Mathematics Calendar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transformations)
TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof. -
Fractal Geometry and Applications in Forest Science
ACKNOWLEDGMENTS Egolfs V. Bakuzis, Professor Emeritus at the University of Minnesota, College of Natural Resources, collected most of the information upon which this review is based. We express our sincere appreciation for his investment of time and energy in collecting these articles and books, in organizing the diverse material collected, and in sacrificing his personal research time to have weekly meetings with one of us (N.L.) to discuss the relevance and importance of each refer- enced paper and many not included here. Besides his interdisciplinary ap- proach to the scientific literature, his extensive knowledge of forest ecosystems and his early interest in nonlinear dynamics have helped us greatly. We express appreciation to Kevin Nimerfro for generating Diagrams 1, 3, 4, 5, and the cover using the programming package Mathematica. Craig Loehle and Boris Zeide provided review comments that significantly improved the paper. Funded by cooperative agreement #23-91-21, USDA Forest Service, North Central Forest Experiment Station, St. Paul, Minnesota. Yg._. t NAVE A THREE--PART QUE_.gTION,, F_-ACHPARToF:WHICH HA# "THREEPAP,T_.<.,EACFi PART" Of:: F_.AC.HPART oF wHIct4 HA.5 __ "1t4REE MORE PARTS... t_! c_4a EL o. EP-.ACTAL G EOPAgTI_YCoh_FERENCE I G;:_.4-A.-Ti_E AT THB Reprinted courtesy of Omni magazine, June 1994. VoL 16, No. 9. CONTENTS i_ Introduction ....................................................................................................... I 2° Description of Fractals .................................................................................... -
Attosecond Light Pulses and Attosecond Electron Dynamics Probed Using Angle-Resolved Photoelectron Spectroscopy
Attosecond Light Pulses and Attosecond Electron Dynamics Probed using Angle-Resolved Photoelectron Spectroscopy Cong Chen B.S., Nanjing University, 2010 M.S., University of Colorado Boulder, 2013 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Physics 2017 This thesis entitled: Attosecond Light Pulses and Attosecond Electron Dynamics Probed using Angle-Resolved Photoelectron Spectroscopy written by Cong Chen has been approved for the Department of Physics Prof. Margaret M. Murnane Prof. Henry C. Kapteyn Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Chen, Cong (Ph.D., Physics) Attosecond Light Pulses and Attosecond Electron Dynamics Probed using Angle-Resolved Photoelectron Spectroscopy Thesis directed by Prof. Margaret M. Murnane Recent advances in the generation and control of attosecond light pulses have opened up new opportunities for the real-time observation of sub-femtosecond (1 fs = 10-15 s) electron dynamics in gases and solids. Combining attosecond light pulses with angle-resolved photoelectron spectroscopy (atto-ARPES) provides a powerful new technique to study the influence of material band structure on attosecond electron dynamics in materials. Electron dynamics that are only now accessible include the lifetime of far-above-bandgap excited electronic states, as well as fundamental electron interactions such as scattering and screening. In addition, the same atto-ARPES technique can also be used to measure the temporal structure of complex coherent light fields. -
Program of CHAOS2011 Conference
4th Chaotic Modeling and Simulation International Conference (CHAOS2011) May 31 - June 3, 2011 Agios Nikolaos Crete Greece Program Session / Date / Time Event Talk Title / Event Room Hermes 17.00-20.00 Monday May 30 Registration Hermes 8.30-10.00 Tuesday May 31 Registration Room 1 10.00-10.40 Opening Ceremony Keynote Session (Chair: D. Sotiropoulos) Room 1 10.40-11.30 Extension of Poincare's program for integrability and chaos in Hamiltonian systems Professor Ferdinand Verhulst Room 1 11.30-12.00 Coffee Break SCS1 SPECIAL AND CONTRIBUTED SESSIONS SCS1 Room 1 31.05.11: 12.00-13.40 Chair: G. I. Burde Chaos and solitons Spontaneous generation of solitons from steady state {exact solutions to the higher order KdV G.I. Burde equations on a half-line} Posadas-Castillo C., Garza-González E., Cruz- Chaotic synchronization of complex networks with Rössler oscillators in Hamiltonian form like Hernández C., Alcorta-García E., Díaz-Romero D.A. nodes Vladimir L. Kalashnikov Dissipative solitons: the structural chaos and the chaos of destruction V.Yu.Novokshenov Tronqu'ee solutions of the Painleve' II equation Stefan C. Mancas, Harihar Khanal 2D Erupting Solitons in Dissipative Media Room 2 31.05.11: 12.00-13.40 Chair: G. Feichtinger CHAOS and Applications in social and economic life Gustav Feichtinger Multiple Equilibria, Binges, and Chaos in Rational Addiction Models David Laroze, J. Bragard, H Pleiner Chaotic dynamics of a biaxial anisotropic magnetic particle Oleksander Pokutnyi Chaotic maps in cybernetics Room 3 31.05.11: 12.00-13.40 Chair: D. Sotiropoulos Chaos and time series analysis Hannah M. -
Private Digital Communications Using Fully-Integrated Discrete-Time Synchronized Hyper Chaotic Maps
PRIVATE DIGITAL COMMUNICATIONS USING FULLY-INTEGRATED DISCRETE-TIME SYNCHRONIZED HYPER CHAOTIC MAPS by BOSHAN GU Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Adviser: Dr. Soumyajit Mandal Department of Electrical, Computer, and Systems Engineering CASE WESTERN RESERVE UNIVERSITY May, 2020 Private Digital Communications Using Fully-Integrated Discrete-time Synchronized Hyper Chaotic Maps Case Western Reserve University Case School of Graduate Studies We hereby approve the thesis1 of BOSHAN GU for the degree of Master of Science Dr. Soumyajit Mandal 4/10/2020 Committee Chair, Adviser Date Dr. Christos Papachristou 4/10/2020 Committee Member Date Dr. Francis Merat 4/10/2020 Committee Member Date 1We certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables v List of Figures vi Acknowledgements ix Acknowledgements ix Abstract x Abstract x Chapter 1. Introduction1 Nonlinear Dynamical Systems and Chaos1 Digital Generation of Chaotic Masking7 Motivation for This Project 11 Chapter 2. Mathematical Analysis 13 System Characteristic 13 Synchronization 16 Chapter 3. Circuit Design 19 Fully Differential Operational Amplifier 19 Expand and Folding function 27 Sample and Hold Circuits 31 Digital Signal Processing Block and Clock Generator 33 Bidirectional Hyperchaotic Encryption System 33 Chapter 4. Simulation Results 37 iii Chapter 5. Suggested Future Research 41 Current-Mode Chaotic Generators for Low-Power Applications 41 Appendix. Complete References 43 iv List of Tables 1.1 Different chaotic map and its system function.6 1.2 Similar factors between chaotic encryption and traditional cryptography.8 3.1 Op-amp performance simulated using different process parameter 23 3.2 Different gate voltage of transistor in corner case simulation 23 4.1 System performance comparison between previous work and this project. -
5Th Workshop on Quantum Chaos and Localisation Phenomena
5th Workshop on Quantum Chaos and Localisation Phenomena May 20–22, 2011, Warsaw, Poland organised by Institute of Physics Polish Academy of Sciences, Center for Theoretical Physics Polish Academy of Sciences, and Pro Physica Foundation PROGRAMME Organising Committee Szymon Bauch ([email protected]) Sunday, May 22 Oleh Hul ([email protected]) INVITED TALKS Marek Kuś ([email protected]) 9:00–9:35 Uzy Smilansky (Rehovot, Israel) Michał Ławniczak ([email protected]) Stationary scattering from a nonlinear network Leszek Sirko – chairman ([email protected]) 9:35–10:10 Yan V. Fyodorov (Nottingham, UK) Level curvature distribution at the spectral edge of random Hermitian matrices 10:10–10:45 Pavel Kurasov (Stockholm, Sweden) Magnetic Schrödinger operators on graphs: spectra, Objectives inverse problems and applications 10:45–11:20 Karol Życzkowski (Warsaw, Poland) To assess achievements and to formulate directions of new research Level spacing distribution revisited on quantum chaos and localisation 11:20–11:50 coffee break To bring together prominent experimental and theoretical physicists 11:50–12:25 Andreas Buchleitner (Freiburg, Germany) who share a common interest in quantum chaos and localisation Transport, disorder, and entanglement phenomena 12:25–13:00 Jan Kˇríž (Hradec Králové, Czech Republic) Chaos in the brain 13:00–13:35 Agn`es Maurel (Paris, France) Experimental study of waves propagation using Fourier Transform Profilometry Scope 13:35–14:30 lunch break CONTRIBUTED TALKS Presentations will focus on the following topics: 14:30–14:50 Filip Studniˇcka (Hradec Králové, Czech Republic) Quantum chaos and nonlinear classical systems Analysis of biomedical signals using differential geometry invariants Quantum and microwave billiards 14:50–15:10 Michał Ławniczak (Warsaw, Poland) Quantum and microwave graphs Investigation of Wigner reaction matrix, cross- and velocity Atoms in strong electromagnetic fields – experiment and theory correlators for microwave networks Chaos vs. -
Use Style: Paper Title
ISSN No. 0976-5697 Volume 4, No. 11, Nov-Dec 2013 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info Effect of Different Chaotic Maps on a Chaotic Block Cipher Algorithm for Image Cryptosystems Vishnu G. Kamat Madhu Sharma M Tech in Information Security and Management Assistant Professor Department of Computer Science, DIT University Department of Computer Science, DIT University [email protected] [email protected] Abstract: In this paper, we provide analysis details of the algorithm set forth by Mohamed Amin et al. [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3484-97]. They proposed a block cipher algorithm using chaotic Tent map. For our analysis, besides the Tent map we have used 3 different maps viz. Hénon map, Gauss iterated map and Tinkerbell Map individually. We have provided experimentation results of statistical and differential analysis of the algorithm using the said chaotic maps. Keywords: Encryption; Key Generation; Security Analysis; Chaotic Maps; Block Cipher I. INTRODUCTION A. Tent Map: Tent map uses a simple chaotic function Information Security is a major concern in almost all fields using the computer for information storage and transmission. This led to the widespread use of cryptography (1) to protect the information. In cryptography, encryption is the where 0 ≤ α ≤ 2; and x є [0,1]. An iterative map is task of information encoding, in a way that unauthorized defined by parties cannot view the actual information, but only authorized parties can. The information is changed to an Xn+1 = F(Xn) (2) unreadable form (ciphertext), using an encryption algorithm. -
The Effect of Spin Squeezing on the Entanglement Entropy of Kicked Tops
entropy Article The Effect of Spin Squeezing on the Entanglement Entropy of Kicked Tops Ernest Teng Siang Ong 1,† and Lock Yue Chew 1,2,*,† 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore; [email protected] 2 Complexity Institute, Nanyang Technological University, 18 Nanyang Drive, Singapore 637723, Singapore * Correspondence: [email protected]; Tel.: +65-6316-2968 or +65-6795-7981 † These authors contributed equally to this work. Academic Editors: Gerardo Adesso and Jay Lawrence Received: 20 November 2015; Accepted: 22 March 2016; Published: 2 April 2016 Abstract: In this paper, we investigate the effects of spin squeezing on two-coupled quantum kicked tops, which have been previously shown to exhibit a quantum signature of chaos in terms of entanglement dynamics. Our results show that initial spin squeezing can lead to an enhancement in both the entanglement rate and the asymptotic entanglement for kicked tops when the initial state resides in the regular islands within a mixed classical phase space. On the other hand, we found a reduction in these two quantities if we were to choose the initial state deep inside the chaotic sea. More importantly, we have uncovered that an application of periodic spin squeezing can yield the maximum attainable entanglement entropy, albeit this is achieved at a reduced entanglement rate. Keywords: quantum entanglement; chaos; quantum squeezing 1. Introduction The quantum kicked top is an important model for the fundamental study of quantum chaos [1–4]. It is a paradigm that is fruitful for both analytical and numerical investigations on the influence of classical chaos on various quantum features [5,6]. -
Arte Fractal: Belleza Y Matemáticas
www.divulgamat.net www.fractalartcontests.com/2006 sabermás Para ARTE FRACTAL: BELLEZA Y MATEMÁTICAS CONGRESO INTERNACIONAL DE MATEMÁTICOS. MADRID 2006 ARTE FRACTAL: BELLEZAY MATEMÁTICAS FRACTAL: ARTE FRACTAL BEAUTY AND MATHEMATICS ART: Las matemáticas, el arte y la historia del invencible Anteo Los antiguos mitos griegos no son cuentos reconfortantes sino historias que encierran verdades incómodas que muchas veces tie- nen un desenlace brutal. Creo que para mucha gente, y para los matemáticos puros también, el mito clásico de Anteo tiene un interés especial. Anteo derivaba su extraordinaria fuerza de su madre, Gaia (la tierra). Resultaba invencible mientras se mantenía en contacto con su madre, la tierra, ya que era ella la que le proporcionaba su poder. Por otra parte, a Hércules se le había encomendado como uno de sus doce traba- jos el robar las manzanas de oro del jardín de las Hespérides, que estaba custodiado por Anteo. A pesar de ser el más fuerte de todos los héroes, Hércules no podía con un enemigo tan temible como Anteo. No obstante, con el fin de descubrir el secreto de Anteo, Hércules le observó a escondi- das y así pudo matarle levantando sus pies del suelo para poderle estrangular. ¿Qué relación tiene este mito con las matemáticas? Gran parte de ella tuvo su origen hace bastante tiempo en asuntos muy concre- tos. De hecho, hace más de cien años George Cantor fundó la teoría de conjuntos, y a partir de allí profundas corrientes surgidas en distintos países se iban cobrando cada vez más fuerza, subestimando a los poderosos enemigos del conocimiento (es decir, a Hércules) y abogando enérgicamente por unas matemáticas independientes de las raíces que durante siglos las había nutrido, pero a la vez dominándolas. -
Gaussian Guided Self-Adaptive Wolf Search Algorithm Based on Information Entropy Theory
entropy Article Gaussian Guided Self-Adaptive Wolf Search Algorithm Based on Information Entropy Theory Qun Song 1, Simon Fong 1,*, Suash Deb 2 and Thomas Hanne 3 ID 1 Department of Computer and Information Science, University of Macau, Macau 999078, China; [email protected] 2 Distinguished Professorial Associate, Decision Sciences and Modelling Program, Victoria University, Melbourne 8001, Australia; [email protected] 3 Institute for Information Systems, University of Applied Sciences and Arts Northwestern Switzerland, 4600 Olten, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +853-88664460 Received: 13 October 2017; Accepted: 4 January 2018; Published: 10 January 2018 Abstract: Nowadays, swarm intelligence algorithms are becoming increasingly popular for solving many optimization problems. The Wolf Search Algorithm (WSA) is a contemporary semi-swarm intelligence algorithm designed to solve complex optimization problems and demonstrated its capability especially for large-scale problems. However, it still inherits a common weakness for other swarm intelligence algorithms: that its performance is heavily dependent on the chosen values of the control parameters. In 2016, we published the Self-Adaptive Wolf Search Algorithm (SAWSA), which offers a simple solution to the adaption problem. As a very simple schema, the original SAWSA adaption is based on random guesses, which is unstable and naive. In this paper, based on the SAWSA, we investigate the WSA search behaviour more deeply. A new parameter-guided updater, the Gaussian-guided parameter control mechanism based on information entropy theory, is proposed as an enhancement of the SAWSA. The heuristic updating function is improved. Simulation experiments for the new method denoted as the Gaussian-Guided Self-Adaptive Wolf Search Algorithm (GSAWSA) validate the increased performance of the improved version of WSA in comparison to its standard version and other prevalent swarm algorithms. -
Modeling and Analysis of Human Group Dynamics
Modeling and Analysis of Human Group Dynamics Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Luis Felipe Giraldo Trujillo, B.S., M.S. Graduate Program in Electrical and Computer Engineering The Ohio State University 2016 Dissertation Committee: Kevin M Passino, Advisor Wei Zhang John D Clapp c Copyright by Luis Felipe Giraldo Trujillo 2016 Abstract In this work we provide mathematical and computational tools that allow us to model the “physics” of human group behavior: how the relationship between the in- dividuals’ characteristics, interaction dynamics, and environmental factors translates into changes in the behavior of the group. We characterize the group dynamics for four specific situations, and show the importance of these models to improve the per- formance of task-solving groups in organizational management, to design strategies that prevent high-risk behaviors, and to motivate collective action and cooperation in situations that lead to social dilemmas. ii To my family iii Acknowledgments First, I thank God for give me the strength to complete my doctoral studies and the opportunity of having an experience not only at the intelectual level but also social and cultural. I give thanks to my parents and brother for their unconditional love and support. Also, I give special thanks to my advisor and friend Kevin M. Passino. His guidance, willingness to discuss ideas, and kindness make him a great model of an advisor. Also, I want to thank John Clapp for his collaboration and insights, my colleagues Hugo Gonzalez, Isa Fernandez, and Veronica Badescu for their helpful discussions, and the department of Electrical and Computer Engineering for providing funds to support the last years of my studies. -
Neurokit2 Release 0.0.35
NeuroKit2 Release 0.0.35 Official Documentation Jun 06, 2020 CONTENTS 1 Introduction 3 1.1 Quick Example..............................................3 1.2 Installation................................................4 1.3 Contribution...............................................4 1.4 Documentation..............................................4 1.5 Citation..................................................5 1.6 Physiological Data Preprocessing....................................6 1.7 Physiological Data Analysis....................................... 11 1.8 Miscellaneous.............................................. 13 1.9 Popularity................................................ 16 1.10 Notes................................................... 17 2 Authors 19 2.1 Core team................................................. 19 2.2 Contributors............................................... 19 3 Installation 21 3.1 1. Python................................................. 21 3.2 2. NeuroKit................................................ 22 4 Tutorials 23 4.1 Recording good quality signals..................................... 23 4.2 What software for physiological signal processing........................... 24 4.3 Get familiar with Python in 10 minutes................................. 26 4.4 Understanding NeuroKit......................................... 34 4.5 How to use GitHub to contribute..................................... 37 4.6 Ideas for first contributions........................................ 40 4.7 Complexity Analysis of Physiological