Dobsonflies, Fishflies, Alderflies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entomology 101 Jason J
Entomology 101 Jason J. Dombroskie Manager, Cornell U. Insect Collection Coordinator, Insect Diagnostic Lab This material [email protected] can only be used for CCE MGV audiences. Outline • What is an insect? • Anatomy • Life cycles • Diversity • Major orders • Herbivory Corydalus cornutus Cornell U. Insect Collection • > 7 million specimens • ~200 000 species • worldwide coverage • http://cuic.entomology.cornell.edu/ • on facebook Insect Diagnostic Lab • ~700 IDs per year • 10-20 000 IDs for NYS Dept. Ag. & Markets • occasionally IDs can be made from a photo • mostly local, but some submissions worldwide • $25 fee • http://entomology.cornell.edu/IDL Arthropods Regier, et al. 2005 What is an insect? • 3 main body parts • 6 jointed legs • 1 pair of antennae • compound eyes • usually some sort of metamorphosis Booneacris glacialis Head • antennae • mouthparts • compound eyes • ocelli Monochamus scutellatus Popillia japonica Tetanocera sp. Antheraea polyphemus wikimedia commons labrum maxilla mandible labium Corydalus cornutus Polygonia progne Aedes sp. Hybomitra zonalis Monochamus notatus Aeshna canadensis Isoptera Darapsa myron Thorax • six legs • four wings or less • muscular Amateur Entomologists’ Society Entomologists’ Amateur Limenitis archippus Lethocerus americanus Zeugomantispa minuta Machimus sp. with Herpetogramma pertextalis wikimedia commons Tipula apicalis Cybister fimbriolatus Elasmucha lateralis Automeris io Abdomen • internal organs • genitalia • ovipositor Ophiogomphus rupinsulensis Lauxania shewelli Merope tuber Adoxophyes -
Viewed Erature to Ensure the Most Up-To-Date Treatment with Caution, P~Rticularlyamong Older Literature
PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Vol. 50, No. 3, pp. 39-114. December 9, 1997 SPECIES CATALOG OF THE NEUROPTERA, MEGALOPTERA, AND RAPHIDIOPTERA OF AMERlCA NORTH OF MEXICO Norman D. Penny Department ofE~ztorizolog)~,Caldornla Acndony oJ'Sc~erzces, San Fmnc~sco,CA 941 18 Phillip A. Adams Ccllg'rnia State Utzivet-sity, F~lllet-ton,CA 92634 and Lionel A. Stange Florida Depat>tnzen/oj'Agt.~czi/trrre, Gr~~nesv~/le, FL 32602 Thc 399 currently recognized valid species of the orders Neuroptera, Megaloptera, and Raphidioptera that are known to occur in America north of Mexico are listed and full synonymies given. Geographical distributions are listed by states and province\. Complete bibliographic references are given for all namcs and nomenclatural acts. Included are two new Junior homonyms indicated, seven new taxonomic cornbinations, two new changes of rank, fourteen new synonymies, three new lectotype de\ignations, and onc new name. Received March 20,1996. Accepted June 3, 1997. The recent publication of Nomina Insecta been consulted whenever possible, as well as Nearctica, A Check List of the Insects of North Zoological Record, and appropriate mono- America (Poole 1996) has given us a listing of graphic revisions publishedup to 1 January 1997. North American Neuropterida (Neuroptera + A number of taxonomic changes are incorpo- Megaloptera + Raphidioptera) species for the rated into this catalog: there are two new Junior first tlme in more than a century. However, for homonyms indicated, seven new taxonomic anyone trying to identify these species, the litera- combinations, two new changes of rank. fourteen ture is scattered and obscure. -
Insecta, Neuropterida, Megaloptera, Sialidae)
Graellsia, 70(2): e009 julio-diciembre 2014 ISSN-L: 0367-5041 http://dx.doi.org/10.3989/graellsia.2014.v70.111 LOS MEGALÓPTEROS DE LA PENÍNSULA IBÉRICA (INSECTA, NEUROPTERIDA, MEGALOPTERA, SIALIDAE) Víctor J. Monserrat Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, E-28040 Madrid, España. E-mail: [email protected] RESUMEN Se actualiza toda la información bibliográfica relativa a la Península Ibérica y relacionada con las tres especies de megalópteros presentes en su fauna (Insecta, Neuropterida, Megaloptera: Sialidae). Partiendo de los datos generales conocidos sobre estas especies, y en base a esta información ibérica, se aporta una clave de identifi- cación de imagos y larvas de estas especies, y se anotan y se recopilan los datos conocidos sobre su morfología, su biología, sus estadios larvarios y su distribución geográfica, fenológica y altitudinal en la zona estudiada. Palabras clave: Península Ibérica; Faunística; Biología; Neuropterida; Megaloptera; Sialidae; Sialis; “monjas”. ABSTRACT The alder-flies of the Iberian Peninsula (Insecta, Neuropterida, Megaloptera, Sialidae) All existing Iberian bibliographical information related to the three alder-flies species known in the Iberian Peninsula’s fauna (Insecta, Neuropterida, Megaloptera: Sialidae) is brought up to date. On the basis of general knowledge about these species, and taking into account the known Iberian data, a key for imagoes and larvae is included and what is known about their morphology, biology, larval stages and geographical, phenological and altitudinal distribution in the area studied is reviewed. Keywords: Iberian Peninsula; Faunistical; Biology; Neuropterida; Megaloptera; Sialidae; Sialis; “alder-flies”. Recibido/Received: 14/03/2014; Aceptado/Accepted: 02/09/2014; Publicado en línea/Published online: 26/11/2014 Como citar este artículo/Citation: Monserrat, V. -
MEGALOPTERA: CORYDAL1DAE)L
Vol. 106, No.3, May &June, 1995 123 A REMARKABLE RANGE EXTENSION FOR THE FISHFLY GENUS DYSMICOHERMES (MEGALOPTERA: CORYDAL1DAE)l Atilano ~ontreras-~amos~ ABSTRACT: The megalopteran genus Dysmicohermes (Corydalidae: ~hauliodinae),previously known only from the Pacific Coast Region of the United States and adjacent Canada, is recorded for the first time in southeastern United States (Mission, Texas). The external genitalia of the sin- gle female Texan specimen most closely resemble those of D. ingens. However, differences in wing color pattern and body size, as well as the disjunct occurrence, suggest that the Texas spec- imen might belong to a third and new Dysmicohermes species. Survey work in southern Texas and adjadent Mexico is required in order to determine the taxonomic position, and to assess the con- servation status of this previously unknown fishfly. Fishflies of the genus Dysmicoherrnes (Corydalidae: Chauliodinae) are among the most impressive North American megalopterans. They have an average wing span of 120 mm (Evans 1972), which is comparable to a large Corydalus dobsonfly (Corydalidae: Corydalinae). Besides their large size, Dysmicohermes fishflies can be easily distinguished by having a 4-branched M vein in the hindwing (Evans and Neunzig 1984, New and Theischinger 1993) and by the presence of dense, long, curly hair on the thorax (Evans 1972). The two specimens I observed have hairs also on the head and coxae. Larvae of Dysmicohermes can be separated from other megalopteran genera with the keys by Evans and Neunzig (1984) and Neunzig and Baker (1991). Two species, Dysmicohermes disjunctus (Walker) and D. ingens Chandler, are presently included in the genus. -
C:\Documents and Settings\Rheitzma\My Documents
State of Ohio Environmental Protection Agency Division of Surface Water Biological and Water Quality Study of the Big Darby Creek Watershed, 2001/2002 Logan, Champaign, Union, Madison, Franklin and Pickaway Counties Greenside Darter Central Mottled Sculpin (Cottus bairdi bairdi) (Etheostoma blennioides Clubshell Mussel blennioides) (Pleurobema clava) Spotted Darter Eastern Banded Darter (Etheostoma maculatum) (Etheostoma zonale zonale) Helgrammite (Corydalus cornutus) Smallmouth Bass (Micropterus doloieui dolomieui) stonefly nymph mayfly nymph (Isonychia sp.) Bob Taft, Governor Christopher Jones, Director Biological and Water Quality Study of Big Darby Creek and Selected Tributaries 2001/2002 Logan, Champaign, Union, Madison, Franklin and Pickaway Counties, Ohio June 2004 Ohio EPA Technical Report EAS/2004-6-3 prepared by State of Ohio Environmental Protection Agency Division of Surface Water Lazarus Government Center 122 South Front St., Columbus OH 43215 Mail to: P.O. Box 1049, Columbus OH 43216-1049 Bob A Taft Governor, State of Ohio Christopher Jones Director, Ohio Environmental Protection Agency CONTENTS How To Use This Document.................................................. vii Notice to Users.............................................................. viii Acknowledgments .............................................................x Foreword ................................................................... xi Section A. General Study Discussion and Results A.1 Introduction......................................................... -
Megaloptera, Sialidae)
MUSEUM & INSTITUTE OF ZOOLOGY POLISH ACADEMY OF SCIENCES FRAGMENTA FAUN I STIC A Fragm. faun. Warsaw, 30.12.2000 43 11 123-125 Wiesława C z e c h o w s k a Sialis morio K lingstedt, 1932 Megaloptera( , S ia lid a), e an alderfly species new to Poland Abstract: Sialis morio K lingstedt, 1932 is reported from Poland for the first time. It was found in two sites in the Masurian Lake District in the years 1998-1999. Key words:Neuropteroidea, Megaloptera , Sialis morio, Poland. Author's address: Museum and Institute of Zoology, PAS, Wilcza 64, 00-679 Warszawa, POLAND The Megaloptera is a small order of insects of the superorder Neuropteroi dea whose larval development occurs in an aquatic habitat. In Europe, this taxon is represented by 10 species of the genus Sialis L a t r . , the family Siali dae (A s p ó c k et al. 1980, V s h iv k o v a 1985, 1987). However, according to A s p ó c k (1992) and A s p ó c k and H o l z e l (1994), this genus should be revised, for some of the recently described species may be synonyms of others. The species considered unquestionable by these authors include Sialis lutaria L., S. morio K l i n g s t . , S. sordida K l i n g s t . , S. fuliginosa PICT., S. rtigripes PICT, and S. sibirica M c L a c h l . Three of these have been recorded from Poland, namely S. -
Hundreds of Species of Aquatic Macroinvertebrates Live in Illinois In
Illinois A B aquatic sowbug Asellus sp. Photograph © Paul P.Tinerella AAqquuaattiicc mayfly A. adult Hexagenia sp.; B. nymph Isonychia sp. MMaaccrrooiinnvveerrtteebbrraatteess Photographs © Michael R. Jeffords northern clearwater crayfish Orconectes propinquus Photograph © Michael R. Jeffords ruby spot damselfly Hetaerina americana Photograph © Michael R. Jeffords aquatic snail Pleurocera acutum Photograph © Jochen Gerber,The Field Museum of Natural History predaceous diving beetle Dytiscus circumcinctus Photograph © Paul P.Tinerella monkeyface mussel Quadrula metanevra common skimmer dragonfly - nymph Libellula sp. Photograph © Kevin S. Cummings Photograph © Paul P.Tinerella water scavenger beetle Hydrochara sp. Photograph © Steve J.Taylor devil crayfish Cambarus diogenes A B Photograph © ChristopherTaylor dobsonfly Corydalus sp. A. larva; B. adult Photographs © Michael R. Jeffords common darner dragonfly - nymph Aeshna sp. Photograph © Paul P.Tinerella giant water bug Belostoma lutarium Photograph © Paul P.Tinerella aquatic worm Slavina appendiculata Photograph © Mark J. Wetzel water boatman Trichocorixa calva Photograph © Paul P.Tinerella aquatic mite Order Prostigmata Photograph © Michael R. Jeffords backswimmer Notonecta irrorata Photograph © Paul P.Tinerella leech - adult and young Class Hirudinea pygmy backswimmer Neoplea striola mosquito - larva Toxorhynchites sp. fishing spider Dolomedes sp. Photograph © William N. Roston Photograph © Paul P.Tinerella Photograph © Michael R. Jeffords Photograph © Paul P.Tinerella Species List Species are not shown in proportion to actual size. undreds of species of aquatic macroinvertebrates live in Illinois in a Kingdom Animalia Hvariety of habitats. Some of the habitats have flowing water while Phylum Annelida Class Clitellata Family Naididae aquatic worm Slavina appendiculata This poster was made possible by: others contain still water. In order to survive in water, these organisms Class Hirudinea leech must be able to breathe, find food, protect themselves, move and reproduce. -
Aquatic Critters Aquatic Critters (Pictures Not to Scale) (Pictures Not to Scale)
Aquatic Critters Aquatic Critters (pictures not to scale) (pictures not to scale) dragonfly naiad↑ ↑ mayfly adult dragonfly adult↓ whirligig beetle larva (fairly common look ↑ water scavenger for beetle larvae) ↑ predaceous diving beetle mayfly naiad No apparent gills ↑ whirligig beetle adult beetle - short, clubbed antenna - 3 “tails” (breathes thru butt) - looks like it has 4 - thread-like antennae - surface head first - abdominal gills Lower jaw to grab prey eyes! (see above) longer than the head - swim by moving hind - surface for air with legs alternately tip of abdomen first water penny -row bklback legs (fbll(type of beetle larva together found under rocks damselfly naiad ↑ in streams - 3 leaf’-like posterior gills - lower jaw to grab prey damselfly adult↓ ←larva ↑adult backswimmer (& head) ↑ giant water bug↑ (toe dobsonfly - swims on back biter) female glues eggs water boatman↑(&head) - pointy, longer beak to back of male - swims on front -predator - rounded, smaller beak stonefly ↑naiad & adult ↑ -herbivore - 2 “tails” - thoracic gills ↑mosquito larva (wiggler) water - find in streams strider ↑mosquito pupa mosquito adult caddisfly adult ↑ & ↑midge larva (males with feather antennae) larva (bloodworm) ↑ hydra ↓ 4 small crustaceans ↓ crane fly ←larva phantom midge larva ↑ adult→ - translucent with silvery bflbuoyancy floats ↑ daphnia ↑ ostracod ↑ scud (amphipod) (water flea) ↑ copepod (seed shrimp) References: Aquatic Entomology by W. Patrick McCafferty ↑ rotifer prepared by Gwen Heistand for ACR Education midge adult ↑ Guide to Microlife by Kenneth G. Rainis and Bruce J. Russel 28 How do Aquatic Critters Get Their Air? Creeks are a lotic (flowing) systems as opposed to lentic (standing, i.e, pond) system. Look for … BREATHING IN AN AQUATIC ENVIRONMENT 1. -
Volume 42, Number 2 June 2015
Wisconsin Entomological Society N e w s I e t t e r Volume 42, Number 2 June 2015 Monitoring and Management - A That is, until volunteer moth surveyor, Steve Sensible Pairing Bransky, came onto the scene. Steve had By Beth Goeppinger, Wisconsin Department done a few moth and butterfly surveys here ofN atural Resources and there on the property. But that changed in 2013. Armed with mercury vapor lights, Richard Bong State Recreation Area is a bait and a Wisconsin scientific collector's heavily used 4,515 acre property in the permit, along with our permission, he began Wisconsin State Park system. It is located in surveying in earnest. western Kenosha County. The area is oak woodland, savanna, wetland, sedge meadow, He chose five sites in woodland, prairie and old field and restored and remnant prairie. savanna habitats. He came out many nights Surveys of many kinds and for many species in the months moths might be flying. After are done on the property-frog and toad, finding that moth populations seemed to drift fence, phenology, plants, ephemeral cycle every 3-5 days, he came out more ponds, upland sandpiper, black tern, frequently. His enthusiasm, dedication and grassland and marsh birds, butterfly, small never-ending energy have wielded some mammal, waterfowl, muskrat and wood surprising results. Those results, in turn, ducks to name a few. Moths, except for the have guided us in our habitat management showy and easy-to-identify species, have practices. been ignored. Of the 4,500 moth species found in the state, Steve has confirmed close to 1,200 on the property, and he isn't done yet! He found one of the biggest populations of the endangered Papaipema silphii moths (Silphium borer) in the state as well as 36 species of Catocola moths (underwings), them. -
Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24. -
A New Fishfly Species (Megaloptera: Corydalidae: Chauliodinae) from Eocene Baltic Amber
Palaeoentomology 003 (2): 188–195 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY Copyright © 2020 Magnolia Press Article ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.3.2.8 http://zoobank.org/urn:lsid:zoobank.org:pub:20A34D9A-DC69-453E-9662-0A8FAFA25677 A new fishfly species (Megaloptera: Corydalidae: Chauliodinae) from Eocene Baltic amber XINGYUE LIU1, * & JÖRG ANSORGE2 1College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China �[email protected]; https://orcid.org/0000-0002-9168-0659 2Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahnstraße 17a, D-17487 Greifswald, Germany �[email protected]; https://orcid.org/0000-0002-1284-6893 *Corresponding author. �[email protected] Abstract and Sialidae (alderflies). Species of Megaloptera have worldwide distribution, but most of them occur mainly in The fossil record of Megaloptera (Insecta: Holometabola: subtropical and warm temperate regions, e.g., the Oriental, Neuropterida) is very limited. Both megalopteran families, i.e., Corydalidae and Sialidae, have been found in the Eocene Neotropical, and Australian Regions (Yang & Liu, 2010; Baltic amber, comprising two named species in one genus Liu et al., 2012, 2015a). The phylogeny and biogeography of Corydalidae (Chauliodinae) and four named species in of extant Megaloptera have been intensively studied in two genera of Sialidae. Here we report a new species of Liu et al. (2012, 2015a, b, 2016) and Contreras-Ramos Chauliodinae from the Baltic amber, namely Nigronia (2011). prussia sp. nov.. The new species possesses a spotted hind Compared with the other two orders of Neuropterida wing with broad band-like marking, a well-developed stem (Raphidioptera and Neuroptera), the fossil record of of hind wing MA subdistally with a short crossvein to MP, a Megaloptera is considerably scarce. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).