Private Digital Communications Using Fully-Integrated Discrete-Time Synchronized Hyper Chaotic Maps

Total Page:16

File Type:pdf, Size:1020Kb

Private Digital Communications Using Fully-Integrated Discrete-Time Synchronized Hyper Chaotic Maps PRIVATE DIGITAL COMMUNICATIONS USING FULLY-INTEGRATED DISCRETE-TIME SYNCHRONIZED HYPER CHAOTIC MAPS by BOSHAN GU Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Adviser: Dr. Soumyajit Mandal Department of Electrical, Computer, and Systems Engineering CASE WESTERN RESERVE UNIVERSITY May, 2020 Private Digital Communications Using Fully-Integrated Discrete-time Synchronized Hyper Chaotic Maps Case Western Reserve University Case School of Graduate Studies We hereby approve the thesis1 of BOSHAN GU for the degree of Master of Science Dr. Soumyajit Mandal 4/10/2020 Committee Chair, Adviser Date Dr. Christos Papachristou 4/10/2020 Committee Member Date Dr. Francis Merat 4/10/2020 Committee Member Date 1We certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables v List of Figures vi Acknowledgements ix Acknowledgements ix Abstract x Abstract x Chapter 1. Introduction1 Nonlinear Dynamical Systems and Chaos1 Digital Generation of Chaotic Masking7 Motivation for This Project 11 Chapter 2. Mathematical Analysis 13 System Characteristic 13 Synchronization 16 Chapter 3. Circuit Design 19 Fully Differential Operational Amplifier 19 Expand and Folding function 27 Sample and Hold Circuits 31 Digital Signal Processing Block and Clock Generator 33 Bidirectional Hyperchaotic Encryption System 33 Chapter 4. Simulation Results 37 iii Chapter 5. Suggested Future Research 41 Current-Mode Chaotic Generators for Low-Power Applications 41 Appendix. Complete References 43 iv List of Tables 1.1 Different chaotic map and its system function.6 1.2 Similar factors between chaotic encryption and traditional cryptography.8 3.1 Op-amp performance simulated using different process parameter 23 3.2 Different gate voltage of transistor in corner case simulation 23 4.1 System performance comparison between previous work and this project. 39 v List of Figures 1.1 Two different perspectives of a 2-D nonlinear system1. (a) Time series view. (b) Planar phase space view2 1.2 (a) Lorenz system plot with initial conditions x = -1, y = 0, z = 0. (b) Lorenz system plot with different initial conditions.3 1.3 Bifurcation diagram of a logistic map5 1.4 Scheme of chaotic encryption system based on memristor-based chaotic circuits2.9 1.5 (a) Experimental setup and FPGA test board2. (b) Experimental data stream decrypted by the system2.9 1.6 Overview of the IoT data transferring and proposed improved data communication system9 1.7 Photograph of a single hyperchaotic system implemented on a PCB board3. 10 1.8 Block diagram of purposed discrete-time hyperchaotic encryption system 11 2.1 Different folding function under several value of ¯ 14 2.2 Estimated LE spectrum of proposed hyperchaotic system 16 3.1 Feedback path of Opamp4 20 3.2 Generic model with compensation for two stage amplifier4 20 3.3 Schematic of op-amp structure using indirect feedback method4. 21 3.4 Generic model of opamp with indirect feedback method4. 21 vi 3.5 Block diagram of purposed two stage telescopic op-amp with indirect feedback path. 22 3.6 Block diagram of purposed switched-capacitor common mode feedback circuits. 22 3.7 Step response for (a) rising edge and (b) falling edge. 24 3.8 Periodic noise response. 24 3.9 Post-layout simulated AC response. 25 3.10 Block diagram of biasing circuits 26 3.11 Layout of purposed fully differential op-amp with two stage SC CMFB circuits. 26 3.12 (a) Schematic of nonlinear function generator circuits. (b) Simulated DC transfer function for folding point equals 1 and -1, ¯ = 0.5. 27 3.13 Schematic of a strong-arm comparator with pre-apmlifier stage4 28 3.14 Clock operation of comparator in the folding function 29 3.15 Proposed fully differential folding function circuits schematic. 30 3.16 Dynamic discrete comparator based logic condition module. 30 3.17 Simulation result of folding function when ¯= 0.5, folded point 0.5 Æ¡ and 0.5. 30 3.18 Schematic of the sample and hold circuit. 32 3.19 Simulation results for two series connected SH circuits 32 3.20 General block diagram for non-overlapping generating circuits5 33 vii 3.21 Block diagram of purposed discrete-time hyperchaotic encryption system. 35 3.22 2 mm 1 mm sized layout of purposed discrete-time hyperchaotic £ encryption system. 36 4.1 Time series of the hyperchaotic system and zoomed-in figure. 37 4.2 (a) Phase space of the simulated data X , Y and Z . (b) Power spectrum density of the vector output. 38 4.3 Time domain synchronization error of x, y and z channels. 38 4.4 Synchronization of X, Y state variables 39 4.5 Time series of demodulated signal at receiver. 40 4.6 Time series of demodulated signal at receiver. 40 5.1 A chaotic communication system in current mode6. 42 viii Acknowledgements 0.1 Acknowledgements I would like to thank my advisor, Dr. Soumyajit Mandal, for his knowledge, guidance, and advice throughout my studies here at CWRU. I would also like to thank Dr. Francis Merat and Dr. Christos Papachristou for being a part of my committee and reviewing my thesis. Finally I would like to thank all the ICSP Lab members especially Jifu Liang, Xinyao Tang, giving a lot of practical advice on my chip design and helping me a lot when taping out. ix Abstract Private Digital Communications Using Fully-Integrated Discrete-time Synchronized Hyper Chaotic Maps Abstract by BOSHAN GU 0.2 Abstract With the proliferation of Internet-of-Things (IoT) at public facilities, work places, the home, and beyond, securing data communications is becoming increasingly challeng- ing. This thesis describes the analysis and practical integrated circuit (IC) design of synchronized hyperchaotic maps for energy-efficient private data communication be- tween (or within) IoT nodes. The data is streaming-encrypted in the physical layer us- ing chaotic masking and decrypted with synchronized chaotic mapping, resulting in a compact and low-power system that operates independently of the digital processor and avoids the need for analog-to-digital (ADC) conversion. The proposed private commu- nication scheme is expected to be particularly useful for high-fidelity real-time private data transmission through short-range wired links (e.g., memory and peripheral buses). Simulation results for the proposed hyperchaotic communication system were ini- tially obtained by implementing two identical hyperchaotic maps in MATLAB. Next, the maps were implemented on-chip using fully-differential switched-capacitor (SC) x discrete-time circuits and simulated using Cadence design tools. The chosen SC cir- cuit topology was used to realize low-power analog computation for the key building blocks in the hyperchaotic maps, while multiple tuning bits and a serial peripheral in- terface (SPI) control interface were added for changing the map parameters (thus al- lowing post-fabrication trimming and changing of encryption keys). The simulated hy- perchaotic system consumes approximately 15 mW from a 2 V power supply at a clock frequency of 2 MHz clock, and can operate at frequencies up to 10 MHz if needed. Ana- log signals (sinusoids at 50 mVpp , 10 kHz) were directly masked using the hyperchaotic system and successfully demasked with a synchronized map. The proposed system was designed and laid out in the TSMC 180 nm CMOS process, where it consumes an active die area of 2 mm x 1 mm, and is currently being fabricated. xi 1 1 Introduction 1.1 Nonlinear Dynamical Systems and Chaos Since the earliest beginnings, researchers and electrical engineers have solved a large number of communication signal processing and encryption problems using a linear paradigm that obeys the superposition principle. In essence, this viewpoint provides a first-order approximation of a naturally nonlinear system. However, noise and distortion can not be safely ignored in most scenario. Moreover, those commonly used signal functions like frequency generation and synthesis require inherently nonlinear effects to be harnessed1. Hence, study and practical use of nonlinear dynamical system is indispensable. Some basic concepts and technical essentials will be introduced in this chapter. 1.1.1 Concepts and Classic Examples of Chaotic Systems A Nonlinear system views its state temporal behavior in a phase space whereas a linear system uses time series. In the phase space perspective, the n system states are plotted against each other in n-dimensional space with time implicit on variable. The phase space usually contains all possible position and momentum variables. Unlike Introduction 2 Figure 1.1(a), Figure 1.1(b) gives a more natural and obvious geometrical orbit which makes quantitatively analysis easier7. (a) (b) Y Time X Figure 1.1. Two different perspectives of a 2-D nonlinear system1. (a) Time series view. (b) Planar phase space view A Nonlinear dynamical system can be described using a set of differential equations. For example, the differential equations for the one dimension state of a system can be written as dx f (x) (continuous-time system) (1.1) dt Æ xn 1 f (xn) (discrete-time system) (1.2) Å Æ for continuous time system and discrete time system, respectively. One of the most well-known and real-world-based chaotic model is called the Lorenz system. This simplified model was first proposed by Edward Lorenz in 1963. This mathematical model was used to depict natural phenomenon and forecasting atmospheric convection8. The Lorenz equations also arise in simplified models for many objects such as lasers, brush-less DC motors, electric circuits and chemical reactions. The system can be described using ordinary differential equations now Introduction 3 known as the Lorenz equations, 8 > dx (y x) > dt σ > Æ ¡ <> dy (1.3) dt ½x y xz > Æ ¡ ¡ > > :> dz x y ¯z dt Æ ¡ These equations describe a two-dimensional fluid layer uniformly warmed from below and cooled from above.
Recommended publications
  • Construction and Chaos Properties Analysis of a Quadratic Polynomial Surjective Map
    INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 Construction and Chaos Properties Analysis of a Quadratic Polynomial Surjective Map Jun Tang, Jianghong Shi, Zhenmiao Deng randomly distributed sequences [16]–[18]. Abstract—In this paper, a kind of quadratic polynomial surjective In this paper, we deduce the relationships between the map (QPSM) is constructed, and the topological conjugation of the coefficients of a quadratic polynomial surjective map (QPSM) QPSM and tent map is proven. With the probability density function and prove the topological conjugacy of the QPSM and tent map. (PDF) of the QPSM being deduced, an anti-trigonometric transform We give the PDF of the QPSM, which is then used to design a function is proposed to homogenize the QPSM. The information entropy, Kolmogorov entropy (KE), and discrete entropy (DE) of the transform function to homogenize the QPSM sequence. Finally, QPSM are calculated for both the original and homogenized maps we estimate entropies of the QPSM such as the information, with respect to different parameters. Simulation results show that the Kolmogorov, and discrete entropies for both the original and information entropy of the homogenized sequence is close to the homogenized map. theoretical limit and the discrete entropy remains unchanged, which This paper is organized as follows. Section II presents a suggest that the homogenization method is effective. Thus, the method for determining the QPSM coefficients, and the homogenized map not only inherits the diverse properties of the original QPSM but also possesses better uniformity. These features topological conjugation of the QPSM and tent map is proven. make it more suitable to secure communication and noise radar.
    [Show full text]
  • Mathematics Calendar
    Mathematics Calendar The most comprehensive and up-to-date Mathematics Calendar information is available on e-MATH at http://www.ams.org/mathcal/. August 2006 wide to discuss the most recent developments in anomalous energy (heat) transport in low dimensional systems, synchronization of 1–5 Ninth Meeting of New Researchers in Statistics and Proba- chaotic systems and applications to communication of information. bility,University of Washington, Seattle, Washington. (Mar. 2006, It also serves as a forum to promote regional as well as international p. 379) scientific exchange and collaboration. Description:TheIMSCommittee on New Researchers is organizing ameeting of recent Ph.D. recipients in Statistics and Probability. Information and registration: http://www.ims.nus.edu.sg/ The purpose of the conference is to promote interaction among new Programs/chaos/;email:[email protected] on researchers primarily by introducing them to each other’s research scientific aspects of the program, please email Baowen Li at in an informal setting. As part of the conference, participants will [email protected]. present talks and posters on their research and discuss interests and 2–4 31st Sapporo Symposium on Partial Differential Equations, professional experiences over meals and social activities organized Department of Mathematics, Hokkaido University, Sapporo, Japan. through the meeting as well as by the participants themselves. The (Jan. 2006, p. 70) relationships established in this informal collegiate setting among Description:TheSapporo Symposium on Partial Differential Equa- junior researchers are ones that maylastacareer (lifetime?!) The tions has been held annually to present the latest developments on meeting is to be held prior to the 2006 Joint Statistical Meetings in PDE with a broad spectrum of interests not limited to the methods Seattle, WA.
    [Show full text]
  • Topological Entropy of Quadratic Polynomials and Sections of the Mandelbrot Set
    Topological entropy of quadratic polynomials and sections of the Mandelbrot set Giulio Tiozzo Harvard University Warwick, April 2012 2. External rays 3. Main theorem 4. Ideas of proof (maybe) 5. Complex version Summary 1. Topological entropy 3. Main theorem 4. Ideas of proof (maybe) 5. Complex version Summary 1. Topological entropy 2. External rays 4. Ideas of proof (maybe) 5. Complex version Summary 1. Topological entropy 2. External rays 3. Main theorem 5. Complex version Summary 1. Topological entropy 2. External rays 3. Main theorem 4. Ideas of proof (maybe) Summary 1. Topological entropy 2. External rays 3. Main theorem 4. Ideas of proof (maybe) 5. Complex version Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous.
    [Show full text]
  • PERIODIC ORBITS of PIECEWISE MONOTONE MAPS a Dissertation
    PERIODIC ORBITS OF PIECEWISE MONOTONE MAPS A Dissertation Submitted to the Faculty of Purdue University by David Cosper In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2018 Purdue University Indianapolis, Indiana ii ACKNOWLEDGMENTS I would like to thank my advisor Micha l Misiurewicz for sticking with me all these years. iii TABLE OF CONTENTS Page LIST OF FIGURES ::::::::::::::::::::::::::::::: iv ABSTRACT ::::::::::::::::::::::::::::::::::: v 1 INTRODUCTION :::::::::::::::::::::::::::::: 1 2 PRELIMINARIES :::::::::::::::::::::::::::::: 4 2.1 Kneading Theory :::::::::::::::::::::::::::: 4 2.2 Sharkovsky's Theorem ::::::::::::::::::::::::: 12 2.3 Periodic Orbits of Interval Maps :::::::::::::::::::: 16 3 PERIODIC ORBITS OF PIECEWISE MONOTONE MAPS ::::::: 20 3.1 Horizontal/Vertical Families and Order Type ::::::::::::: 23 3.2 Extremal Points ::::::::::::::::::::::::::::: 35 3.3 Characterizing P :::::::::::::::::::::::::::: 46 4 MATCHING :::::::::::::::::::::::::::::::::: 55 4.1 Matching :::::::::::::::::::::::::::::::: 58 4.2 Topological entropy ::::::::::::::::::::::::::: 62 4.3 Transitivity ::::::::::::::::::::::::::::::: 64 4.4 Beyond transitivity ::::::::::::::::::::::::::: 67 LIST OF REFERENCES :::::::::::::::::::::::::::: 71 VITA ::::::::::::::::::::::::::::::::::::::: 73 iv LIST OF FIGURES Figure Page 1.1 An example of a two-sided truncated tent map. ::::::::::::: 2 2.1 This truncated tent map cannot have the min-max periodic orbit (RLR)1, and hence does not have a period 3 periodic point. ::::::::::: 15 2.2 The period 6 orbit with itinerary [R ∗ (RLR)]1. Notice that the first return map on the blue interval is f 2 and that the three points form a periodic orbit under f 2. :::::::::::::::::::::::::: 19 3.1 This truncated tent map cannot have the orbit (RLR)1. However, it does have the orbit (RLL)1. :::::::::::::::::::::::::: 21 3.2 This truncated tent map cannot have the orbit (RL)1.
    [Show full text]
  • THE LORENZ SYSTEM Math118, O. Knill GLOBAL EXISTENCE
    THE LORENZ SYSTEM Math118, O. Knill GLOBAL EXISTENCE. Remember that nonlinear differential equations do not necessarily have global solutions like d=dtx(t) = x2(t). If solutions do not exist for all times, there is a finite τ such that x(t) for t τ. j j ! 1 ! ABSTRACT. In this lecture, we have a closer look at the Lorenz system. LEMMA. The Lorenz system has a solution x(t) for all times. THE LORENZ SYSTEM. The differential equations Since we have a trapping region, the Lorenz differential equation exist for all times t > 0. If we run time _ 2 2 2 ct x_ = σ(y x) backwards, we have V = 2σ(rx + y + bz 2brz) cV for some constant c. Therefore V (t) V (0)e . − − ≤ ≤ y_ = rx y xz − − THE ATTRACTING SET. The set K = t> Tt(E) is invariant under the differential equation. It has zero z_ = xy bz : T 0 − volume and is called the attracting set of the Lorenz equations. It contains the unstable manifold of O. are called the Lorenz system. There are three parameters. For σ = 10; r = 28; b = 8=3, Lorenz discovered in 1963 an interesting long time behavior and an EQUILIBRIUM POINTS. Besides the origin O = (0; 0; 0, we have two other aperiodic "attractor". The picture to the right shows a numerical integration equilibrium points. C = ( b(r 1); b(r 1); r 1). For r < 1, all p − p − − of an orbit for t [0; 40]. solutions are attracted to the origin. At r = 1, the two equilibrium points 2 appear with a period doubling bifurcation.
    [Show full text]
  • Tom W B Kibble Frank H Ber
    Classical Mechanics 5th Edition Classical Mechanics 5th Edition Tom W.B. Kibble Frank H. Berkshire Imperial College London Imperial College Press ICP Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Kibble, T. W. B. Classical mechanics / Tom W. B. Kibble, Frank H. Berkshire, -- 5th ed. p. cm. Includes bibliographical references and index. ISBN 1860944248 -- ISBN 1860944353 (pbk). 1. Mechanics, Analytic. I. Berkshire, F. H. (Frank H.). II. Title QA805 .K5 2004 531'.01'515--dc 22 2004044010 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2004 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Printed in Singapore. To Anne and Rosie vi Preface This book, based on courses given to physics and applied mathematics stu- dents at Imperial College, deals with the mechanics of particles and rigid bodies.
    [Show full text]
  • Math 2030 Fall 2012
    Math 2030 Fall 2012 3 Definitions, Applications, Examples, Numerics 3.1 Basic Set-Up Discrete means “not continuous” or “individually disconnected,” dynamical refers to “change over time,” and system is the thing that we are talking about. Thus this course is about studying how elements in some ambient space move according to discrete time steps. The introductory material in this course will involve so-called one-dimensional systems. Nonetheless, we introduce the general notion of a Discrete Dynamical System since it will play a major role later. A Discrete Dynamical System consists of a set X (called the state space) and a map F ( ) (called the dynamic map) that takes elements in X to elements in X; that is, F ( ) : X· X. Given a point x X, the first iterate of x is defined by · → 0 ∈ 0 x1 = F (x0). The second iterate of x0 is nothing but the first iterate of x1, and is denoted 2 x2 = F (x1)= F F (x0) =: F (x0). Note that the power of F in the last expression is not a “power” in the usual sense, but the number of times F has been used in the iteration. The th process repeats, where the k iterate xk is given by xk = F (xk−1) = F F (xk−2) . = . = F F F(x ) ··· 0 k times = F k(x ) | {z0 } The orbit of the seed x is denoted by x is defined as the (ordered) collection of all of the 0 h 0i iterates of x0. Notationally, this means x = x ,x ,x ,... h 0i { 0 1 2 } = F k(x ): k = 0, 1, 2,..
    [Show full text]
  • Symmetric Encryption Algorithms Using Chaotic and Non-Chaotic Generators: a Review
    Journal of Advanced Research (2016) 7, 193–208 Cairo University Journal of Advanced Research REVIEW Symmetric encryption algorithms using chaotic and non-chaotic generators: A review Ahmed G. Radwan a,b,*, Sherif H. AbdElHaleem a, Salwa K. Abd-El-Hafiz a a Engineering Mathematics Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt b Nanoelectronics Integrated Systems Center (NISC), Nile University, Cairo, Egypt GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Article history: This paper summarizes the symmetric image encryption results of 27 different algorithms, which Received 27 May 2015 include substitution-only, permutation-only or both phases. The cores of these algorithms are Received in revised form 24 July 2015 based on several discrete chaotic maps (Arnold’s cat map and a combination of three general- Accepted 27 July 2015 ized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals Available online 1 August 2015 and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients * Corresponding author. Tel.: +20 1224647440; fax: +20 235723486. E-mail address: [email protected] (A.G. Radwan). Peer review under responsibility of Cairo University. Production and hosting by Elsevier http://dx.doi.org/10.1016/j.jare.2015.07.002 2090-1232 ª 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University. 194 A.G. Radwan et al. between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Keywords: Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute Permutation matrix of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms Symmetric encryption include a set of new image encryption algorithms based on non-chaotic generators, either using Chess substitution only (using fractals) and permutation only (chess-based) or both.
    [Show full text]
  • Chaos: the Mathematics Behind the Butterfly Effect
    Chaos: The Mathematics Behind the Butterfly E↵ect James Manning Advisor: Jan Holly Colby College Mathematics Spring, 2017 1 1. Introduction A butterfly flaps its wings, and a hurricane hits somewhere many miles away. Can these two events possibly be related? This is an adage known to many but understood by few. That fact is based on the difficulty of the mathematics behind the adage. Now, it must be stated that, in fact, the flapping of a butterfly’s wings is not actually known to be the reason for any natural disasters, but the idea of it does get at the driving force of Chaos Theory. The common theme among the two is sensitive dependence on initial conditions. This is an idea that will be revisited later in the paper, because we must first cover the concepts necessary to frame chaos. This paper will explore one, two, and three dimensional systems, maps, bifurcations, limit cycles, attractors, and strange attractors before looking into the mechanics of chaos. Once chaos is introduced, we will look in depth at the Lorenz Equations. 2. One Dimensional Systems We begin our study by looking at nonlinear systems in one dimen- sion. One of the important features of these is the nonlinearity. Non- linearity in an equation evokes behavior that is not easily predicted due to the disproportionate nature of inputs and outputs. Also, the term “system”isoftenamisnomerbecauseitoftenevokestheideaof asystemofequations.Thiswillbethecaseaswemoveourfocuso↵ of one dimension, but for now we do not want to think of a system of equations. In this case, the type of system we want to consider is a first-order system of a single equation.
    [Show full text]
  • Transformations)
    TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof.
    [Show full text]
  • The Lorenz System
    The Lorenz system James Hateley Contents 1 Formulation 2 2 Fixed points 4 3 Attractors 4 4 Phase analysis 5 4.1 Local Stability at The Origin....................................5 4.2 Global Stability............................................6 4.2.1 0 < ρ < 1...........................................6 4.2.2 1 < ρ < ρh ..........................................6 4.3 Bifurcations..............................................6 4.3.1 Supercritical pitchfork bifurcation: ρ = 1.........................7 4.3.2 Subcritical Hopf-Bifurcation: ρ = ρh ............................8 4.4 Strange Attracting Sets.......................................8 4.4.1 Homoclinic Orbits......................................9 4.4.2 Poincar´eMap.........................................9 4.4.3 Dynamics at ρ∗ ........................................9 4.4.4 Asymptotic Behavior..................................... 10 4.4.5 A Few Remarks........................................ 10 5 Numerical Simulations and Figures 10 5.1 Globally stable , 0 < ρ < 1...................................... 10 5.2 Pitchfork Bifurcation, ρ = 1..................................... 12 5.3 Homoclinic orbit........................................... 12 5.4 Transient Chaos........................................... 12 5.5 Chaos................................................. 14 5.5.1 A plot for ρh ......................................... 14 5.6 Other Notable Orbits........................................ 16 5.6.1 Double Periodic Orbits................................... 16 5.6.2 Intermittent
    [Show full text]
  • C*-ALGEBRAS ASSOCIATED with INTERVAL MAPS 1. Introduction
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 359, Number 4, April 2007, Pages 1889–1924 S 0002-9947(06)04112-2 Article electronically published on November 22, 2006 C*-ALGEBRAS ASSOCIATED WITH INTERVAL MAPS VALENTIN DEACONU AND FRED SHULTZ Abstract. For each piecewise monotonic map τ of [0, 1], we associate a pair of C*-algebras Fτ and Oτ and calculate their K-groups. The algebra Fτ is an AI-algebra. We characterize when Fτ and Oτ aresimple.Inthosecases,Fτ has a unique trace, and Oτ is purely infinite with a unique KMS state. In the case that τ is Markov, these algebras include the Cuntz-Krieger algebras OA, and the associated AF-algebras FA. Other examples for which the K-groups are computed include tent maps, quadratic maps, multimodal maps, inter- val exchange maps, and β-transformations. For the case of interval exchange maps and of β-transformations, the C*-algebra Oτ coincides with the algebras defined by Putnam and Katayama-Matsumoto-Watatani, respectively. 1. Introduction Motivation. There has been a fruitful interplay between C*-algebras and dynam- ical systems, which can be summarized by the diagram dynamical system → C*-algebra → K-theoretic invariants. A classic example is the pair of C*-algebras FA, OA that Krieger and Cuntz [10] associated with a shift of finite type. They computed the K-groups of these alge- bras, and observed that K0(FA) was the same as a dimension group that Krieger had earlier defined in dynamical terms [34]. Krieger [35] had shown that this di- mension group, with an associated automorphism, determined the matrix A up to shift equivalence.
    [Show full text]