Multiple Periodic Solutions and Fractal Attractors of Differential Equations with N-Valued Impulses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Topological Entropy Conjecture
mathematics Article The Topological Entropy Conjecture Lvlin Luo 1,2,3,4 1 Arts and Sciences Teaching Department, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; [email protected] or [email protected] 2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China 3 School of Mathematics, Jilin University, Changchun 130012, China 4 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China Abstract: For a compact Hausdorff space X, let J be the ordered set associated with the set of all finite open covers of X such that there exists nJ, where nJ is the dimension of X associated with ¶. Therefore, we have Hˇ p(X; Z), where 0 ≤ p ≤ n = nJ. For a continuous self-map f on X, let a 2 J be f an open cover of X and L f (a) = fL f (U)jU 2 ag. Then, there exists an open fiber cover L˙ f (a) of X induced by L f (a). In this paper, we define a topological fiber entropy entL( f ) as the supremum of f ent( f , L˙ f (a)) through all finite open covers of X = fL f (U); U ⊂ Xg, where L f (U) is the f-fiber of − U, that is the set of images f n(U) and preimages f n(U) for n 2 N. Then, we prove the conjecture log r ≤ entL( f ) for f being a continuous self-map on a given compact Hausdorff space X, where r is the maximum absolute eigenvalue of f∗, which is the linear transformation associated with f on the n L Cechˇ homology group Hˇ ∗(X; Z) = Hˇ i(X; Z). -
MATH34042: Discrete Time Dynamical Systems David Broomhead (Based on Original Notes by James Montaldi) School of Mathematics, University of Manchester 2008/9
MATH34042: Discrete Time Dynamical Systems David Broomhead (based on original notes by James Montaldi) School of Mathematics, University of Manchester 2008/9 Webpage: http://www.maths.manchester.ac.uk/∼dsb/Teaching/DynSys email: [email protected] Overview (2 lectures) Dynamical systems continuous/discrete; autonomous/non-autonomous. Iteration, orbit. Applica- tions (population dynamics, Newton’s method). A dynamical system is a map f : S S, and the set S is called the state space. Given an initial point x0 S, the orbit of x0 is the sequence x0,x1,x2,x3,... obtained by repeatedly applying f: ∈ → n x1 = f(x0), x2 = f(x1), x3 = f(x2),...,xn = f (x0), ... Basic question of dynamical systems: given x0, what is behaviour of orbit? Or, what is behaviour of most orbits? + + Example Let f : R R be given by f(x)= √x. Let x0 = 2. Then x1 = f(2)= √2 1.4142. And ≈ x = √2 1.1892 and x = √1.1892 1.0905. 2 p → 3 The orbit of≈2 therefore begins {2.0, 1.4142,≈ 1.1892, 1.0905, ...}. The orbit of 3 begins {3.0, 1.7321, 1.3161, 1.1472, ...}. The orbit of 0.5 begins {0.5, 0.7071, 0.8409, .9170, .9576, ...}. All are getting closer to 1. Regular dynamics fixed points, periodic points and orbits. Example f(x)= cos(x). Globally attracting fixed point at x = 0.739085 . ··· Chaotic dynamics Basic idea is unpredictability. There is no “typical’ behaviour. Example f(x)= 4x(1 − x), x [0,1]: Split the interval into two halves: L = [0, 1 ] and R = [ 1 ,1]. -
Topological Invariance of the Sign of the Lyapunov Exponents in One-Dimensional Maps
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 1, Pages 265–272 S 0002-9939(05)08040-8 Article electronically published on August 19, 2005 TOPOLOGICAL INVARIANCE OF THE SIGN OF THE LYAPUNOV EXPONENTS IN ONE-DIMENSIONAL MAPS HENK BRUIN AND STEFANO LUZZATTO (Communicated by Michael Handel) Abstract. We explore some properties of Lyapunov exponents of measures preserved by smooth maps of the interval, and study the behaviour of the Lyapunov exponents under topological conjugacy. 1. Statement of results In this paper we consider C3 interval maps f : I → I,whereI is a compact interval. We let C denote the set of critical points of f: c ∈C⇔Df(c)=0.We shall always suppose that C is finite and that each critical point is non-flat: for each ∈C ∈ ∞ 1 ≤ |f(x)−f(c)| ≤ c ,thereexist = (c) [2, )andK such that K |x−c| K for all x = c.LetM be the set of ergodic Borel f-invariant probability measures. For every µ ∈M, we define the Lyapunov exponent λ(µ)by λ(µ)= log |Df|dµ. Note that log |Df|dµ < +∞ is automatic since Df is bounded. However we can have log |Df|dµ = −∞ if c ∈Cis a fixed point and µ is the Dirac-δ measure on c. It follows from [15, 1] that this is essentially the only way in which log |Df| can be non-integrable: if µ(C)=0,then log |Df|dµ > −∞. The sign, more than the actual value, of the Lyapunov exponent can have signif- icant implications for the dynamics. A positive Lyapunov exponent, for example, indicates sensitivity to initial conditions and thus “chaotic” dynamics of some kind. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
Efficient Method for Detection of Periodic Orbits in Chaotic Maps And
Efficient Method for Detection of Periodic Orbits in Chaotic Maps and Flows A Thesis by Jonathan Crofts in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Department of Mathematics University of Leicester March 2007. c Jonathan J Crofts, 2007. arXiv:0706.1940v2 [nlin.CD] 13 Jun 2007 Acknowledgements I would like to thank Ruslan Davidchack, my supervisor, for his many suggestions and constant support and understanding during this research. I am also thankful to Michael Tretyakov for his support and advice. Further, I would like to acknowledge my gratitude to the people from the Department of Mathematics at the University of Leicester for their help and support. Finally, I would like to thank my family and friends for their patience and sup- port throughout the past few years. In particular, I thank my wife Lisa and my daughter Ellen, without whom I would have completed this research far quicker, but somehow, it just would not have been the same. At this point I would also like to reassure Lisa that I will get a real job soon. Leicester, Leicestershire, UK Jonathan J. Crofts 31 March 2007 i Contents Abstract iv List of figures v List of tables vi 1 Introduction 1 1.1 History,theoryandapplications . 1 1.2 Periodicorbits............................... 3 1.2.1 Periodicorbittheory . 4 1.2.2 Efficient detection of UPOs . 6 1.3 Extendedsystems............................. 9 1.4 Anoteonnumerics............................ 10 1.4.1 Intervalarithmetic . 12 1.5 Overview.................................. 14 1.6 Thesisresults ............................... 16 2 Conventional techniques for detecting periodic orbits 18 2.1 Specialcases................................ 18 2.1.1 One-dimensionalmaps . -
Infinitely Renormalizable Quadratic Polynomials 1
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 11, Pages 5077{5091 S 0002-9947(00)02514-9 Article electronically published on July 12, 2000 INFINITELY RENORMALIZABLE QUADRATIC POLYNOMIALS YUNPING JIANG Abstract. We prove that the Julia set of a quadratic polynomial which ad- mits an infinite sequence of unbranched, simple renormalizations with complex bounds is locally connected. The method in this study is three-dimensional puzzles. 1. Introduction Let P (z)=z2 + c be a quadratic polynomial where z is a complex variable and c is a complex parameter. The filled-in Julia set K of P is, by definition, the set of points z which remain bounded under iterations of P .TheJulia set J of P is the boundary of K. A central problem in the study of the dynamical system generated by P is to understand the topology of a Julia set J, in particular, the local connectivity for a connected Julia set. A connected set J in the complex plane is said to be locally connected if for every point p in J and every neighborhood U of p there is a neighborhood V ⊆ U such that V \ J is connected. We first give the definition of renormalizability. A quadratic-like map F : U ! V is a holomorphic, proper, degree two branched cover map, whereT U and V are ⊂ 1 −n two domains isomorphic to a disc and U V .ThenKF = n=0 F (U)and JF = @KF are the filled-in Julia set and the Julia set of F , respectively. We only consider those quadratic-like maps whose Julia sets are connected. -
1D Dynamics: Symbolic Coding
1D Dynamics: Symbolic Coding 1. Full shift of two symbols – Let X = {s =(s0s1s2 ··· si ··· ); si =0 or 1} be the collection of all sequences of 0 and 1. – For s =(s0s1 ··· si ··· ), t =(t0t1 ··· ti ··· ), let ∞ |s − t | d(s, t) = i i X i i=0 2 Claim: (i) (X,d) is a metric space. s t 1 (ii) d( , ) ≤ 2n iff si = ti for all i < n. Proof: (i) d(s, t) ≥ 0 and d(s, t) = d(t, s) are obvious. For the triangle inequality, observe ∞ ∞ ∞ |si − ti| |si − vi| |vi − ti| d(s, t) = ≤ + X 2i X 2i X 2i i=0 i=0 i=0 = d(s, v)+ d(v, t). (ii) is straight forward from definition. – Let σ : X → X be define by σ(s0s1 ··· si ··· )=(s1s2 ··· si+1 ··· ). Claim: σ : X → X is continuous. Proof: 1 For ε > 0 given let n be such that 2n < ε. Let 1 s t s t δ = 2n+1 . For d( , ) <δ, d(σ( ), σ( )) < ε. – (X,σ) as a dynamical system: Claim (a) σ : X → X have exactly 2n periodic points of period n. (b) Union of all periodic orbits are dense in X. (c) There exists a transitive orbit. Proof: (a) The number of periodic point in X is the same as the number of strings of 0, 1 of length n, which is 2n. (b) ∀s =(s0s1 · · · sn · · · ), let sn =(s0s1 · · · sn; s0s1 · · · sn; · · · ). We have 1 d(sn, s) < . 2n−1 So sn → s as n →∞. (c) List all possible strings of length 1, then of length 2, then of length 3, and so on. -
Arxiv:1812.04689V1 [Math.DS] 11 Dec 2018 Fasltigipisteeitneo W Oitos Into Foliations, Two Years
FOLIATIONS AND CONJUGACY, II: THE MENDES CONJECTURE FOR TIME-ONE MAPS OF FLOWS JORGE GROISMAN AND ZBIGNIEW NITECKI Abstract. A diffeomorphism f: R2 →R2 in the plane is Anosov if it has a hyperbolic splitting at every point of the plane. The two known topo- logical conjugacy classes of such diffeomorphisms are linear hyperbolic automorphisms and translations (the existence of Anosov structures for plane translations was originally shown by W. White). P. Mendes con- jectured that these are the only topological conjugacy classes for Anosov diffeomorphisms in the plane. We prove that this claim holds when the Anosov diffeomorphism is the time-one map of a flow, via a theorem about foliations invariant under a time one map. 1. Introduction A diffeomorphism f: M →M of a compact manifold M is called Anosov if it has a global hyperbolic splitting of the tangent bundle. Such diffeomor- phisms have been studied extensively in the past fifty years. The existence of a splitting implies the existence of two foliations, into stable (resp. unsta- ble) manifolds, preserved by the diffeomorphism, such that the map shrinks distances along the stable leaves, while its inverse does so for the unstable ones. Anosov diffeomorphisms of compact manifolds have strong recurrence properties. The existence of an Anosov structure when M is compact is independent of the Riemann metric used to define it, and the foliations are invariants of topological conjugacy. By contrast, an Anosov structure on a non-compact manifold is highly dependent on the Riemann metric, and the recurrence arXiv:1812.04689v1 [math.DS] 11 Dec 2018 properties observed in the compact case do not hold in general. -
Sharkovsky's Ordering and Chaos Introduction to Fractal Geometry and Chaos
Sharkovsky's Ordering and Chaos Introduction to Fractal Geometry and Chaos Matilde Marcolli MAT1845HS Winter 2020, University of Toronto M 1-2 and T 10-12 BA6180 Sharkovsky's Ordering and Chaos Introduction to Fractal Geometry and Chaos Matilde Marcolli References for this lecture: K. Burns and B. Hasselblatt, The Sharkovsky theorem: a natural direct proof, Amer. Math. Monthly 118 (2011), no. 3, 229{244 T.Y.Li and A.Yorke, Period three implies chaos, The American Mathematical Monthly, Vol. 82, No. 10. (Dec., 1975) 985{992 O.M. Sharkovsky, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Z. 16 (1964) 61{71 B. Luque, L. Lacasa, F.J. Ballesteros, A. Robledo, Feigenbaum Graphs: A Complex Network Perspective of Chaos, PLoS ONE 6(9): e2241 L. Alsed`a,J. Llibre, M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, World Scientific, 2000 Sharkovsky's Ordering and Chaos Introduction to Fractal Geometry and Chaos Matilde Marcolli Period 3 implies Chaos • T.Y.Li and A.Yorke, Period three implies chaos, The American Mathematical Monthly, Vol. 82, No. 10. (Dec., 1975) 985{992 considered the historical origin of Chaos Theory if a continuous function f : I!I of an interval I ⊂ R has a periodic point of period 3, then it has periodic points of any order n 2 N there is also an uncountable subset of I of points that are not even \asymptotically periodic" this is a typical situation of chaotic dynamics chaos = sensitive dependence on the initial conditions (starting points that are very close have very different behavior under iterates of the function) Sharkovsky's Ordering and Chaos Introduction to Fractal Geometry and Chaos Matilde Marcolli Sharkovsky's theorem • in fact the result of Li and Yorke is a special case of a previous much more general theorem of Sharkovsky • Oleksandr M. -
Periodic Points and Entropies for Cellular Automata
Complex Systems 3 (1989) 117-128 Periodic Points and Entropies for Cellular Automata Rui M.A. Dillio CERN, SPS Division, CH-1211 Geneva, Switzerland and CFMC, Av. Prof Gama Pinto 2,1699 Lisbon Codex, Port ugal Abstract. For the class of permutive cellular automata the num ber of periodic points and the topological and metrical entropies are calculated. 1. Introduction Cellular automata (CA) are infinite sequences of symbols of a finite alphabet that evolve in time according to a definite local rule. We can take, for ex ample, a lattice where each vertex contains the value of a dynamical variable ranging over a finite set of numbers. At a certain t ime to the values on the vertices of the lattice take a definite value, but at time to + 1 , the values of the dynamical variable can change according to a law defined locally. This kind of system, as shown by von Neumann [8] can simulate a Turing ma chine, and specific examples exist where the cellular automaton is capable of uni versal computation [3]. The simplest examples of CA ru les are obtained when we restrict to one-dimensional lattices and the dynamic variable over each site of the lattice can take values on the finite field Z2 = {O,I} [10]. There is an extensive literature on the dynamics of one-dimensional CA and on the patterns generated by the evolution of the CA ru les in the ex tended phase space Z x Z+ [12]. These patterns appear to be organized in several complexity classes according to the behavior of the iterates of random initial conditions [11]. -
Quasiconformal Homeomorphisms in Dynamics, Topology, and Geometry
Proceedings of the International Congress of Mathematicians Berkeley, California, USA, 1986 Quasiconformal Homeomorphisms in Dynamics, Topology, and Geometry DENNIS SULLIVAN Dedicated to R. H. Bing This paper has four parts. Each part involves quasiconformal homeomor phisms. These can be defined between arbitrary metric spaces: <p: X —* Y is Ä'-quasiconformal (or K qc) if zjf \ _ r SUP 1^0*0 ~ Piv) wnere \x - y\ = r and x is fixed r_>o inf \<p(x) — <p(y)\ where \x — y\ = r and x is fixed is at most K where | | means distance. Between open sets in Euclidean space, H(x) < K implies <p has many interesting analytic properties. (See Gehring's lecture at this congress.) In the first part we discuss Feigenbaum's numerical discoveries in one-dimen sional iteration problems. Quasiconformal conjugacies can be used to define a useful coordinate independent distance between real analytic dynamical systems which is decreased by Feigenbaum's renormalization operator. In the second part we discuss de Rham, Atiyah-Singer, and Yang-Mills the ory in its foundational aspect on quasiconformal manifolds. The discussion (which is joint work with Simon Donaldson) connects with Donaldson's work and Freedman's work to complete a nice picture in the structure of manifolds— each topological manifold has an essentially unique quasiconformal structure in all dimensions—except four (Sullivan [21]). In dimension 4 both parts of the statement are false (Donaldson and Sullivan [3]). In the third part we discuss the C-analytic classification of expanding analytic transformations near fractal invariant sets. The infinite dimensional Teichmüller ^spare-ofnsuch=systemrìs^embedded=in^ for the transformation on the fractal. -
Lecture Notes on Complexity and Periodic Orbits
Lecture Notes on Complexity and Periodic Orbits Bryce Weaver May 20, 2015 1 Introduction These are supplemental lecture notes for the Undergraduate Summer School on Boundaries and Dynamics at Notre Dame University. They are incomplete. As of now, there is insufficient background for some of the topics, a complete absence of citations, some undefined objects, and several of the proofs could use greater details. Furthermore, these notes have not been vetted, so is a hope that students will help with improvements, both with finding mistakes and typos, but also through stylistic criticism. That said, the goal of these notes is to expose some of the intriguing proper- ties of a class of complicated dynamical systems. This is done by examining one famous example: the \2-1-1-1"-hyperbolic toral automorphism. This example is a prototype of hyperbolic behavior and has insights into dynamical systems that are both smooth and complicated. The two properties exposed here are stable sets and the growth rate of periodic orbits. Although, it is incomplete in these notes themselves, part of the course will be to hint at the relationship of these two. Draft, do not cite 1 2 Definitions and First Examples 2.1 Definition of a Dynamical System One should consider this a basic definition that provides good intuition for understanding dynamical systems from both a historic and philosophical point of view. There exists greater notions of dynamical systems but we restrict to actions of N; Z or R with + denotes the standard addition. Definition 2.1. A dynamical system, (X; T ; φ), is a set, X, an additive group or semi-group, T = N; Z or R, and a function, φ : X × T ! X, which satisfies the properties φ(x; t + s) = φ(φ(x; s); t) (1) for any x 2 X and s; t 2 T .