S S symmetry Article A Study of Chaotic Maps Producing Symmetric Distributions in the Fish School Search Optimization Algorithm with Exponential Step Decay Liliya A. Demidova * and Artyom V. Gorchakov * Institute of Integrated Safety and Special Instrumentation, Federal State Budget Educational Institution of Higher Education «MIREA–Russian Technological University», 78, Vernadskogo Avenye, 119454 Moscow, Russia * Correspondence:
[email protected] (L.A.D.);
[email protected] (A.V.G.) Received: 17 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: Inspired by the collective behavior of fish schools, the fish school search (FSS) algorithm is a technique for finding globally optimal solutions. The algorithm is characterized by its simplicity and high performance; FSS is computationally inexpensive, compared to other evolution-inspired algorithms. However, the premature convergence problem is inherent to FSS, especially in the optimization of functions that are in very-high-dimensional spaces and have plenty of local minima or maxima. The accuracy of the obtained solution highly depends on the initial distribution of agents in the search space and on the predefined initial individual and collective-volitive movement step sizes. In this paper, we provide a study of different chaotic maps with symmetric distributions, used as pseudorandom number generators (PRNGs) in FSS. In addition, we incorporate exponential step decay in order to improve the accuracy of the solutions produced by the algorithm. The obtained results of the conducted numerical experiments show that the use of chaotic maps instead of other commonly used high-quality PRNGs can speed up the algorithm, and the incorporated exponential step decay can improve the accuracy of the obtained solution.