early 1800’s the U.S. Coast and Geodetic Survey (the In 1965, Great Britain, as a condition for government’s surveying and map-making becoming a member of the European agency) used meter and kilogram standards Common Market, began a transition to the brought from France. In 1866 Congress metric system in its trade and commerce. authorized the use of the metric system in The conversion of England and the $ this country and supplied each state with a Commonwealth Nations to SI created a set of standard metric weights and new sense of urgency regarding the use of measures.
    [Show full text]
  • Metrication Leaders Guide This Resource Book Will Help Make Your Inevitable Upgrade to the Metric System Easy, Smooth, Cheap, and Fast
    Metrication Leaders Guide This resource book will help make your inevitable upgrade to the metric system easy, smooth, cheap, and fast. Pat Naughtin 2009 2 of 89 Table of Contents Make your upgrade to the metric system easy, smooth, cheap, and fast 3 Metrication in a day 4 Learn the metric system in a minute 7 Become familiar with the metric system in an hour 9 Decision making for metrication leaders 10 What is metrication? 14 What is a metrication leader? 15 Approaches to metrication 17 Metrication business planning 21 Appendices 30 Who invented the metric system? 31 Universal acceptance of the metric system 34 Metrication approximations and reference points 38 Everyday metric examples, and metric rules of thumb 39 What holds metrication back? 56 Metrication is SUCCESSFUL 60 Summary of the metric system 62 Arguments and responses 66 Resources, references and acknowledgements 87 http://metricationmatters.com [email protected] 3 of 89 Make your upgrade to the metric system easy, smooth, cheap, and fast. Deciding on a metrication program confirms that you are a metrication leader – not a follower. You have the courage to stand aside from the crowd, decide what you think is best for yourself and for others, and you are prepared to differ from other people in your class, your work group, your company, or your industry. As a metrication leader, you will soon discover three things: 1 Metrication is technically a simple process. 2 Metrication doesn't take long if you pursue a planned and timed program. 3 Metrication can provoke deeply felt anti-metrication emotions in people who have had no measurement experience with metric measures, or people who have difficulty with change.
    [Show full text]
  • The Imperial System Apprenticeship and Workplace Mathematics (Grade 10/Literacy Foundations Level 7) © 2012 by Open School BC
    Version 01 The Imperial System Apprenticeship and Workplace Mathematics (Grade 10/Literacy Foundations Level 7) © 2012 by Open School BC http://mirrors.creativecommons.org/presskit/buttons/88x31/eps/by-nc.eps This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ Permissions beyond the scope of this license are identified in the materials by a copyright symbol and are outlined below. To request permission to use the exclusions to this Creative Commons license, contact the author/publisher of the third party materials: Third party copyright exclusions include: All photographs used under license from Shutterstock.com. The Data Pages were reproduced with permission from the BC Ministry of Education. Course History New, March 2012 Project Partners This course was developed in partnership with the Distributed Learning Resources Branch of Alberta Education and the following organizations: • Black Gold Regional Schools • Calgary Board of Education • Edmonton Public Schools • Peace Wapiti School Division No. 76 • Pembina Hills Regional Division No. 7 • Rocky View School Division No. 41 Project Management: Jennifer Riddel, Shannon Mitchell Content Revisions: Jennifer Riddel Edit: Leanne Baugh Math Edit: Learning Centre of the Greater Victoria School District Continuing Education Program: • Nigel Cocking • Keith Myles • Bill Scott Module Tests: Barb Lajeunesse, Michael Finnigan (SD 34) Copyright: Ilona Ugro Production
    [Show full text]
  • Appendix B – Units and Systems of Measurement
    Handbook 44 – 2011 Appendix B – Units and Systems of Measurement Table of Contents Appendix B. Units and Systems of Measurement Their Origin, Development, and Present Status .................................................................................................... B3 1. Introduction ................................................................................................................................................... B3 2. Units and Systems of Measurement ............................................................................................................. B3 2.1. Origin and Early History of Units and Standards. ............................................................................... B3 2.1.1. General Survey of Early History of Measurement Systems. ................................................. B3 2.1.2. Origin and Development of Some Common Customary Units. ............................................ B4 2.2. The Metric System. .............................................................................................................................. B5 2.2.1. Definition, Origin, and Development. ................................................................................... B5 2.2.2. International System of Units. ............................................................................................... B6 2.2.3. Units and Standards of the Metric System. ........................................................................... B6 2.3. British and United States Systems of Measurement.
    [Show full text]