The Musculature of the Head of the Corydalus Larva (Neuroptera, Sialidae)

Total Page:16

File Type:pdf, Size:1020Kb

The Musculature of the Head of the Corydalus Larva (Neuroptera, Sialidae) THE MUSCULATURE 0%’ THE HEAD OF THE CORYDALUS LARVA (NEURqOPTERA, SIALIDAE) 1,2 SOL KBAMER * Departmawt of Zoology, University of Wisconsm, Madison, Wisconsin ‘IWENTY-EIGIXT FIGURES The Neuroptera have long been regarded one of the most primitive groups of the holometabolous insects. Crampton ( ’21) considered the Neuroptera an extremely important group from the standpoint of the siudy of the phylogeny of higher in- sects, and emphasized the primitiveness of such forms as Sialis, Corydalus, and Chauliodea among the Neuroptera (Megaloptera). Although he considered the Coleoptera the more primitive of the two orders from a consideration of the head and mouthparts, he emphasized the astonishing similarity between larval Coleoptera and Neuroptera and concluded that the Coleoptera appear to lead to the Neuroptera which in turn lead to the Mecoptera, Diptera and Siphonaptera on the one hand and to the Trichoptera and Lepidoptera on the other. More recently Chen (’46),in a study on the evolution of insect larvae based on a wide series throughout the Holometabola, selected the nenropteroid genus Corydalus as possessing the most primitive or generalized known type of larva. He desig- nated this primitive type by the term “campodeoid-polypod, ’? characterized by having three pairs of thoracic and 10 pairs of abdominal legs, the latter bearing each a vesicle and a stylus. From this study Chen concluded that all existing types of larvae have been (derivedfrom this primitive type in two ways : Corydalus cornutus L. The writer is grateful for the assistance of R. E. Snodgrass in whose laboratory at the U. S. National Museum, Washington, D. C. thi$ study was begun. * Presrnt address: Department of Histology, New York University, 209 E. 231.d Street, New York, N. Y. 1 JOURVAT, OF MORPHOLOQY, VOL. 96, NO. 1 JANUARY 1955 2 SOL KRAMER (1) by specialization (chiefly the reduction of appendages which proceeds from the posterior part of the body to the an- terior), and (2) by progenesis, or curtailment of the period of embryonic growth (brought about by the precocious rupture of egg envelopes). This investigation was therefore undertaken to provide a knowledge of the musculature of an entire neuropteroid larval form considered to be of primitive origin. Studies on the thorax and abdomen will follow. Although the Corydalus larva is used by a number of universities for the study of internal insect anatomy, no detailed investigation of its musculature is available. The dissection of the musculature of the head of an insect of this size, together with the unusual insight it gives of the relationship of the nerves, tracheal tubes and mouthparts, provides the student with a remarkable anatomical adventure. Moreover, apart from their value in providing evidence of homology, the muscles provide an important basis for func- tional stu'dies of insect structure and behavior. Material and technique The study of insect musculature is simplified by the careful selection of specimens and the application of killing and pre- servation methods which will give the best possible differenti- ation of the muscles. In addition to being readily differentiated from other tissues in the body cavity, muscles should retain their individual identity, should be flexible enough to permit probing, and should maintain their origins and insertions on the sclerites and movable parts of the exoskeleton. The study of insect musculature always requires much additional time and tedious manipulation when any of these conditions are not effected. With some insects all of these requirements can be met by simplv dropping them in 70% alcohol, or in other cases by first dropping in steaming water (70-75"C.), cooling, and then placing them in 705>alcohol. Insects fixed this way some- times reveal muscles in a well preserved state, upon dissection, months or even years after they have been killed. CORYDALUS LARVA - HEAD MUSCLES 3 Many insects, however, require special methods for the proper preservation of their muscles, either for reasons of their large size, or the inability of the preserving medium to quickly penetrate the cuticle and prevent consequent destruc- tive action in the body tissues. Rober ('41) in studying the musculature of the head of larval and adult Sialis fiavilatern particularly recommended the use of injections of 96% alcohol, as well as the use of either Carnoy or 80% Bouin solution for preservation. Maki ( '36), in studying the muscles of the aldult Clzauliodes fornzosan(as, preserved his specimens in a solution of 75% alcohol and 25, formaldehyde. Das ('37), in a study of the ninsculature of the mouthparts of various insect larvae throughout the holometabolous orders, stated that he fixed bis material in 90% alcohol for 3-10 days, according to the size of the larva and the nature of its food. The dissections were made in 70% alcohol and the dissected mouthparts with their muscles were stained overnight in light borax carmine. Imms ('39), taking advantage of the anisotropic character of muscles, prepared whole mounts either in cedar wood oil or Canada balsam, and examined them with the aid of Polaroid microscopy. With the nicol prisms in the crossed position, muscles of the antennae and mouthparts have the appearance of self-luminous objects in a dark field. Such small muscles as are sometimes overlooked with other techniques, are thus at once evident. An eosin-staining, oil of wintergreen clearing procedure has been previously described by Kramer ( '48) which makes it possible to clearly detect the individual muscles through the transparent body wall of such forms as house fly larvae. Further investigations concerning the effect of pre- servatives and possible staining techniques on the differentia- tion of insect muscles for anatomical studies would be desir- able. Most of the specimens used foT this study were injected with and preserved in a 55% solution of chloral hydrate, and dissected in 50% alcohol. This method gave excellent results. The use of chloral hydrate for the preservation of Corydalus larvae was first indicated by Comstock and Kcllogg ('02). 4 SOL KRAMER Doctor Clarence F;. Mickel, University of Illinnesota, who col- lectcd and generously furnished most of the specimens used in this study, modified their method of preservation by inject- ing the specimens with a hypodermic syri~ige,~instead of slitting the abdomen as Comstock and Kellogg recommended. This injection technique has the further advantage of distcnd- ing the insect and its muscles. Full-grown CorydaZus larvae may be collected underncath the rocks of swift, shallow streams during late May or early June. Specimens are more readily collected underneath rocks on shore just after the larvae begin to lcave the stream for pupation. Thcsc latter, however, f reqnently contain much tissue for the formation of the pupal stage which often inter- feres with tracing the muscles to their origins and insertions. For this reason larvae collected in the stream, during ‘early May, are prcferable for muscle study. Larvae may also be collcctcd during July, August and September, but since these insects require three years to mature (Baldaf, ’39) such sum- mer forms will not be full-grown. X7hen investigating the musculature of any insect it is well to provide oneself with ample material. A (dozen specimens is usually the very minimum requirement and one frequently finds that twice that number, or more, depending upon the dif- ficulties encountered, are neoessary. The best results are to be had by working slowly. Considerable time is required to care- > Concerning this method Dr. Mickel writes: “ We kill the specimcns in boiling water as follows: for convenience sake we take five speeiinens at a time and enclose them in a square of cheese-cloth and then ‘dunk’ tho cnelosed specimens in boiling water for eight mconds. As soon as they come out of the boiling uater at the end of that time, I take a hypodermic needle with the 5% chloral hydrate in it, insert it on the underside of any of the terminal segments of the body and inject enough to distend the speeiiiien. I have a large shallow pan filled with chloral hydrate from which I refill thc nccdlc as often as is nccessary and into which I drop the sprci- n~ensas fast as thcy arc injcctcd. It took about 34hour8 to inject the 300 speci- mens that I collected in June. After all of the specimens have been injected I pack them loosely in quart jars, cover them completely with chloral hydrate solu- tion and store them in a refiigerator at about 4045°F. until they are ready to be uBcd.” Dr. Mickel recommends that this treatment be tried in studying the inter nal structures of other insects. COLLYDAL,TlS LAllVh - HEAD IKTJSCLES 5 fully tease ax-ay the iritestinal tract, fat body, tracheal tubes arid other tissues and this time is largelj- wastcd when the muscles arc subsequently dissected away in wholesale fashion. Complete familiarity with the external and internal portions of the exoskeleton, suppleiiientcd by drawings, are a prelimi- nary requisite for the designation of the origin and insertion of the muscles, and for this reason dctailed drawings of the exoskeleton have herein been included. Description of the head The head of the CorydaEirs larva (figs. I, 2) is of tlic prog- nathous type, flattened dorsoventrally. The mouthparts are broadly articiilated to the anterior region of the epicraniurn which latter is roughly squared and thickly sclerotized. The head is dark brown in color and both the dorsal and ventral surfaces are marked with dark and light patterns, or niaculae, which indicate areas of niuscle attaclirriciit (figs. 3, 4). The head cnpsule (figs. 1,Z). Posteriorly, tlic occipital open- ing of the had is bordered by the postoccipital ridge (pocr). Anterior to the postoccipital ridge on the dorsal region is the occipital region (ocp), which is demarlied from the vertex area (vx) by tlic occipital suture (OCS).
Recommended publications
  • Entomology 101 Jason J
    Entomology 101 Jason J. Dombroskie Manager, Cornell U. Insect Collection Coordinator, Insect Diagnostic Lab This material [email protected] can only be used for CCE MGV audiences. Outline • What is an insect? • Anatomy • Life cycles • Diversity • Major orders • Herbivory Corydalus cornutus Cornell U. Insect Collection • > 7 million specimens • ~200 000 species • worldwide coverage • http://cuic.entomology.cornell.edu/ • on facebook Insect Diagnostic Lab • ~700 IDs per year • 10-20 000 IDs for NYS Dept. Ag. & Markets • occasionally IDs can be made from a photo • mostly local, but some submissions worldwide • $25 fee • http://entomology.cornell.edu/IDL Arthropods Regier, et al. 2005 What is an insect? • 3 main body parts • 6 jointed legs • 1 pair of antennae • compound eyes • usually some sort of metamorphosis Booneacris glacialis Head • antennae • mouthparts • compound eyes • ocelli Monochamus scutellatus Popillia japonica Tetanocera sp. Antheraea polyphemus wikimedia commons labrum maxilla mandible labium Corydalus cornutus Polygonia progne Aedes sp. Hybomitra zonalis Monochamus notatus Aeshna canadensis Isoptera Darapsa myron Thorax • six legs • four wings or less • muscular Amateur Entomologists’ Society Entomologists’ Amateur Limenitis archippus Lethocerus americanus Zeugomantispa minuta Machimus sp. with Herpetogramma pertextalis wikimedia commons Tipula apicalis Cybister fimbriolatus Elasmucha lateralis Automeris io Abdomen • internal organs • genitalia • ovipositor Ophiogomphus rupinsulensis Lauxania shewelli Merope tuber Adoxophyes
    [Show full text]
  • C:\Documents and Settings\Rheitzma\My Documents
    State of Ohio Environmental Protection Agency Division of Surface Water Biological and Water Quality Study of the Big Darby Creek Watershed, 2001/2002 Logan, Champaign, Union, Madison, Franklin and Pickaway Counties Greenside Darter Central Mottled Sculpin (Cottus bairdi bairdi) (Etheostoma blennioides Clubshell Mussel blennioides) (Pleurobema clava) Spotted Darter Eastern Banded Darter (Etheostoma maculatum) (Etheostoma zonale zonale) Helgrammite (Corydalus cornutus) Smallmouth Bass (Micropterus doloieui dolomieui) stonefly nymph mayfly nymph (Isonychia sp.) Bob Taft, Governor Christopher Jones, Director Biological and Water Quality Study of Big Darby Creek and Selected Tributaries 2001/2002 Logan, Champaign, Union, Madison, Franklin and Pickaway Counties, Ohio June 2004 Ohio EPA Technical Report EAS/2004-6-3 prepared by State of Ohio Environmental Protection Agency Division of Surface Water Lazarus Government Center 122 South Front St., Columbus OH 43215 Mail to: P.O. Box 1049, Columbus OH 43216-1049 Bob A Taft Governor, State of Ohio Christopher Jones Director, Ohio Environmental Protection Agency CONTENTS How To Use This Document.................................................. vii Notice to Users.............................................................. viii Acknowledgments .............................................................x Foreword ................................................................... xi Section A. General Study Discussion and Results A.1 Introduction.........................................................
    [Show full text]
  • Hundreds of Species of Aquatic Macroinvertebrates Live in Illinois In
    Illinois A B aquatic sowbug Asellus sp. Photograph © Paul P.Tinerella AAqquuaattiicc mayfly A. adult Hexagenia sp.; B. nymph Isonychia sp. MMaaccrrooiinnvveerrtteebbrraatteess Photographs © Michael R. Jeffords northern clearwater crayfish Orconectes propinquus Photograph © Michael R. Jeffords ruby spot damselfly Hetaerina americana Photograph © Michael R. Jeffords aquatic snail Pleurocera acutum Photograph © Jochen Gerber,The Field Museum of Natural History predaceous diving beetle Dytiscus circumcinctus Photograph © Paul P.Tinerella monkeyface mussel Quadrula metanevra common skimmer dragonfly - nymph Libellula sp. Photograph © Kevin S. Cummings Photograph © Paul P.Tinerella water scavenger beetle Hydrochara sp. Photograph © Steve J.Taylor devil crayfish Cambarus diogenes A B Photograph © ChristopherTaylor dobsonfly Corydalus sp. A. larva; B. adult Photographs © Michael R. Jeffords common darner dragonfly - nymph Aeshna sp. Photograph © Paul P.Tinerella giant water bug Belostoma lutarium Photograph © Paul P.Tinerella aquatic worm Slavina appendiculata Photograph © Mark J. Wetzel water boatman Trichocorixa calva Photograph © Paul P.Tinerella aquatic mite Order Prostigmata Photograph © Michael R. Jeffords backswimmer Notonecta irrorata Photograph © Paul P.Tinerella leech - adult and young Class Hirudinea pygmy backswimmer Neoplea striola mosquito - larva Toxorhynchites sp. fishing spider Dolomedes sp. Photograph © William N. Roston Photograph © Paul P.Tinerella Photograph © Michael R. Jeffords Photograph © Paul P.Tinerella Species List Species are not shown in proportion to actual size. undreds of species of aquatic macroinvertebrates live in Illinois in a Kingdom Animalia Hvariety of habitats. Some of the habitats have flowing water while Phylum Annelida Class Clitellata Family Naididae aquatic worm Slavina appendiculata This poster was made possible by: others contain still water. In order to survive in water, these organisms Class Hirudinea leech must be able to breathe, find food, protect themselves, move and reproduce.
    [Show full text]
  • Aquatic Critters Aquatic Critters (Pictures Not to Scale) (Pictures Not to Scale)
    Aquatic Critters Aquatic Critters (pictures not to scale) (pictures not to scale) dragonfly naiad↑ ↑ mayfly adult dragonfly adult↓ whirligig beetle larva (fairly common look ↑ water scavenger for beetle larvae) ↑ predaceous diving beetle mayfly naiad No apparent gills ↑ whirligig beetle adult beetle - short, clubbed antenna - 3 “tails” (breathes thru butt) - looks like it has 4 - thread-like antennae - surface head first - abdominal gills Lower jaw to grab prey eyes! (see above) longer than the head - swim by moving hind - surface for air with legs alternately tip of abdomen first water penny -row bklback legs (fbll(type of beetle larva together found under rocks damselfly naiad ↑ in streams - 3 leaf’-like posterior gills - lower jaw to grab prey damselfly adult↓ ←larva ↑adult backswimmer (& head) ↑ giant water bug↑ (toe dobsonfly - swims on back biter) female glues eggs water boatman↑(&head) - pointy, longer beak to back of male - swims on front -predator - rounded, smaller beak stonefly ↑naiad & adult ↑ -herbivore - 2 “tails” - thoracic gills ↑mosquito larva (wiggler) water - find in streams strider ↑mosquito pupa mosquito adult caddisfly adult ↑ & ↑midge larva (males with feather antennae) larva (bloodworm) ↑ hydra ↓ 4 small crustaceans ↓ crane fly ←larva phantom midge larva ↑ adult→ - translucent with silvery bflbuoyancy floats ↑ daphnia ↑ ostracod ↑ scud (amphipod) (water flea) ↑ copepod (seed shrimp) References: Aquatic Entomology by W. Patrick McCafferty ↑ rotifer prepared by Gwen Heistand for ACR Education midge adult ↑ Guide to Microlife by Kenneth G. Rainis and Bruce J. Russel 28 How do Aquatic Critters Get Their Air? Creeks are a lotic (flowing) systems as opposed to lentic (standing, i.e, pond) system. Look for … BREATHING IN AN AQUATIC ENVIRONMENT 1.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Primeiro Registro De Corydalus Peruvianus Davis (Megaloptera: Coridalidae: Coridalinae) No Brasil
    doi:10.12741/ebrasilis.v11i1.704 e-ISSN 1983-0572 Publication of the project Entomologistas do Brasil www.ebras.bio.br Creative Commons Licence v4.0 (BY-NC-SA) Copyright © EntomoBrasilis Copyright © Author(s) Scientific Note/Comunicação Científica Primeiro registro de Corydalus peruvianus Davis (Megaloptera: Coridalidae: Coridalinae) no Brasil Registered on ZooBank: urn:lsid:zoobank.org:pub:ADC79A4E-33D7-494E-B2EC-39AFA4E17042 Jaime de Liege Gama Neto¹ & Mahedy Araujo Bastos Passos² 1. Universidade Estadual de Roraima (UERR). 2. Centro Estadual de Educação Profissional Prof. Antônio de Pinho Lima. EntomoBrasilis 11 (1): 45-48 (2018) Resumo. Registra-se pela primeira vez no Brasil o megaloptera Corydalus peruvianus Davis, ampliando a distribuição geográfica da espécie na América do Sul. Adicionalmente, são fornecidas informações sobre o ambiente e a qualidade da água do local onde a espécie foi coletada. Palavras-Chave: América do Sul; Distribuição geográfica; Insetos aquáticos; Roraima; Serra do Tepequém. First record of Corydalus peruvianus Davis (Megaloptera: Coridalidae: Coridalinae) from Brazil Abstract. We recorded, for the first time in Brazil, the megalopteran Corydalus peruvianus Davis, expanding their geographic distribution in the South America. We complement this information with data on the environment and water quality of the locality where the species was collected. Keywords: Aquatic insects; Geographic distribution; South America; Tepequém mountain range; Roraima. egaloptera é uma pequena ordem de insetos aquáticos Dentro desse contexto, continuando o esforço para descrever holometábolos, com aproximadamente 348 espécies e registrar a fauna de insetos aquáticos do estado de Roraima, mundialmente distribuídas (CONTRERAS -RAMOS 2011), o presente trabalho tem como objetivo apresentar o primeiro caracterizados por um estágio larval exclusivamente aquático registro de Corydalus peruvianus Davis no Brasil, ampliando a e por adultos alados com cabeça prognata e área anal da asa distribuição geográfica da espécie na América do Sul.
    [Show full text]
  • Megaloptera: Corydalidae)
    Dugesiana 11(1): 1-11, 2004. Fecha de publicación: 31 de julio 2004 © Universidad de Guadalajara Taxonomic and distributional notes on the dobsonflies of Ecuador (Megaloptera: Corydalidae) Atilano Contreras-Ramos Posgrado en Recursos Bióticos, Centro de Investigaciones Biológicas, UAEH, Apdo. Postal 1-69, Plaza Juárez, Pachuca, Hidalgo 42001, México, e-mail: [email protected] ABSTRACT A general account of the taxonomy and distribution of the dobsonflies of Ecuador is given, with notes on recently studied material from the Pontificia Universidad Católica del Ecuador. Twelve species are reported from the country and their respective distributions are summarized. Three additional, but undescribed species are apparent in recently examined museum collections. A second male of Corydalus ecuadorianus Banks is reported, and photographs of the male and the female holotype are included. The location of syntypes of Chloronia mirifica Navás, previously thought destroyed, is established at the Museu de Zoologia, Barcelona, Spain. A lectotype for the latter species is designated. KEY WORDS: Megaloptera, Corydalidae, Ecuador, taxonomy, Chloronia mirifica, lectotype RESUMEN La taxonomía y distribución de los coridálidos de Ecuador son consideradas de manera general, con notas sobre material de la Pontificia Universidad Católica del Ecuador estudiado recientemente. Doce especies son reportadas de ese país y sus respectivas distribuciones son sintetizadas. Tres especies más, no descritas, son aparentes de acuerdo a ejemplares de museo recientemente examinados. Se reporta un segundo macho de Corydalus ecuadorianus Banks, incluyéndose fotografías del macho y del holotipo hembra. La localización de los sintipos de Chloronia mirifica Navás, previamente considerados como destruidos, es establecida en el Museu de Zoologia, Barcelona, España.
    [Show full text]
  • Native Species 8-2-11
    Bird Species of Greatest Convention Conservation Need Number Group Ref Number Common Name Scientific Name (yes/no) Amphibians 1459 Eastern Tiger Salamander Ambystoma tigrinum Y Amphibians 1460 Smallmouth Salamander Ambystoma texanum N Amphibians 1461 Eastern Newt (T) Notophthalmus viridescens Y Amphibians 1462 Longtail Salamander (T) Eurycea longicauda Y Amphibians 1463 Cave Salamander (E) Eurycea lucifuga Y Amphibians 1465 Grotto Salamander (E) Eurycea spelaea Y Amphibians 1466 Common Mudpuppy Necturus maculosus Y Amphibians 1467 Plains Spadefoot Spea bombifrons N Amphibians 1468 American Toad Anaxyrus americanus N Amphibians 1469 Great Plains Toad Anaxyrus cognatus N Amphibians 1470 Green Toad (T) Anaxyrus debilis Y Amphibians 1471 Red-spotted Toad Anaxyrus punctatus Y Amphibians 1472 Woodhouse's Toad Anaxyrus woodhousii N Amphibians 1473 Blanchard's Cricket Frog Acris blanchardi Y Amphibians 1474 Gray Treefrog complex Hyla chrysoscelis/versicolor N Amphibians 1476 Spotted Chorus Frog Pseudacris clarkii N Amphibians 1477 Spring Peeper (T) Pseudacris crucifer Y Amphibians 1478 Boreal Chorus Frog Pseudacris maculata N Amphibians 1479 Strecker's Chorus Frog (T) Pseudacris streckeri Y Amphibians 1480 Boreal Chorus Frog Pseudacris maculata N Amphibians 1481 Crawfish Frog Lithobates areolata Y Amphibians 1482 Plains Leopard Frog Lithobates blairi N Amphibians 1483 Bullfrog Lithobates catesbeianaN Amphibians 1484 Bronze Frog (T) Lithobates clamitans Y Amphibians 1485 Pickerel Frog Lithobates palustris Y Amphibians 1486 Southern Leopard Frog
    [Show full text]
  • Wiconisco Creek Watershed Assessment and Plan
    WICONISCO CREEK WATERSHED ASSESSMENT AND PLAN Publication No. 206 June 1999 Travis W. Stoe Biologist This report is prepared in cooperation with Pennsylvania Department of Environmental Protection, Bureau of Watershed Conservation, under Grant ME96353. SUSQUEHANNA RIVER BASIN COMMISSION Paul O. Swartz, Executive Director John T. Hicks, N.Y. Commissioner Scott J. Foti, N.Y. Alternate James M. Seif, Pa. Commissioner Irene B. Brooks, Pa. Alternate Jane T. Nishida, Md. Commissioner J.L. Hearn, Md. Alternate Major General Jerry L. Sinn, U.S. Commissioner Colonel Bruce A. Berwick, U.S. Alternate The Susquehanna River Basin Commission was created as an independent agency by a federal-interstate compact* among the states of Maryland, New York, Commonwealth of Pennsylvania, and the federal government. In creating the Commission, the Congress and state legislatures formally recognized the water resources of the Susquehanna River Basin as a regional asset vested with local, state, and national interests for which all the parties share responsibility. As the single federal-interstate water resources agency with basinwide authority, the Commission's goal is to coordinate the planning, conservation, management, utilization, development and control of basin water resources among the public and private sectors. *Statutory Citations: Federal - Pub. L. 91-575, 84 Stat. 1509 (December 1970); Maryland - Natural Resources Sec. 8-301 (Michie 1974); New York - ECL Sec. 21-1301 (McKinney 1973); and Pennsylvania - 32 P.S. 820.1 (Supp. 1976). For additional copies of this publication, contact the Susquehanna River Basin Commission, 1721 N. Front Street, Harrisburg, PA. 17102-2391, (717) 238-0423, FAX (717) 238-2436, E-mail [email protected].
    [Show full text]
  • Aquatic Insects and Their Potential to Contribute to the Diet of the Globally Expanding Human Population
    insects Review Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population D. Dudley Williams 1,* and Siân S. Williams 2 1 Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada 2 The Wildlife Trust, The Manor House, Broad Street, Great Cambourne, Cambridge CB23 6DH, UK; [email protected] * Correspondence: [email protected] Academic Editors: Kerry Wilkinson and Heather Bray Received: 28 April 2017; Accepted: 19 July 2017; Published: 21 July 2017 Abstract: Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? Keywords: aquatic insects; entomophagy; human diet; animal feed; life histories; environmental requirements 1. Introduction Entomophagy (from the Greek ‘entoma’, meaning ‘insects’ and ‘phagein’, meaning ‘to eat’) is a trait that we Homo sapiens have inherited from our early hominid ancestors.
    [Show full text]
  • The Aquatic Neuropterida of Iowa
    Entomology Publications Entomology 7-2020 The Aquatic Neuropterida of Iowa David E. Bowles National Park Service Gregory W. Courtney Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/576. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Aquatic Neuropterida of Iowa Abstract The fauna of aquatic Neuropterida of Iowa is documented. We list one species of dobsonfly, three species of fishflies, four alderflies (Megaloptera), and two spongillaflies (Neuroptera). New Iowa distributional records are reported for Protosialis americana (Rambur), Sialis joppa Ross, Sialis mohri Ross, Nigronia serricornis (Say), Climacia areolaris (Hagen), and Sisyra vicaria (Walker). Keywords Sialis, Chauliodes, Corydalus, Nigronia, Climacia, Sisyra Disciplines Ecology and Evolutionary Biology | Entomology Comments This article is published as Bowles, David E., and Gregory W. Courtney. "The Aquatic Neuropterida of Iowa." Proceedings of the Entomological Society of Washington 122, no. 3 (2020): 556-565. doi: 10.4289/ 0013-8797.122.3.556. This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ent_pubs/576 PROC. ENTOMOL.
    [Show full text]
  • A New Species of Corydalus Latreille, 1802 (Megaloptera, Corydalidae) and First Record of C. Clavijoi Contreras-Ramos, 2002 and C
    Zootaxa 3811 (1): 107–118 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3811.1.6 http://zoobank.org/urn:lsid:zoobank.org:pub:E4DBCC2F-F66B-4977-882D-E494AE68639A A new species of Corydalus Latreille, 1802 (Megaloptera, Corydalidae) and first record of C. clavijoi Contreras-Ramos, 2002 and C. nubilus Erichson, 1848 from Colombia ADRIAN ARDILA-CAMACHO Universidad Distrital Francisco José de Caldas, Laboratorio de Entomología, Bogotá – Colombia. E-mail: [email protected] Abstract A new species of the dobsonfly genus Corydalus from the Colombian Andean region is described and illustrated. This species is unique in having the longest tenth gonostyli of all known species of the genus and is apparently closely related to members of the C. nubilus group. In addition, C. clavijoi Contreras-Ramos and C. nubilus Erichson are recorded for the first time from Colombia and new Colombian locality records are provided for other known species. A key to Colombian species of Corydalus is included. Key words: taxonomy, Corydalus, new records, new species, Neotropics Introduction The genus Corydalus Latreille, 1802 is the most diverse group of megalopterans in the New World including 35 species distributed from southeastern Canada to Argentina with exception of the Greater and Lesser Antilles (Contreras-Ramos 1998; Contreras-Ramos 2002; Contreras-Ramos & von der Dunk 2010). Upon review of the genus, eight species are reported from Colombia: C. affinis Burmeister, 1839, C. armatus Hagen, 1861, C. batesii MacLachlan, 1868, C. clauseni Contreras-Ramos, 1998, C.
    [Show full text]