Catalytic Receptors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Altered Integrin Alpha 6 Expression As a Rescue for Muscle Fiber Detachment in Zebrafish (Danio Rerio)
The University of Maine DigitalCommons@UMaine Honors College Spring 2014 Altered Integrin Alpha 6 Expression As A Rescue For Muscle Fiber Detachment In Zebrafish (Danio Rerio) Rose E. McGlauflin Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Animal Diseases Commons, and the Musculoskeletal Diseases Commons Recommended Citation McGlauflin, Rose E., Alter" ed Integrin Alpha 6 Expression As A Rescue For Muscle Fiber Detachment In Zebrafish (Danio Rerio)" (2014). Honors College. 140. https://digitalcommons.library.umaine.edu/honors/140 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ALTERED INTEGRIN ALPHA 6 EXPRESSION AS A RESCUE FOR MUSCLE FIBER DETACHMENT IN ZEBRAFISH (DANIO RERIO) by Rose E. McGlauflin A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Biology) The Honors College University of Maine May 2014 Advisory Committee: Clarissa A. Henry, Ph.D., Associate Professor of Biological Sciences, Advisor Mary S. Tyler, Ph.D., Professor of Zoology Mary Astumian, Henry Lab Manager Michelle Smith, Ph.D., Assistant Professor of Biological Sciences Mark Haggerty, Ph.D., Honors Preceptor for Civic Engagement Abstract Cells adhere to their extracellular matrix by way of integrins, transmembrane molecules that attach the cytoskeleton to the extracellular basement membrane (one kind of extracellular matrix). In some muscular dystrophies, specific integrins are disrupted and muscle fibers detach from the myotendenous junction and degenerate. This integrin disruption causes a constant cycle of regeneration and degeneration, which greatly harms the tissue over time. -
Katalog 2015 Cover Paul Lin *Hinweis Förderung.Indd
Product List 2015 WE LIVE SERVICE Certificates quartett owns two productions sites that are certified according to EN ISO 9001:2008 Quality management systems - Requirements EN ISO 13485:2012 + AC:2012 Medical devices - Quality management systems - Requirements for regulatory purposes GMP Conformity Our quality management guarantees products of highest quality! 2 Foreword to the quartett product list 2015 quartett Immunodiagnostika, Biotechnologie + Kosmetik Vertriebs GmbH welcomes you as one of our new business partners as well as all of our previous loyal clients. You are now member of quartett´s worldwide customers. First of all we would like to introduce ourselves to you. Founded as a family-run company in 1986, quartett ensures for more than a quarter of a century consistent quality of products. Service and support of our valued customers are our daily businesses. And we will continue! In the end 80´s quartett offered radioimmunoassay and enzyme immunoassay kits from different manufacturers in the USA. In the beginning 90´s the company changed its strategy from offering products for routine diagnostic to the increasing field of research and development. Setting up a production plant in 1997 and a second one in 2011 supported this decision. The company specialized its product profile in the field of manufacturing synthetic peptides for antibody production, peptides such as protease inhibitors, biochemical reagents and products for histology, cytology and immunohistology. All products are exclusively manufactured in Germany without outsourcing any production step. Nowadays, we expand into all other diagnostic and research fields and supply our customers in universities, government institutes, pharmaceutical and biotechnological companies, hospitals, and private doctor offices. -
TNF Decoy Receptors Encoded by Poxviruses
pathogens Review TNF Decoy Receptors Encoded by Poxviruses Francisco Javier Alvarez-de Miranda † , Isabel Alonso-Sánchez † , Antonio Alcamí and Bruno Hernaez * Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; [email protected] (F.J.A.-d.M.); [email protected] (I.A.-S.); [email protected] (A.A.) * Correspondence: [email protected]; Tel.: +34-911-196-4590 † These authors contributed equally. Abstract: Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF- based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules. Keywords: poxvirus; immune evasion; tumour necrosis factor; tumour necrosis factor receptors; lymphotoxin; inflammation; cytokines; secreted decoy receptors; vaccinia virus; ectromelia virus; cowpox virus Citation: Alvarez-de Miranda, F.J.; Alonso-Sánchez, I.; Alcamí, A.; 1. TNF Biology Hernaez, B. TNF Decoy Receptors TNF is a potent pro-inflammatory cytokine with a broad range of biological effects, Encoded by Poxviruses. Pathogens ranging from the activation of inflammatory gene programs to cell differentiation or 2021, 10, 1065. -
Biological Pathways and in Vivo Antitumor Activity Induced by Atiprimod in Myeloma
Leukemia (2007) 21, 2519–2526 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu ORIGINAL ARTICLE Biological pathways and in vivo antitumor activity induced by Atiprimod in myeloma P Neri1,2,3, P Tassone1,2,3, M Shammas1, H Yasui2, E Schipani4, RB Batchu1, S Blotta1,2,3, R Prabhala1, L Catley2, M Hamasaki2, T Hideshima2, D Chauhan2, GS Jacob5, D Picker5, S Venuta3, KC Anderson2 and NC Munshi1,2 1Jerome Lipper Multiple Myeloma Center, Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; 2Boston VA Healthcare System, Department of Medicine, Harvard Medical School, MA, USA; 3Department of Experimental and Clinical Medicine, University of ‘Magna Græcia’ and Cancer Center, Catanzaro, Italy; 4Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA and 5Callisto Pharmaceuticals Inc., New York, NY, USA Atiprimod (Atip) is a novel oral agent with anti-inflammatory tion.7,8 Atip inhibits the inflammatory response and preserves properties. Although its in vitro activity and effects on signaling bone integrity in murine models of rheumatoid arthritis (RA),9–12 in multiple myeloma (MM) have been previously reported, here targets macrophages, inhibits phospholipase A and C in rat we investigated its molecular and in vivo effects in MM. Gene 13,14 expression analysis of MM cells identified downregulation of alveolar macrophages and exhibits antiproliferative and 15–17 genes involved in adhesion, cell-signaling, cell cycle and bone antiangiogenic activities in human cancer models. Impor- morphogenetic protein (BMP) pathways and upregulation of tantly, we have previously reported that Atip inhibits MM cell genes implicated in apoptosis and bone development, follow- growth, induces caspase-mediated apoptosis, blocks the phos- ing Atip treatment. -
TRAIL and Cardiovascular Disease—A Risk Factor Or Risk Marker: a Systematic Review
Journal of Clinical Medicine Review TRAIL and Cardiovascular Disease—A Risk Factor or Risk Marker: A Systematic Review Katarzyna Kakareko 1,* , Alicja Rydzewska-Rosołowska 1 , Edyta Zbroch 2 and Tomasz Hryszko 1 1 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] (A.R.-R.); [email protected] (T.H.) 2 Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] * Correspondence: [email protected] Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdomi- nal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accor- dance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pul- monary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear Citation: Kakareko, K.; whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
(12) Patent Application Publication (10) Pub. No.: US 2014/0127257 A1 Schiemann Et Al
US 2014O127257A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0127257 A1 Schiemann et al. (43) Pub. Date: May 8, 2014 (54) DERMATOLOGICALLY EFFECTIVE YEAST Publication Classification EXTRACT (51) Int. Cl. (75) Inventors: Yvonne Schiemann, Essen (DE); Mike A61E36/064 (2006.01) Farwick, Essen (DE); Thomas Haas, CI2P I/02 (2006.01) Muenster (DE); Mirja Wessel, Bochum A61E36/06 (2006.01) (DE) (52) U.S. Cl. CPC ............... A61K 36/064 (2013.01); A61K 36/06 (73) Assignee: EVONIK DEGUSSA GMBH, Essen (2013.01); CI2P I/02 (2013.01) (DE) USPC ...................................... 424/195.16; 435/171 (21) Appl. No.: 14/128,244 (22) PCT Fled: Jun. 14, 2012 (57) ABSTRACT (86) PCT NO.: PCT/EP2012/061263 The invention relates to a method for producing a dermato S371 (c)(1), logically active yeast extract, comprising the following steps: (2), (4) Date: Dec. 20, 2013 providing a preculture of the yeast cells, culturing the cells for (30) Foreign Application Priority Data at least fifteen minutes at a pH of 1.8-4, harvesting the cells and lysing the cells, and a yeast extract produced thereby and Jun. 29, 2011 (EP) .................................. 11171953.0 products comprising said yeast extract. Patent Application Publication May 8, 2014 Sheet 1 of 3 US 2014/O127257 A1 -0-Yarrowia------------ lipolytica -- Pichia CBS 1991 - A - Saccharomyces Cerevisiae Fig. 1 US 2014/O127257 A1 May 8, 2014 DERMATOLOGICALLY EFFECTIVE YEAST skin. Against the background of consumers’ uncertainty with EXTRACT respect to genetic engineering techniques, there is a particular demand for corresponding agents that can be regarded, 0001. -
Genetic Variation of the Toll-Like Receptors in a Swedish Allergic Rhinitis Case Population
http://www.diva-portal.org This is the published version of a paper published in BMC Medical Genetics. Citation for the original published paper (version of record): Henmyr, V., Carlberg, D., Manderstedt, E., Lind-Halldén, C., Säll, T. et al. (2017) Genetic variation of the toll-like receptors in a Swedish allergic rhinitis case population. BMC Medical Genetics, 18(1): 18 https://doi.org/10.1186/s12881-017-0379-6 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-16592 Henmyr et al. BMC Medical Genetics (2017) 18:18 DOI 10.1186/s12881-017-0379-6 RESEARCHARTICLE Open Access Genetic variation of the Toll-like receptors in a Swedish allergic rhinitis case population V. Henmyr1,2*†, D. Carlberg2†, E. Manderstedt1,2, C. Lind-Halldén2, T. Säll1, L. O. Cardell3 and C. Halldén2 Abstract Background: Variation in the 10 toll-like receptor (TLR) genes has been significantly associated with allergic rhinitis (AR) in several candidate gene studies and three large genome-wide association studies. These have all investigated common variants, but no investigations for rare variants (MAF ≤ 1%) have been made in AR. The present study aims to describe the genetic variation of the promoter and coding sequences of the 10 TLR genes in 288 AR patients. Methods: Sanger sequencing and Ion Torrent next-generation sequencing was used to identify polymorphisms in a Swedish AR population and these were subsequently compared and evaluated using 1000Genomes and Exome Aggregation Consortium (ExAC) data. -
Mtorc1-Independent Autophagy Regulates Receptor Tyrosine Kinase Phosphorylation in Colorectal Cancer Cells Via an Mtorc2-Mediated Mechanism
Cell Death and Differentiation (2017) 24, 1045–1062 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1350-9047/17 www.nature.com/cdd mTORC1-independent autophagy regulates receptor tyrosine kinase phosphorylation in colorectal cancer cells via an mTORC2-mediated mechanism Aikaterini Lampada1,2, James O’Prey3, Gyorgy Szabadkai4, Kevin M Ryan3, Daniel Hochhauser*,2,5 and Paolo Salomoni*,1,5 The intracellular autophagic degradative pathway can have a tumour suppressive or tumour-promoting role depending on the stage of tumour development. Upon starvation or targeting of oncogenic receptor tyrosine kinases (RTKs), autophagy is activated owing to the inhibition of PI3K/AKT/mTORC1 signalling pathway and promotes survival, suggesting that autophagy is a relevant therapeutic target in these settings. However, the role of autophagy in cancer cells where the PI3K/AKT/mTORC1 pathway is constitutively active remains partially understood. Here we report a role for mTORC1-independent basal autophagy in regulation of RTK activation and cell migration in colorectal cancer (CRC) cells. PI3K and RAS-mutant CRC cells display basal autophagy levels despite constitutive mTORC1 signalling, but fail to increase autophagic flux upon RTK inhibition. Inhibition of basal autophagy via knockdown of ATG7 or ATG5 leads to decreased phosphorylation of several RTKs, in particular c-MET. Internalised c-MET colocalised with LAMP1-negative, LC3-positive vesicles. Finally, autophagy regulates c-MET phosphorylation via an mTORC2- dependent -
CD Markers Are Routinely Used for the Immunophenotyping of Cells
ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr. -
TLR9 Gene Transcriptional Regulation of the Human
Transcriptional Regulation of the Human TLR9 Gene Fumihiko Takeshita, Koichi Suzuki, Shin Sasaki, Norihisa Ishii, Dennis M. Klinman and Ken J. Ishii This information is current as of September 30, 2021. J Immunol 2004; 173:2552-2561; ; doi: 10.4049/jimmunol.173.4.2552 http://www.jimmunol.org/content/173/4/2552 Downloaded from References This article cites 49 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/173/4/2552.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 30, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Regulation of the Human TLR9 Gene1 Fumihiko Takeshita,2* Koichi Suzuki,† Shin Sasaki,‡ Norihisa Ishii,‡ Dennis M. Klinman,* and Ken J. Ishii3* To clarify the molecular basis of human TLR9 (hTLR9) gene expression, the activity of the hTLR9 gene promoter was charac- terized using the human myeloma cell line RPMI 8226. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................