Elements of Fractal Geometry and Dynamics Yakov Pesin Vaughn
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamics Forced by Homoclinic Orbits
DYNAMICS FORCED BY HOMOCLINIC ORBITS VALENT´IN MENDOZA Abstract. The complexity of a dynamical system exhibiting a homoclinic orbit is given by the orbits that it forces. In this work we present a method, based in pruning theory, to determine the dynamical core of a homoclinic orbit of a Smale diffeomorphism on the 2-disk. Due to Cantwell and Conlon, this set is uniquely determined in the isotopy class of the orbit, up a topological conjugacy, so it contains the dynamics forced by the homoclinic orbit. Moreover we apply the method for finding the orbits forced by certain infinite families of homoclinic horseshoe orbits and propose its generalization to an arbitrary Smale map. 1. Introduction Since the Poincar´e'sdiscovery of homoclinic orbits, it is known that dynamical systems with one of these orbits have a very complex behaviour. Such a feature was explained by Smale in terms of his celebrated horseshoe map [40]; more precisely, if a surface diffeomorphism f has a homoclinic point then, there exists an invariant set Λ where a power of f is conjugated to the shift σ defined on the compact space Σ2 = f0; 1gZ of symbol sequences. To understand how complex is a diffeomorphism having a periodic or homoclinic orbit, we need the notion of forcing. First we will define it for periodic orbits. 1.1. Braid types of periodic orbits. Let P and Q be two periodic orbits of homeomorphisms f and g of the closed disk D2, respectively. We say that (P; f) and (Q; g) are equivalent if there is an orientation-preserving homeomorphism h : D2 ! D2 with h(P ) = Q such that f is isotopic to h−1 ◦ g ◦ h relative to P . -
Approximating Stable and Unstable Manifolds in Experiments
PHYSICAL REVIEW E 67, 037201 ͑2003͒ Approximating stable and unstable manifolds in experiments Ioana Triandaf,1 Erik M. Bollt,2 and Ira B. Schwartz1 1Code 6792, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 2Department of Mathematics and Computer Science, Clarkson University, P.O. Box 5815, Potsdam, New York 13699 ͑Received 5 August 2002; revised manuscript received 23 December 2002; published 12 March 2003͒ We introduce a procedure to reveal invariant stable and unstable manifolds, given only experimental data. We assume a model is not available and show how coordinate delay embedding coupled with invariant phase space regions can be used to construct stable and unstable manifolds of an embedded saddle. We show that the method is able to capture the fine structure of the manifold, is independent of dimension, and is efficient relative to previous techniques. DOI: 10.1103/PhysRevE.67.037201 PACS number͑s͒: 05.45.Ac, 42.60.Mi Many nonlinear phenomena can be explained by under- We consider a basin saddle of Eq. ͑1͒ which lies on the standing the behavior of the unstable dynamical objects basin boundary between a chaotic attractor and a period-four present in the dynamics. Dynamical mechanisms underlying periodic attractor. The chosen parameters are in a region in chaos may be described by examining the stable and unstable which the chaotic attractor disappears and only a periodic invariant manifolds corresponding to unstable objects, such attractor persists along with chaotic transients due to inter- as saddles ͓1͔. Applications of the manifold topology have secting stable and unstable manifolds of the basin saddle. -
Robust Transitivity of Singular Hyperbolic Attractors
Robust transitivity of singular hyperbolic attractors Sylvain Crovisier∗ Dawei Yangy January 22, 2020 Abstract Singular hyperbolicity is a weakened form of hyperbolicity that has been introduced for vector fields in order to allow non-isolated singularities inside the non-wandering set. A typical example of a singular hyperbolic set is the Lorenz attractor. However, in contrast to uniform hyperbolicity, singular hyperbolicity does not immediately imply robust topological properties, such as the transitivity. In this paper, we prove that open and densely inside the space of C1 vector fields of a compact manifold, any singular hyperbolic attractors is robustly transitive. 1 Introduction Lorenz [L] in 1963 studied some polynomial ordinary differential equations in R3. He found some strange attractor with the help of computers. By trying to understand the chaotic dynamics in Lorenz' systems, [ABS, G, GW] constructed some geometric abstract models which are called geometrical Lorenz attractors: these are robustly transitive non- hyperbolic chaotic attractors with singularities in three-dimensional manifolds. In order to study attractors containing singularities for general vector fields, Morales- Pacifico-Pujals [MPP] first gave the notion of singular hyperbolicity in dimension 3. This notion can be adapted to the higher dimensional case, see [BdL, CdLYZ, MM, ZGW]. In the absence of singularity, the singular hyperbolicity coincides with the usual notion of uniform hyperbolicity; in that case it has many nice dynamical consequences: spectral decomposition, stability, probabilistic description,... But there also exist open classes of vector fields exhibiting singular hyperbolic attractors with singularity: the geometrical Lorenz attractors are such examples. In order to have a description of the dynamics of arXiv:2001.07293v1 [math.DS] 21 Jan 2020 general flows, we thus need to develop a systematic study of the singular hyperbolicity in the presence of singularity. -
The Topological Entropy Conjecture
mathematics Article The Topological Entropy Conjecture Lvlin Luo 1,2,3,4 1 Arts and Sciences Teaching Department, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; [email protected] or [email protected] 2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China 3 School of Mathematics, Jilin University, Changchun 130012, China 4 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China Abstract: For a compact Hausdorff space X, let J be the ordered set associated with the set of all finite open covers of X such that there exists nJ, where nJ is the dimension of X associated with ¶. Therefore, we have Hˇ p(X; Z), where 0 ≤ p ≤ n = nJ. For a continuous self-map f on X, let a 2 J be f an open cover of X and L f (a) = fL f (U)jU 2 ag. Then, there exists an open fiber cover L˙ f (a) of X induced by L f (a). In this paper, we define a topological fiber entropy entL( f ) as the supremum of f ent( f , L˙ f (a)) through all finite open covers of X = fL f (U); U ⊂ Xg, where L f (U) is the f-fiber of − U, that is the set of images f n(U) and preimages f n(U) for n 2 N. Then, we prove the conjecture log r ≤ entL( f ) for f being a continuous self-map on a given compact Hausdorff space X, where r is the maximum absolute eigenvalue of f∗, which is the linear transformation associated with f on the n L Cechˇ homology group Hˇ ∗(X; Z) = Hˇ i(X; Z). -
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity). -
Hartman-Grobman and Stable Manifold Theorem
THE HARTMAN-GROBMAN AND STABLE MANIFOLD THEOREM SLOBODAN N. SIMIC´ This is a summary of some basic results in dynamical systems we discussed in class. Recall that there are two kinds of dynamical systems: discrete and continuous. A discrete dynamical system is map f : M → M of some space M.A continuous dynamical system (or flow) is a collection of maps φt : M → M, with t ∈ R, satisfying φ0(x) = x and φs+t(x) = φs(φt(x)), for all x ∈ M and s, t ∈ R. We call M the phase space. It is usually either a subset of a Euclidean space, a metric space or a smooth manifold (think of surfaces in 3-space). Similarly, f or φt are usually nice maps, e.g., continuous or differentiable. We will focus on smooth (i.e., differentiable any number of times) discrete dynamical systems. Let f : M → M be one such system. Definition 1. The positive or forward orbit of p ∈ M is the set 2 O+(p) = {p, f(p), f (p),...}. If f is invertible, we define the (full) orbit of p by k O(p) = {f (p): k ∈ Z}. We can interpret a point p ∈ M as the state of some physical system at time t = 0 and f k(p) as its state at time t = k. The phase space M is the set of all possible states of the system. The goal of the theory of dynamical systems is to understand the long-term behavior of “most” orbits. That is, what happens to f k(p), as k → ∞, for most initial conditions p ∈ M? The first step towards this goal is to understand orbits which have the simplest possible behavior, namely fixed and periodic ones. -
Computing Complex Horseshoes by Means of Piecewise Maps
November 26, 2018 3:54 ws-ijbc International Journal of Bifurcation and Chaos c World Scientific Publishing Company Computing complex horseshoes by means of piecewise maps Alvaro´ G. L´opez, Alvar´ Daza, Jes´us M. Seoane Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de F´ısica, Universidad Rey Juan Carlos, Tulip´an s/n, 28933 M´ostoles, Madrid, Spain [email protected] Miguel A. F. Sanju´an Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de F´ısica, Universidad Rey Juan Carlos, Tulip´an s/n, 28933 M´ostoles, Madrid, Spain Department of Applied Informatics, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania Received (to be inserted by publisher) A systematic procedure to numerically compute a horseshoe map is presented. This new method uses piecewise functions and expresses the required operations by means of elementary transfor- mations, such as translations, scalings, projections and rotations. By repeatedly combining such transformations, arbitrarily complex folding structures can be created. We show the potential of these horseshoe piecewise maps to illustrate several central concepts of nonlinear dynamical systems, as for example the Wada property. Keywords: Chaos, Nonlinear Dynamics, Computational Modelling, Horseshoe map 1. Introduction The Smale horseshoe map is one of the hallmarks of chaos. It was devised in the 1960’s by Stephen Smale arXiv:1806.06748v2 [nlin.CD] 23 Nov 2018 [Smale, 1967] to reproduce the dynamics of a chaotic flow in the neighborhood of a given periodic orbit. It describes in the simplest way the dynamics of homoclinic tangles, which were encountered by Henri Poincar´e[Poincar´e, 1890] and were intensively studied by George Birkhoff [Birkhoff, 1927], and later on by Mary Catwright and John Littlewood, among others [Catwright & Littlewood, 1945, 1947; Levinson, 1949]. -
An Image Cryptography Using Henon Map and Arnold Cat Map
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 An Image Cryptography using Henon Map and Arnold Cat Map. Pranjali Sankhe1, Shruti Pimple2, Surabhi Singh3, Anita Lahane4 1,2,3 UG Student VIII SEM, B.E., Computer Engg., RGIT, Mumbai, India 4Assistant Professor, Department of Computer Engg., RGIT, Mumbai, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In this digital world i.e. the transmission of non- 2. METHODOLOGY physical data that has been encoded digitally for the purpose of storage Security is a continuous process via which data can 2.1 HENON MAP be secured from several active and passive attacks. Encryption technique protects the confidentiality of a message or 1. The Henon map is a discrete time dynamic system information which is in the form of multimedia (text, image, introduces by michel henon. and video).In this paper, a new symmetric image encryption 2. The map depends on two parameters, a and b, which algorithm is proposed based on Henon’s chaotic system with for the classical Henon map have values of a = 1.4 and byte sequences applied with a novel approach of pixel shuffling b = 0.3. For the classical values the Henon map is of an image which results in an effective and efficient chaotic. For other values of a and b the map may be encryption of images. The Arnold Cat Map is a discrete system chaotic, intermittent, or converge to a periodic orbit. that stretches and folds its trajectories in phase space. Cryptography is the process of encryption and decryption of 3. -
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A. M. Selvam and S. Fadnavis Email: [email protected] Website: http://www.geocities.com/amselvam Trends in Continuum Physics, TRECOP ’98; Proceedings of the International Symposium on Trends in Continuum Physics, Poznan, Poland, August 17-20, 1998. Edited by Bogdan T. Maruszewski, Wolfgang Muschik, and Andrzej Radowicz. Singapore, World Scientific, 1999, 334(12). 1. INTRODUCTION Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years) (Tessier et. al., 1996) Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality (Bak et. al., 1988) Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations (Mary Selvam, 1993). Round- off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction (NWP) and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows (Mary Selvam, 1990; Mary Selvam et. -
Spatial Accessibility to Amenities in Fractal and Non Fractal Urban Patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser
Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser To cite this version: Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser. Spatial accessibility to amenities in fractal and non fractal urban patterns. Environment and Planning B: Planning and Design, SAGE Publications, 2012, 39 (5), pp.801-819. 10.1068/b37132. hal-00804263 HAL Id: hal-00804263 https://hal.archives-ouvertes.fr/hal-00804263 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TANNIER C., VUIDEL G., HOUOT H., FRANKHAUSER P. (2012), Spatial accessibility to amenities in fractal and non fractal urban patterns, Environment and Planning B: Planning and Design, vol. 39, n°5, pp. 801-819. EPB 137-132: Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile TANNIER* ([email protected]) - corresponding author Gilles VUIDEL* ([email protected]) Hélène HOUOT* ([email protected]) Pierre FRANKHAUSER* ([email protected]) * ThéMA, CNRS - University of Franche-Comté 32 rue Mégevand F-25 030 Besançon Cedex, France Tel: +33 381 66 54 81 Fax: +33 381 66 53 55 1 Spatial accessibility to amenities in fractal and non fractal urban patterns Abstract One of the challenges of urban planning and design is to come up with an optimal urban form that meets all of the environmental, social and economic expectations of sustainable urban development. -
Topological Invariance of the Sign of the Lyapunov Exponents in One-Dimensional Maps
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 1, Pages 265–272 S 0002-9939(05)08040-8 Article electronically published on August 19, 2005 TOPOLOGICAL INVARIANCE OF THE SIGN OF THE LYAPUNOV EXPONENTS IN ONE-DIMENSIONAL MAPS HENK BRUIN AND STEFANO LUZZATTO (Communicated by Michael Handel) Abstract. We explore some properties of Lyapunov exponents of measures preserved by smooth maps of the interval, and study the behaviour of the Lyapunov exponents under topological conjugacy. 1. Statement of results In this paper we consider C3 interval maps f : I → I,whereI is a compact interval. We let C denote the set of critical points of f: c ∈C⇔Df(c)=0.We shall always suppose that C is finite and that each critical point is non-flat: for each ∈C ∈ ∞ 1 ≤ |f(x)−f(c)| ≤ c ,thereexist = (c) [2, )andK such that K |x−c| K for all x = c.LetM be the set of ergodic Borel f-invariant probability measures. For every µ ∈M, we define the Lyapunov exponent λ(µ)by λ(µ)= log |Df|dµ. Note that log |Df|dµ < +∞ is automatic since Df is bounded. However we can have log |Df|dµ = −∞ if c ∈Cis a fixed point and µ is the Dirac-δ measure on c. It follows from [15, 1] that this is essentially the only way in which log |Df| can be non-integrable: if µ(C)=0,then log |Df|dµ > −∞. The sign, more than the actual value, of the Lyapunov exponent can have signif- icant implications for the dynamics. A positive Lyapunov exponent, for example, indicates sensitivity to initial conditions and thus “chaotic” dynamics of some kind. -
Thermodynamic Properties of Coupled Map Lattices 1 Introduction
Thermodynamic properties of coupled map lattices J´erˆome Losson and Michael C. Mackey Abstract This chapter presents an overview of the literature which deals with appli- cations of models framed as coupled map lattices (CML’s), and some recent results on the spectral properties of the transfer operators induced by various deterministic and stochastic CML’s. These operators (one of which is the well- known Perron-Frobenius operator) govern the temporal evolution of ensemble statistics. As such, they lie at the heart of any thermodynamic description of CML’s, and they provide some interesting insight into the origins of nontrivial collective behavior in these models. 1 Introduction This chapter describes the statistical properties of networks of chaotic, interacting el- ements, whose evolution in time is discrete. Such systems can be profitably modeled by networks of coupled iterative maps, usually referred to as coupled map lattices (CML’s for short). The description of CML’s has been the subject of intense scrutiny in the past decade, and most (though by no means all) investigations have been pri- marily numerical rather than analytical. Investigators have often been concerned with the statistical properties of CML’s, because a deterministic description of the motion of all the individual elements of the lattice is either out of reach or uninteresting, un- less the behavior can somehow be described with a few degrees of freedom. However there is still no consistent framework, analogous to equilibrium statistical mechanics, within which one can describe the probabilistic properties of CML’s possessing a large but finite number of elements.