Transformations)

Total Page:16

File Type:pdf, Size:1020Kb

Transformations) TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof. Gavin RAE, Department of Social Sciences, Kozminski University, Warsaw, Poland (also English language editor) Dr Magdalena RZADKOWOLSKA, Chair of Library and Information Science, Uni- versity of Lodz, Łódź, Poland Prof. Sangeeta SHARMA, Dept. of Public Administration, University of Rajasthan, Jaipur, India Prof. Ryszard ZIĘBA, The Institute of International Relations, University of Warsaw, Poland Prof. Urszula ŻYDEK-BEDNARCZUK, Faculty of Philology, University of Silesia in Katowice, Poland (also Polish language editor) II Publisher : Educational Foundation "Transformations" Al. Jana Pawła II 80-80, 00-175 Warsaw, Poland Tel./fax. +48 22 4038411, e-mail: [email protected] and Kozminski University, Center of Impact Assessment Studies and Forecasting, e-mail: [email protected] WWW: www.transformacje.kozminski.edu.pl www.ciasf.kozminski.edu.pl Attention: Kindly send the papers to: [email protected] Cover: Tomasz Patryn Webmaster: Janusz Janczyk © 2013 TRANSFORMACJE Printed in 2013 Printed in the European Union. Subscription Annual subcription rate: - 40 euro (for individuals), - 75 euro (for institutions). Mailing costs included. Single copies can be ordered (€ 20 and € 37,50 respectively). Orders should be sent to Editor-in-Chief with the confirmation of payment to: Educational Foundation "Transformations" Bank PKO BP S.A. XV O. Warsaw account no.: IBAN 37 1020 1156 0000 7002 0059 8037 SWIFT: BPKO PL PW Handouts and advertising are welcome to print. III INTERNATIONAL SCIENTIFIC COUNCIL Dr Clement Bezold Prof. Witold T. Bielecki Prof. Czesław Cempel Institute for Alternative Futures, Kozminski University Poznan University of Technology Alexandria, VA, USA Warsaw, Poland Poznan, Poland Dr Vary T. Coates Prof. Andrzej Chodubski Joseph F. Coates The Kanawha Institute University of Gdańsk, Futurist in Residence for the Study of the Future, Gdańsk, Poland Washington, D.C.,USA Washington, D.C., USA Prof. Meinolf Dierkes Prof. Nikolai Genov Prof. Günter Getzinger Science Center (WZB), Freie Universität, Alpen-Adria Universität Berlin, Germany Berlin, Germany Klagenfurt, Austria Prof. Larisa A. Gromova Prof. Tomasz Goban-Klas Prof. Janusz Golinowski Herzen State Jagiellonian University Kazimierz Wielki University, Pedagogical University Cracow, Poland Bydgoszcz, Poland St. Petersburg, Russia Prof. Armin Grunwald Prof. Andrzej Herman Prof. Jerzy Kisielnicki Karlsruhe Institute of Technology Warsaw School of Economics, University of Warsaw Karlsruhe, Germany Warsaw, Poland Warsaw, Poland Prof. Witold Kieżun Prof. Andrzej K. Koźmiński Prof. Wojciech Lamentowicz Kozminski University Kozminski University University of Business and Admini- Warsaw, Poland Warsaw, Poland stration, Gdynia, Poland Prince Prof. Rudolf zur Lippe Prof. Andrzej Lubbe Dr Michael Maccoby Oldenburg Universität Kozminski University The Maccoby Group PC, Oldenburg, Germany Warsaw, Poland Washington, D.C., USA Prof. Prof. Ali A. Mazrui Prof. Witold Morawski Jerzy Mikułowski - Pomorski State University of New York, Kozminski University Cracow University of Economics, Binghampton, N.Y., USA Warsaw, Poland Cracow, Poland Prof. Andrzej Papuziński Prof. Sławomir Partycki Prof. Karol L. Pelc Kazimierz Wielki University, John Paul II Michigan Technological University Bydgoszcz, Poland Catholic University of Lublin, Poland Houghton, Ml, USA Prof. Marek Pietraś Prof. Alan R. Porter Prof. Bazyli Poskrobko Maria Curie-Skłodowska Georgia Institute of Technology, University of Białystok, University, Lublin, Poland Atlanta, GA, USA Białystok, Poland Prof. Harry Rothman Col. Prof. Piotr Sienkiewicz Prof. Marek S. Szczepański University of Manchester National Defence University, University of Silesia Manchester, UK Warsaw, Poland Katowice, Poland Prof. Agnieszka Szewczyk Prof. Czesław Szmidt Prof. Andrew S. Targowski University of Szczecin, Kozminski University Western Michigan University Szczecin, Poland Warsaw Kalamazoo, Ml, USA Prof. Albert H. Teich Prof. Andrzej A. Wierzbicki Prof. Katarzyna Żukrowska American Association for the National Institute of Telcommunica- Warsaw School of Economics Advancement of Science, tions, Warsaw, Poland Warsaw, Poland Washington, D.C., USA IV TRANSFORMACJE (TRANSFORMATIONS) 3-4 (78-79) 2013 Contents I. Information – Communication – Media Radosław SAJNA: Digital Divide, Global Communication Order and Media Development: Newspapers Online from Different Continents ............................ 2 Iryna KOLOSOVSKA, Peter BOŁTUĆ: Informational Influence on Public Opinion ...............................................................................................................23 Agnieszka SZEWCZYK: Shop or E-Commerce? ............................................34 Aleksandra KUPIS-FIJAŁKOWSKA: Surveys in the Context of Virtual Soci- ety – A Statistical Perspective.............................................................................55 Urszula ZIMOCH: A Comparative Analysis of the Information Culture as the Information Society Indicator in Poland and Finland .........................................70 Davide LAMPUGNANI: From Nowhere to Everywhere: Addressing the Shift- ing Relationship between Digital Infrastructures and the City ...........................93 Kateryna NOVIKOVA: Networks and Social Movements Mobilization – Theoretical Framework for the Internet-based Protest and Activism Research ..... ..........................................................................................................................109 Simone TOSONI: The Four Phases of Internet Research: A Proposal for a Critical Periodization ........................................................................................127 II. Global Problems – Future – Politics – Values Wojtek LAMENTOWICZ: The Gordian Knots and Alexandrian Solutions: New Approach to Forecasting and Strategy Making ........................................142 Lech W. ZACHER: Reconfigurations in the World System – Between the Old Driving Forces and New Networks ...................................................................182 J. Andrew ROSS: Globorg: The Emerging Global Organism .........................199 Filip PIERZCHALSKI: Dialectical Leader – Political Leadership in Morpho- genetic Approach ..............................................................................................217 V Kathleen O’HARE, Dora MARINOVA: Sharing Common Ground: Human Rights Discourse and the Practice of Yoga .................................................. 232 III. Sustainability – Knowledge – Wisdom Joanna KIELIN-MAZIARZ: Environmental Management and Sustainable Development ................................................................................................. 250 Jin HONG, Xiumei GUO, Wentao YU, Dora MARINOVA: Non- Government Organisations (NGOs) and the Dissemination of Environmental Knowledge in China ..................................................................................... 260 Lesław MICHNOWSKI: Towards Eco-Humanism ................................... 272 Amzad HOSSAIN, Dora MARINOVA: Wisdom for Living with Certainty amidst Uncertainty ........................................................................................ 291 IV. Transformational Case Studies Worldwide Katarzyna KOPECKA-PIECH: Creative and Cultural Industries Policy in Poland of 2012. Status, Strategies and Inaugurating Projects ....................... 306 Matteo TARANTINO: Framing School Space: Notes for a Taxonomy of the Representation of Educational Spaces .......................................................... 329 Qian GONG:
Recommended publications
  • What Is a Complex Adaptive System?
    PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006).
    [Show full text]
  • Dimensions of Ecosystem Complexity: Heterogeneity, Connectivity, and History
    ecological complexity 3 (2006) 1–12 available at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/ecocom Viewpoint Dimensions of ecosystem complexity: Heterogeneity, connectivity, and history M.L. Cadenasso a,*, S.T.A. Pickett b, J.M. Grove c a Hixon Center for Urban Ecology, School of Forestry and Environmental Studies, Yale University, 205 Prospect Street, New Haven, CT 06511, United States b Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, United States c USDA Forest Service, Northeastern Research Station, 705 Spear Street, P.O. Box 968, Burlington, VT 05401, United States article info abstract Article history: Biocomplexity was introduced to most ecologists through the National Science Foundation’s Received 2 June 2005 grant program, and the literature intended to introduce that program. The generalities of that Received in revised form literature contrast with the abstract and mathematical sophistication of literature from 30 June 2005 physics, systems theory, and indeed even of pioneering ecologists who have translated the Accepted 2 July 2005 conceptintoecology. Thissituation leaves a middle ground, that isboth accessibletoecologists Published on line 23 January 2006 in general, and cognizant of the fundamentals of complexity, to be more completely explored. To help scope this middle ground, and to promote empirical explorations that may be located Keywords: there, we propose a non-exclusive framework for the conceptual territory. While recognizing Biocomplexity the deep foundations in the studies of complex behavior, we take ecological structure as the Framework entry point for framework development. This framework is based on a definition of biocom- Coupled systems plexity as the degree to which ecological systems comprising biological, social and physical Spatial heterogeneity components incorporate spatially explicit heterogeneity, organizational connectivity, and Legacies historical contingency through time.
    [Show full text]
  • Invariant Measures for Hyperbolic Dynamical Systems
    Invariant measures for hyperbolic dynamical systems N. Chernov September 14, 2006 Contents 1 Markov partitions 3 2 Gibbs Measures 17 2.1 Gibbs states . 17 2.2 Gibbs measures . 33 2.3 Properties of Gibbs measures . 47 3 Sinai-Ruelle-Bowen measures 56 4 Gibbs measures for Anosov and Axiom A flows 67 5 Volume compression 86 6 SRB measures for general diffeomorphisms 92 This survey is devoted to smooth dynamical systems, which are in our context diffeomorphisms and smooth flows on compact manifolds. We call a flow or a diffeomorphism hyperbolic if all of its Lyapunov exponents are different from zero (except the one in the flow direction, which has to be 1 zero). This means that the tangent vectors asymptotically expand or con- tract exponentially fast in time. For many reasons, it is convenient to assume more than just asymptotic expansion or contraction, namely that the expan- sion and contraction of tangent vectors happens uniformly in time. Such hyperbolic systems are said to be uniformly hyperbolic. Historically, uniformly hyperbolic flows and diffeomorphisms were stud- ied as early as in mid-sixties: it was done by D. Anosov [2] and S. Smale [77], who introduced his Axiom A. In the seventies, Anosov and Axiom A dif- feomorphisms and flows attracted much attention from different directions: physics, topology, and geometry. This actually started in 1968 when Ya. Sinai constructed Markov partitions [74, 75] that allowed a symbolic representa- tion of the dynamics, which matched the existing lattice models in statistical mechanics. As a result, the theory of Gibbs measures for one-dimensional lat- tices was carried over to Anosov and Axiom A dynamical systems.
    [Show full text]
  • Mathematics Calendar
    Mathematics Calendar The most comprehensive and up-to-date Mathematics Calendar information is available on e-MATH at http://www.ams.org/mathcal/. August 2006 wide to discuss the most recent developments in anomalous energy (heat) transport in low dimensional systems, synchronization of 1–5 Ninth Meeting of New Researchers in Statistics and Proba- chaotic systems and applications to communication of information. bility,University of Washington, Seattle, Washington. (Mar. 2006, It also serves as a forum to promote regional as well as international p. 379) scientific exchange and collaboration. Description:TheIMSCommittee on New Researchers is organizing ameeting of recent Ph.D. recipients in Statistics and Probability. Information and registration: http://www.ims.nus.edu.sg/ The purpose of the conference is to promote interaction among new Programs/chaos/;email:[email protected] on researchers primarily by introducing them to each other’s research scientific aspects of the program, please email Baowen Li at in an informal setting. As part of the conference, participants will [email protected]. present talks and posters on their research and discuss interests and 2–4 31st Sapporo Symposium on Partial Differential Equations, professional experiences over meals and social activities organized Department of Mathematics, Hokkaido University, Sapporo, Japan. through the meeting as well as by the participants themselves. The (Jan. 2006, p. 70) relationships established in this informal collegiate setting among Description:TheSapporo Symposium on Partial Differential Equa- junior researchers are ones that maylastacareer (lifetime?!) The tions has been held annually to present the latest developments on meeting is to be held prior to the 2006 Joint Statistical Meetings in PDE with a broad spectrum of interests not limited to the methods Seattle, WA.
    [Show full text]
  • Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
    Rufus Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms New edition of Lect. Notes in Math. 470, Springer, 1975. April 14, 2013 Springer Preface The Greek and Roman gods, supposedly, resented those mortals endowed with superlative gifts and happiness, and punished them. The life and achievements of Rufus Bowen (1947{1978) remind us of this belief of the ancients. When Rufus died unexpectedly, at age thirty-one, from brain hemorrhage, he was a very happy and successful man. He had great charm, that he did not misuse, and superlative mathematical talent. His mathematical legacy is important, and will not be forgotten, but one wonders what he would have achieved if he had lived longer. Bowen chose to be simple rather than brilliant. This was the hard choice, especially in a messy subject like smooth dynamics in which he worked. Simplicity had also been the style of Steve Smale, from whom Bowen learned dynamical systems theory. Rufus Bowen has left us a masterpiece of mathematical exposition: the slim volume Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer Lecture Notes in Mathematics 470 (1975)). Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems. The area discussed by Bowen came into existence through the merging of two apparently unrelated theories.
    [Show full text]
  • A General Representation of Dynamical Systems for Reservoir Computing
    A general representation of dynamical systems for reservoir computing Sidney Pontes-Filho∗,y,x, Anis Yazidi∗, Jianhua Zhang∗, Hugo Hammer∗, Gustavo B. M. Mello∗, Ioanna Sandvigz, Gunnar Tuftey and Stefano Nichele∗ ∗Department of Computer Science, Oslo Metropolitan University, Oslo, Norway yDepartment of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway zDepartment of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway Email: [email protected] Abstract—Dynamical systems are capable of performing com- TABLE I putation in a reservoir computing paradigm. This paper presents EXAMPLES OF DYNAMICAL SYSTEMS. a general representation of these systems as an artificial neural network (ANN). Initially, we implement the simplest dynamical Dynamical system State Time Connectivity system, a cellular automaton. The mathematical fundamentals be- Cellular automata Discrete Discrete Regular hind an ANN are maintained, but the weights of the connections Coupled map lattice Continuous Discrete Regular and the activation function are adjusted to work as an update Random Boolean network Discrete Discrete Random rule in the context of cellular automata. The advantages of such Echo state network Continuous Discrete Random implementation are its usage on specialized and optimized deep Liquid state machine Discrete Continuous Random learning libraries, the capabilities to generalize it to other types of networks and the possibility to evolve cellular automata and other dynamical systems in terms of connectivity, update and learning rules. Our implementation of cellular automata constitutes an reservoirs [6], [7]. Other systems can also exhibit the same initial step towards a general framework for dynamical systems. dynamics. The coupled map lattice [8] is very similar to It aims to evolve such systems to optimize their usage in reservoir CA, the only exception is that the coupled map lattice has computing and to model physical computing substrates.
    [Show full text]
  • EMERGENT COMPUTATION in CELLULAR NEURRL NETWORKS Radu Dogaru
    IENTIFIC SERIES ON Series A Vol. 43 EAR SCIENC Editor: Leon 0. Chua HI EMERGENT COMPUTATION IN CELLULAR NEURRL NETWORKS Radu Dogaru World Scientific EMERGENT COMPUTATION IN CELLULAR NEURAL NETWORKS WORLD SCIENTIFIC SERIES ON NONLINEAR SCIENCE Editor: Leon O. Chua University of California, Berkeley Series A. MONOGRAPHS AND TREATISES Volume 27: The Thermomechanics of Nonlinear Irreversible Behaviors — An Introduction G. A. Maugin Volume 28: Applied Nonlinear Dynamics & Chaos of Mechanical Systems with Discontinuities Edited by M. Wiercigroch & B. de Kraker Volume 29: Nonlinear & Parametric Phenomena* V. Damgov Volume 30: Quasi-Conservative Systems: Cycles, Resonances and Chaos A. D. Morozov Volume 31: CNN: A Paradigm for Complexity L O. Chua Volume 32: From Order to Chaos II L. P. Kadanoff Volume 33: Lectures in Synergetics V. I. Sugakov Volume 34: Introduction to Nonlinear Dynamics* L Kocarev & M. P. Kennedy Volume 35: Introduction to Control of Oscillations and Chaos A. L. Fradkov & A. Yu. Pogromsky Volume 36: Chaotic Mechanics in Systems with Impacts & Friction B. Blazejczyk-Okolewska, K. Czolczynski, T. Kapitaniak & J. Wojewoda Volume 37: Invariant Sets for Windows — Resonance Structures, Attractors, Fractals and Patterns A. D. Morozov, T. N. Dragunov, S. A. Boykova & O. V. Malysheva Volume 38: Nonlinear Noninteger Order Circuits & Systems — An Introduction P. Arena, R. Caponetto, L Fortuna & D. Porto Volume 39: The Chaos Avant-Garde: Memories of the Early Days of Chaos Theory Edited by Ralph Abraham & Yoshisuke Ueda Volume 40: Advanced Topics in Nonlinear Control Systems Edited by T. P. Leung & H. S. Qin Volume 41: Synchronization in Coupled Chaotic Circuits and Systems C. W. Wu Volume 42: Chaotic Synchronization: Applications to Living Systems £.
    [Show full text]
  • The Social System of Systems Intelligence – a Study Based on Search Engine Method
    In Essays on Systems Intelligence, eds. Raimo P. Hämäläinen and Esa Saarinen: pp. 119-133 Espoo: Aalto University, School of Science and Technology, Systems Analysis Laboratory Chapter 5 The Social System of Systems Intelligence – A Study Based on Search Engine Method Kalevi Kilkki This essay offers an preliminary study on systems intelligence as a social system based on four cornerstones: writings using the terminology of systems intelligence, search engines, models to describe the behavior of social phenomena, and a theory of social systems. As a result we provide an illustration of systems intelligence field as a network of key persons. The main conclusion is that the most promising area for systems intelligence as social system is to systematically apply positive psychology to develop organizational management and to solve our everyday problems. Introduction The social system of systems intelligence is an ambitious topic, particularly for a person without any formal studies in sociology. Moreover, systems intelligence is a novel area of science and, hence, the development of its social structures is in early phase. It is even possible to argue that there is not yet any social system of systems intelligence. The approach of this study is based on four cornerstones: first, the literature that has used concept of systems intelligence, second, search engines, third, models to describe the behavior of social phenomena, and forth, a theory of social systems. As a result we may be able to say something novel about the development of systems intelligence as a social system. As to the social systems this essay relies on the grand theory developed by Niklas Luhmann (Luhmann 1995).
    [Show full text]
  • Deterministic Brownian Motion: the Effects of Perturbing a Dynamical
    1 Deterministic Brownian Motion: The Effects of Perturbing a Dynamical System by a Chaotic Semi-Dynamical System Michael C. Mackey∗and Marta Tyran-Kami´nska † October 26, 2018 Abstract Here we review and extend central limit theorems for highly chaotic but deterministic semi- dynamical discrete time systems. We then apply these results show how Brownian motion-like results are recovered, and how an Ornstein-Uhlenbeck process results within a totally determin- istic framework. These results illustrate that the contamination of experimental data by “noise” may, under certain circumstances, be alternately interpreted as the signature of an underlying chaotic process. Contents 1 Introduction 2 2 Semi-dynamical systems 5 2.1 Density evolution operators . ......... 5 2.2 Probabilistic and ergodic properties of density evolution ................ 12 2.3 Brownian motion from deterministic perturbations . ............... 16 2.3.1 Centrallimittheorems. ..... 16 2.3.2 FCLTfornoninvertiblemaps . ..... 20 2.4 Weak convergence criteria . ........ 31 3 Analysis 33 3.1 Weak convergence of v(tn) and vn. ............................ 35 3.2 Thelinearcaseinonedimension . ........ 36 3.2.1 Behaviour of the velocity variable . ......... 36 3.2.2 Behaviour of the position variable . ........ 38 4 Identifying the Limiting Velocity Distribution 41 4.1 Dyadicmap....................................... 42 arXiv:cond-mat/0408330v1 [cond-mat.stat-mech] 13 Aug 2004 4.2 Graphical illustration of the velocity density evolution with dyadic map perturbations 45 4.3 r-dyadicmap ..................................... 45 ∗e-mail: [email protected], Departments of Physiology, Physics & Mathematics and Centre for Nonlinear Dynamics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, CANADA, H3G 1Y6 †Corresponding author, email: [email protected], Institute of Mathematics, Silesian University, ul.
    [Show full text]
  • Do Chaos-Based Communication Systems Really Transmit Chaotic Signals?
    Signal Processing 108 (2015) 412–420 Contents lists available at ScienceDirect Signal Processing journal homepage: www.elsevier.com/locate/sigpro Do chaos-based communication systems really transmit chaotic signals? Renato Candido a, Diogo C. Soriano b, Magno T.M. Silva a,n, Marcio Eisencraft a a University of São Paulo, Brazil b Universidade Federal do ABC, Brazil article info abstract Article history: Many communication systems based on the synchronism of chaotic systems have been Received 2 May 2014 proposed as an alternative spread spectrum modulation that improves the level of privacy Received in revised form in data transmission. However, depending on the map and on the encoding function, the 24 September 2014 transmitted signal may cease to be chaotic. Therefore, the sensitive dependence on initial Accepted 2 October 2014 conditions, which is one of the most interesting properties for employing chaos in Available online 14 October 2014 telecommunications, may disappear. In this paper, we numerically analyze the chaotic Keywords: nature of signals modulated using a system that employs the Ikeda map. Additionally, we Chaos propose changes in the communication system in order to guarantee that the modulated Nonlinear systems signals are in fact chaotic. Chaos-based communication systems & 2014 Elsevier B.V. All rights reserved. Ikeda map Attractors 1. Introduction diverges from the original one. These three properties all together are necessary for a signal to be called chaotic Non-linear systems and chaos have been applied in all and are the basis for the alleged advantages of using chaos areas of engineering [1]. This fact is particularly true when in communications, as an improvement in security [15].
    [Show full text]
  • The Age of Addiction David T. Courtwright Belknap (2019) Opioids
    The Age of Addiction David T. Courtwright Belknap (2019) Opioids, processed foods, social-media apps: we navigate an addictive environment rife with products that target neural pathways involved in emotion and appetite. In this incisive medical history, David Courtwright traces the evolution of “limbic capitalism” from prehistory. Meshing psychology, culture, socio-economics and urbanization, it’s a story deeply entangled in slavery, corruption and profiteering. Although reform has proved complex, Courtwright posits a solution: an alliance of progressives and traditionalists aimed at combating excess through policy, taxation and public education. Cosmological Koans Anthony Aguirre W. W. Norton (2019) Cosmologist Anthony Aguirre explores the nature of the physical Universe through an intriguing medium — the koan, that paradoxical riddle of Zen Buddhist teaching. Aguirre uses the approach playfully, to explore the “strange hinterland” between the realities of cosmic structure and our individual perception of them. But whereas his discussions of time, space, motion, forces and the quantum are eloquent, the addition of a second framing device — a fictional journey from Enlightenment Italy to China — often obscures rather than clarifies these chewy cosmological concepts and theories. Vanishing Fish Daniel Pauly Greystone (2019) In 1995, marine biologist Daniel Pauly coined the term ‘shifting baselines’ to describe perceptions of environmental degradation: what is viewed as pristine today would strike our ancestors as damaged. In these trenchant essays, Pauly trains that lens on fisheries, revealing a global ‘aquacalypse’. A “toxic triad” of under-reported catches, overfishing and deflected blame drives the crisis, he argues, complicated by issues such as the fishmeal industry, which absorbs a quarter of the global catch.
    [Show full text]
  • Uniformly Hyperbolic Control Theory Christoph Kawan
    HYPERBOLIC CONTROL THEORY 1 Uniformly hyperbolic control theory Christoph Kawan Abstract—This paper gives a summary of a body of work at the of control-affine systems with a compact and convex control intersection of control theory and smooth nonlinear dynamics. range. The main idea is to transfer the concept of uniform hyperbolicity, These results are grounded on the topological theory of central to the theory of smooth dynamical systems, to control- affine systems. Combining the strength of geometric control Colonius-Kliemann [7] which provides an approach to under- theory and the hyperbolic theory of dynamical systems, it is standing the global controllability structure of control systems. possible to deduce control-theoretic results of non-local nature Two central notions of this theory are control and chain that reveal remarkable analogies to the classical hyperbolic the- control sets. Control sets are the maximal regions of complete ory of dynamical systems. This includes results on controllability, approximate controllability in the state space. The definition of robustness, and practical stabilizability in a networked control framework. chain control sets involves the concept of "-chains (also called "-pseudo-orbits) from the theory of dynamical systems. The Index Terms—Control-affine system; uniform hyperbolicity; main motivation for this concept comes from the facts that (i) chain control set; controllability; robustness; networked control; invariance entropy chain control sets are outer approximations of control sets and (ii) chain control sets in general are easier to determine than control sets (both analytically and numerically). I. INTRODUCTION As examples show, chain control sets can support uniformly hyperbolic and, more generally, partially hyperbolic structures.
    [Show full text]