Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TLR3-Dependent Activation of TLR2 Endogenous Ligands Via the Myd88 Signaling Pathway Augments the Innate Immune Response
cells Article TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response 1 2, 1 3 Hellen S. Teixeira , Jiawei Zhao y, Ethan Kazmierski , Denis F. Kinane and Manjunatha R. Benakanakere 2,* 1 Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] (H.S.T.); [email protected] (E.K.) 2 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] 3 Periodontology Department, Bern Dental School, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected] Present address: Department of Pathology, Wayne State University School of Medicine, y 541 East Canfield Ave., Scott Hall 9215, Detroit, MI 48201, USA. Received: 30 June 2020; Accepted: 12 August 2020; Published: 17 August 2020 Abstract: The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 / to somehow act downstream of TLR3. -
Regulation of Neuronal Morphogenesis and Brain Functions Via Toll-Like Receptors Chiung-Ya Chen*, Yi-Chun Shih, Yun-Fen Hung and Yi-Ping Hsueh*
Chen et al. Journal of Biomedical Science (2019) 26:90 https://doi.org/10.1186/s12929-019-0584-z REVIEW Open Access Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors Chiung-Ya Chen*, Yi-Chun Shih, Yun-Fen Hung and Yi-Ping Hsueh* Abstract Toll-like receptors (TLRs) are well known as critical pattern recognition receptors that trigger innate immune responses. In addition, TLRs are expressed in neurons and may act as the gears in the neuronal detection/alarm system for making good connections. As neuronal differentiation and circuit formation take place along with programmed cell death, neurons face the challenge of connecting with appropriate targets while avoiding dying or dead neurons. Activation of neuronal TLR3, TLR7 and TLR8 with nucleic acids negatively modulates neurite outgrowth and alters synapse formation in a cell-autonomous manner. It consequently influences neural connectivity and brain function and leads to deficits related to neuropsychiatric disorders. Importantly, neuronal TLR activation does not simply duplicate the downstream signal pathways and effectors of classical innate immune responses. The differences in spatial and temporal expression of TLRs and their ligands likely account for the diverse signaling pathways of neuronal TLRs. In conclusion, the accumulated evidence strengthens the idea that the innate immune system of neurons serves as an alarm system that responds to exogenous pathogens as well as intrinsic danger signals and fine-tune developmental processes of neurons. Keywords: Innate immunity, TLR, Neuronal development Introduction innate immune system responds quickly to danger sig- Organisms have host defense systems, namely adaptive nals and lacks antigen specificity. -
Genetic Variation of the Toll-Like Receptors in a Swedish Allergic Rhinitis Case Population
http://www.diva-portal.org This is the published version of a paper published in BMC Medical Genetics. Citation for the original published paper (version of record): Henmyr, V., Carlberg, D., Manderstedt, E., Lind-Halldén, C., Säll, T. et al. (2017) Genetic variation of the toll-like receptors in a Swedish allergic rhinitis case population. BMC Medical Genetics, 18(1): 18 https://doi.org/10.1186/s12881-017-0379-6 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-16592 Henmyr et al. BMC Medical Genetics (2017) 18:18 DOI 10.1186/s12881-017-0379-6 RESEARCHARTICLE Open Access Genetic variation of the Toll-like receptors in a Swedish allergic rhinitis case population V. Henmyr1,2*†, D. Carlberg2†, E. Manderstedt1,2, C. Lind-Halldén2, T. Säll1, L. O. Cardell3 and C. Halldén2 Abstract Background: Variation in the 10 toll-like receptor (TLR) genes has been significantly associated with allergic rhinitis (AR) in several candidate gene studies and three large genome-wide association studies. These have all investigated common variants, but no investigations for rare variants (MAF ≤ 1%) have been made in AR. The present study aims to describe the genetic variation of the promoter and coding sequences of the 10 TLR genes in 288 AR patients. Methods: Sanger sequencing and Ion Torrent next-generation sequencing was used to identify polymorphisms in a Swedish AR population and these were subsequently compared and evaluated using 1000Genomes and Exome Aggregation Consortium (ExAC) data. -
TLR8-Dependent Immune Responses Stimulating Sequence-Specific
Identification of RNA Sequence Motifs Stimulating Sequence-Specific TLR8-Dependent Immune Responses This information is current as Alexandra Forsbach, Jean-Guy Nemorin, Carmen Montino, of September 28, 2021. Christian Müller, Ulrike Samulowitz, Alain P. Vicari, Marion Jurk, George K. Mutwiri, Arthur M. Krieg, Grayson B. Lipford and Jörg Vollmer J Immunol 2008; 180:3729-3738; ; doi: 10.4049/jimmunol.180.6.3729 Downloaded from http://www.jimmunol.org/content/180/6/3729 References This article cites 55 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/180/6/3729.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of RNA Sequence Motifs Stimulating Sequence-Specific TLR8-Dependent Immune Responses1 Alexandra Forsbach,* Jean-Guy Nemorin,† Carmen Montino,* Christian Mu¨ller,* Ulrike Samulowitz,* Alain P. -
TLR9 Gene Transcriptional Regulation of the Human
Transcriptional Regulation of the Human TLR9 Gene Fumihiko Takeshita, Koichi Suzuki, Shin Sasaki, Norihisa Ishii, Dennis M. Klinman and Ken J. Ishii This information is current as of September 30, 2021. J Immunol 2004; 173:2552-2561; ; doi: 10.4049/jimmunol.173.4.2552 http://www.jimmunol.org/content/173/4/2552 Downloaded from References This article cites 49 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/173/4/2552.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 30, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Regulation of the Human TLR9 Gene1 Fumihiko Takeshita,2* Koichi Suzuki,† Shin Sasaki,‡ Norihisa Ishii,‡ Dennis M. Klinman,* and Ken J. Ishii3* To clarify the molecular basis of human TLR9 (hTLR9) gene expression, the activity of the hTLR9 gene promoter was charac- terized using the human myeloma cell line RPMI 8226. -
FAS (CD95) Mediates Noncanonical IL-1 Β and IL-18 Maturation Via Caspase-8 in an RIP3-Independent Manner This Information Is Current As of September 26, 2021
Cutting Edge: FAS (CD95) Mediates Noncanonical IL-1 β and IL-18 Maturation via Caspase-8 in an RIP3-Independent Manner This information is current as of September 26, 2021. Lukas Bossaller, Ping-I Chiang, Christian Schmidt-Lauber, Sandhya Ganesan, William J. Kaiser, Vijay A. K. Rathinam, Edward S. Mocarski, Deepa Subramanian, Douglas R. Green, Neal Silverman, Katherine A. Fitzgerald, Ann Marshak-Rothstein and Eicke Latz Downloaded from J Immunol 2012; 189:5508-5512; Prepublished online 9 November 2012; doi: 10.4049/jimmunol.1202121 http://www.jimmunol.org/content/189/12/5508 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2012/11/12/jimmunol.120212 Material 1.DC1 References This article cites 30 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/189/12/5508.full#ref-list-1 by guest on September 26, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. -
TLR3 Controls Constitutive IFN-Β Antiviral Immunity in Human Fibroblasts and Cortical Neurons
TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons Daxing Gao, … , Jean-Laurent Casanova, Shen-Ying Zhang J Clin Invest. 2021;131(1):e134529. https://doi.org/10.1172/JCI134529. Research Article Immunology Infectious disease Graphical abstract Find the latest version: https://jci.me/134529/pdf The Journal of Clinical Investigation RESEARCH ARTICLE TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons Daxing Gao,1,2,3 Michael J. Ciancanelli,1,4 Peng Zhang,1 Oliver Harschnitz,5,6 Vincent Bondet,7 Mary Hasek,1 Jie Chen,1 Xin Mu,8 Yuval Itan,9,10 Aurélie Cobat,11,12 Vanessa Sancho-Shimizu,11,12,13 Benedetta Bigio,1 Lazaro Lorenzo,11,12 Gabriele Ciceri,5,6 Jessica McAlpine,5,6 Esperanza Anguiano,14 Emmanuelle Jouanguy,1,11,12 Damien Chaussabel,14,15,16 Isabelle Meyts,17,18,19 Michael S. Diamond,20 Laurent Abel,1,11,12 Sun Hur,8 Gregory A. Smith,21 Luigi Notarangelo,22 Darragh Duffy,7 Lorenz Studer,5,6 Jean-Laurent Casanova,1,11,12,23,24 and Shen-Ying Zhang1,11,12 1St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA. 2Department of General Surgery, The First Affiliated Hospital of USTC, and 3Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China. 4Turnstone Biologics, New York, New York, USA. -
TLR Signaling Pathways
Seminars in Immunology 16 (2004) 3–9 TLR signaling pathways Kiyoshi Takeda, Shizuo Akira∗ Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Abstract Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing spe- cific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling. © 2003 Elsevier Ltd. All rights reserved. Keywords: TLR; Innate immunity; Signal transduction; TIR domain 1. Introduction 2. Toll-like receptors Toll receptor was originally identified in Drosophila as an A mammalian homologue of Drosophila Toll receptor essential receptor for the establishment of the dorso-ventral (now termed TLR4) was shown to induce the expression pattern in developing embryos [1]. In 1996, Hoffmann and of genes involved in inflammatory responses [3]. In addi- colleagues demonstrated that Toll-mutant flies were highly tion, a mutation in the Tlr4 gene was identified in mouse susceptible to fungal infection [2]. This study made us strains that were hyporesponsive to lipopolysaccharide [4]. aware that the immune system, particularly the innate im- Since then, Toll receptors in mammals have been a major mune system, has a skilful means of detecting invasion by focus in the immunology field. -
Human Cancer Cells TLR3 Can Directly Trigger Apoptosis In
TLR3 Can Directly Trigger Apoptosis in Human Cancer Cells Bruno Salaun, Isabelle Coste, Marie-Clotilde Rissoan, Serge J. Lebecque and Toufic Renno This information is current as of September 27, 2021. J Immunol 2006; 176:4894-4901; ; doi: 10.4049/jimmunol.176.8.4894 http://www.jimmunol.org/content/176/8/4894 Downloaded from References This article cites 44 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/176/8/4894.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology TLR3 Can Directly Trigger Apoptosis in Human Cancer Cells1 Bruno Salaun,2 Isabelle Coste,2 Marie-Clotilde Rissoan, Serge J. Lebecque,3 and Toufic Renno TLRs function as molecular sensors to detect pathogen-derived products and trigger protective responses ranging from secretion of cytokines that increase the resistance of infected cells and chemokines that recruit immune cells to cell death that limits microbe spreading. -
Not Signaling Mechanisms of Innate Immune Sensing but Human Tlrs
Human TLRs 10 and 1 Share Common Mechanisms of Innate Immune Sensing but Not Signaling This information is current as Yue Guan, Diana Rose E. Ranoa, Song Jiang, Sarita K. of September 26, 2021. Mutha, Xinyan Li, Jerome Baudry and Richard I. Tapping J Immunol 2010; 184:5094-5103; Prepublished online 26 March 2010; doi: 10.4049/jimmunol.0901888 http://www.jimmunol.org/content/184/9/5094 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2010/03/25/jimmunol.090188 Material 8.DC1 http://www.jimmunol.org/ References This article cites 74 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/184/9/5094.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human TLRs 10 and 1 Share Common Mechanisms of Innate Immune Sensing but Not Signaling Yue Guan,* Diana Rose E. -
Cx3cr1 Mediates the Development of Monocyte-Derived Dendritic Cells During Hepatic Inflammation
CX3CR1 MEDIATES THE DEVELOPMENT OF MONOCYTE-DERIVED DENDRITIC CELLS DURING HEPATIC INFLAMMATION. Supplementary material Supplementary Figure 1: Liver CD45+ myeloid cells were pre-gated for Ly6G negative cells for excluding granulocytes and HDCs subsequently analyzed among the cells that were CD11c+ and had high expression of MHCII. Supplementary Table 1 low/- high + Changes in gene expression between CX3CR1 and CX3CR1 CD11b myeloid hepatic dendritic cells (HDCs) from CCl4-treated mice high Genes up-regulated in CX3CR1 HDCs Gene Fold changes P value Full name App 4,01702 5,89E-05 amyloid beta (A4) precursor protein C1qa 9,75881 1,69E-22 complement component 1, q subcomponent, alpha polypeptide C1qb 9,19882 3,62E-20 complement component 1, q subcomponent, beta polypeptide Ccl12 2,51899 0,011769 chemokine (C-C motif) ligand 12 Ccl2 6,53486 6,37E-11 chemokine (C-C motif) ligand 2 Ccl3 4,99649 5,84E-07 chemokine (C-C motif) ligand 3 Ccl4 4,42552 9,62E-06 chemokine (C-C motif) ligand 4 Ccl6 3,9311 8,46E-05 chemokine (C-C motif) ligand 6 Ccl7 2,60184 0,009272 chemokine (C-C motif) ligand 7 Ccl9 4,17294 3,01E-05 chemokine (C-C motif) ligand 9 Ccr2 3,35195 0,000802 chemokine (C-C motif) receptor 2 Ccr5 3,23358 0,001222 chemokine (C-C motif) receptor 5 Cd14 6,13325 8,61E-10 CD14 antigen Cd36 2,94367 0,003243 CD36 antigen Cd44 4,89958 9,60E-07 CD44 antigen Cd81 6,49623 8,24E-11 CD81 antigen Cd9 3,06253 0,002195 CD9 antigen Cdkn1a 4,65279 3,27E-06 cyclin-dependent kinase inhibitor 1A (P21) Cebpb 6,6083 3,89E-11 CCAAT/enhancer binding protein (C/EBP), -
Double-Stranded RNA Promotes CTL-Independent Tumor Cytolysis Mediated by Cd11b+Ly6g+ Intratumor Myeloid Cells Through the TICAM-1 Signaling Pathway
Cell Death and Differentiation (2017) 24, 385–396 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1350-9047/17 www.nature.com/cdd Double-stranded RNA promotes CTL-independent tumor cytolysis mediated by CD11b+Ly6G+ intratumor myeloid cells through the TICAM-1 signaling pathway Hiroaki Shime*,1, Misako Matsumoto1 and Tsukasa Seya1 PolyI:C, a synthetic double-stranded RNA analog, acts as an immune-enhancing adjuvant that regresses tumors in cytotoxic T lymphocyte (CTL)-dependent and CTL-independent manner, the latter of which remains largely unknown. Tumors contain CD11b+Ly6G+ cells, known as granulocytic myeloid-derived suppressor cells (G-MDSCs) or tumor-associated neutrophils (TANs) that play a critical role in tumor progression and development. Here, we demonstrate that CD11b+Ly6G+ cells respond to polyI:C and exhibit tumoricidal activity in an EL4 tumor implant model. PolyI:C-induced inhibition of tumor growth was attributed to caspase-8/3 cascade activation in tumor cells that occurred independently of CD8α+/CD103+ dendritic cells (DCs) and CTLs. CD11b+Ly6G+ cells was essential for the antitumor effect because depletion of CD11b+Ly6G+ cells totally abrogated tumor regression and caspase activation after polyI:C treatment. CD11b+Ly6G+ cells that had been activated with polyI:C showed cytotoxicity and inhibited tumor growth through the production of reactive oxygen species (ROS)/reactive nitrogen species (RNS). These responses were abolished in either Toll/interleukin-1 receptor domain-containing adaptor molecule-1 (TICAM-1)− / − or interferon (IFN)-αβ receptor 1 (IFNAR1)− / − mice. Thus, our results suggest that polyI:C activates the TLR3/TICAM-1 and IFNAR signaling pathways in CD11b+Ly6G+ cells in tumors, thereby eliciting their antitumor activity, independent of those in CD8α+/ CD103+ DCs that prime CTLs.