Math 2030 Fall 2012

Total Page:16

File Type:pdf, Size:1020Kb

Math 2030 Fall 2012 Math 2030 Fall 2012 3 Definitions, Applications, Examples, Numerics 3.1 Basic Set-Up Discrete means “not continuous” or “individually disconnected,” dynamical refers to “change over time,” and system is the thing that we are talking about. Thus this course is about studying how elements in some ambient space move according to discrete time steps. The introductory material in this course will involve so-called one-dimensional systems. Nonetheless, we introduce the general notion of a Discrete Dynamical System since it will play a major role later. A Discrete Dynamical System consists of a set X (called the state space) and a map F ( ) (called the dynamic map) that takes elements in X to elements in X; that is, F ( ) : X· X. Given a point x X, the first iterate of x is defined by · → 0 ∈ 0 x1 = F (x0). The second iterate of x0 is nothing but the first iterate of x1, and is denoted 2 x2 = F (x1)= F F (x0) =: F (x0). Note that the power of F in the last expression is not a “power” in the usual sense, but the number of times F has been used in the iteration. The th process repeats, where the k iterate xk is given by xk = F (xk−1) = F F (xk−2) . = . = F F F(x ) ··· 0 k times = F k(x ) | {z0 } The orbit of the seed x is denoted by x is defined as the (ordered) collection of all of the 0 h 0i iterates of x0. Notationally, this means x = x ,x ,x ,... h 0i { 0 1 2 } = F k(x ): k = 0, 1, 2,... , { 0 } 0 where in the last set, F (x0)= x0 by convention. It is helpful to view an iterate x1 as the state that x0 moves to over one “discrete time th th step”. The k iterate xk is the state that x reaches at the k time step. The orbit x is 0 h 0i then all the states that x0 reaches at some time step. This is what is meant by a discrete dynamical system. By “ordered” we mean that the two sets a,b and b,a are considered as different sets { } { } if a = b. On the other hand, repeated elements in the set should be counted only once, 6 1 and so the sets a,a and a are considered as the same set. The following sets are also { } { } considered the same (with a = b): a,b,a , a,b,a,b,a,b,... and a,b . An orbit can be a finite set. 6 { } { } { } Exercise 3.1. (a) If an orbit x consists of only one element x = x , what is F (x )? h 0i h 0i { 0} 0 (b) Describe precisely when an orbit consists of only finite many elements. (c) Can the set 1, 2, 3, 1, 3 be an orbit for any dynamic map F : R R? Why or why not? { } → (d) Suppose an orbit of F ( ) is 1 = 1, 3, 5, 7, 9, 2, 4, 6, 8 . What is the orbit with seed 1 of the map F 2( )? What· abouth i F 3({)? } · · A very important and special kind of orbit is when it consists of only a single element. This can be characterized as a property of the dynamics. Definition 3.1. Given F : X X, a fixed point of F is a point x¯ X such that F (¯x) =x ¯. → ∈ The main focus of this course is the study of the asymptotic behavior of orbits, and a fixed point gives the simplest kind of behavior because it is always constant. The major underlying issue is to predict what happens to xk when k is very large, and how this depends on the seed x0 and perhaps other parameters. What kind of behavior might one expect? First, an observation: Observation 1. If y0 x0 , then the eventual behavior of y0 is the same as the eventual behavior of x . ∈ h i h i h 0i 3.2 Applications There is a myriad of applications of both continuous and discrete dynamical systems. We give two very simple ones here, and then give two more theoretical type applications on how discrete dynamical systems can arise in the development of algorithms. 3.2.1 Application in Finance One can describe the change in the amount of money in a bank account (= the state of the system) over time using the discrete dynamical systems. Suppose a bank offers annual interest at r% that is compounded monthly (with r> 0). If the initial amount is $ x0, then r r 2 the amount after 1 month is 1+ 12 x0, after two months 1+ 12 x0, and after k months k 1+ r x . In this case, we have F (x) = 1+ r x, and an explicit formula for the kth 12 0 12 k r k iterate is just F (x)= 1+ x. It is clear that xk as k . 12 →∞ →∞ 2 3.2.2 Application in Biology A crude way to predict the growth rate of a species is that it is proportional to the size of the population (the more species then the more that can reproduce). Described with discrete time, this means that the new population size after one time period is a multiple of the previous size, say xk+1 = λxk. Again we have a simple description of the entire system since k the size at the kth period is λ x0, where x0 is the initial size. In fact, this model is the same r as the financial model above if λ = 1+ 12 . 3.2.3 Newton’s method Discrete dynamical systems arise naturally in the construction of algorithms. For example, recall Newton’s Method of finding a root of an equation f(x) = 0 (this should have been covered in your Math 1550 class). One can approximate the rootx ¯ of the equation f(x) = 0 by beginning at some (hopefully) nearby point x0 and defining the iterates f(x0) xk+1 = xk 0 . − f (xk) Provided f 0(x) = 0 for all the x’s that come under consideration, this is an example of a discrete dynamical6 system. In this case, the iteration step is not naturally “time”as in the finance and biology examples above, but rather the number of times the algorithm has been iterated. As we study systems in general, it is often helpful to think of it as time nonetheless with each iterate taking one time step. Note that the function F ( ) in this case is given by · f(x) F (x)= x . (1) − f 0(x) Exercise 3.2. Consider the function f(x) = x2 2, which obviously has roots √2. Use x = 1 as a seed, approximate √2 by using F ( ) as− in (1) and by taking successive± iterates. 0 · How large must k be in order to have xk √2 < .0001? Work this out numerically, say, with Excel - see the next section). | − | 3.2.4 Euler’s method of discretizing differential equations Given a continuous function f( ) : R R and initial value x0 R, an ordinary differential equation has the form · → ∈ x˙(t)= f x(t) for t [0, ) ∈ ∞ (2) x(0) = x0, d wherex ˙(t) = dtx(t) is the time derivative of the solution x( ). The theory of Ordinary Differential Equations (ODEs) is an enormous and important subject· (you should be taking a course in it soon, say Math 2090). When f( ) is nonlinear (Math 2090 deals only with · 3 linear f( )) and continuous, solutions of (2) are known to exist, but can be very difficult if · not impossible to find concretely. A way to approximate a solution is to first fix a (small) parameter h> 0, and then successively “follow the dots” by using the discrete time step h: x1 = x0 + h f(x0) x2 = x1 + h f(x1) . = . xk+1 = xk + h f(xk) . = . We then interpolate these data points by defining h x (t)= xk +(t k h)xk when k h t< (k + 1)h (3) − +1 ≤ which is a piecewise linear function, called an Euler polygonal arc. The reason xh( ) should be “close” to an actual solution of (2) is because whenever kh<t< (k + 1)h, one· has h xk+1 xk x˙ (t)= f(xk)= − h which looks close to (2) if h is small (remember, the sequence xk also depends on h). Here is a picture of approximating the ODE where f(x) = x and x0 = .1. The solution in this case is easy to find, and is x(t)=(.1)et. 3.3 Examples In all the examples of this section, we consider a map F ( ) : R1 R1. Some of the · → Mathematica code that generates the graphics below is given in Section 3.5. 4 3.3.1 Linear Examples Actually the two applications of the previous subsection are special cases of so-called Linear Systems, in which F ( ) has the form · F (x)= ax + b (4) for some constant a and b. Exercise 3.3. Let F be as in (4). What are teh fixed points of F ? What is the general formula for F k(x)? (The answer should be given in terms of a and b). For what values of a k and b does F (x0) with x0 = 0 have a (finite) limit as k ? (You can peek ahead to the next subsection for all the answers, but it is worth trying→∞ to do yourself first.) It turns out that just about the only type of dynamics for which there exists an explicit formula for a general iterate are the linear or piecewise linear ones.
Recommended publications
  • Construction and Chaos Properties Analysis of a Quadratic Polynomial Surjective Map
    INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 Construction and Chaos Properties Analysis of a Quadratic Polynomial Surjective Map Jun Tang, Jianghong Shi, Zhenmiao Deng randomly distributed sequences [16]–[18]. Abstract—In this paper, a kind of quadratic polynomial surjective In this paper, we deduce the relationships between the map (QPSM) is constructed, and the topological conjugation of the coefficients of a quadratic polynomial surjective map (QPSM) QPSM and tent map is proven. With the probability density function and prove the topological conjugacy of the QPSM and tent map. (PDF) of the QPSM being deduced, an anti-trigonometric transform We give the PDF of the QPSM, which is then used to design a function is proposed to homogenize the QPSM. The information entropy, Kolmogorov entropy (KE), and discrete entropy (DE) of the transform function to homogenize the QPSM sequence. Finally, QPSM are calculated for both the original and homogenized maps we estimate entropies of the QPSM such as the information, with respect to different parameters. Simulation results show that the Kolmogorov, and discrete entropies for both the original and information entropy of the homogenized sequence is close to the homogenized map. theoretical limit and the discrete entropy remains unchanged, which This paper is organized as follows. Section II presents a suggest that the homogenization method is effective. Thus, the method for determining the QPSM coefficients, and the homogenized map not only inherits the diverse properties of the original QPSM but also possesses better uniformity. These features topological conjugation of the QPSM and tent map is proven. make it more suitable to secure communication and noise radar.
    [Show full text]
  • Topological Entropy of Quadratic Polynomials and Sections of the Mandelbrot Set
    Topological entropy of quadratic polynomials and sections of the Mandelbrot set Giulio Tiozzo Harvard University Warwick, April 2012 2. External rays 3. Main theorem 4. Ideas of proof (maybe) 5. Complex version Summary 1. Topological entropy 3. Main theorem 4. Ideas of proof (maybe) 5. Complex version Summary 1. Topological entropy 2. External rays 4. Ideas of proof (maybe) 5. Complex version Summary 1. Topological entropy 2. External rays 3. Main theorem 5. Complex version Summary 1. Topological entropy 2. External rays 3. Main theorem 4. Ideas of proof (maybe) Summary 1. Topological entropy 2. External rays 3. Main theorem 4. Ideas of proof (maybe) 5. Complex version Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous. logf#laps of f ng htop(f ; R) := lim n!1 n Topological entropy of real maps Let f : I ! I, continuous.
    [Show full text]
  • PERIODIC ORBITS of PIECEWISE MONOTONE MAPS a Dissertation
    PERIODIC ORBITS OF PIECEWISE MONOTONE MAPS A Dissertation Submitted to the Faculty of Purdue University by David Cosper In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2018 Purdue University Indianapolis, Indiana ii ACKNOWLEDGMENTS I would like to thank my advisor Micha l Misiurewicz for sticking with me all these years. iii TABLE OF CONTENTS Page LIST OF FIGURES ::::::::::::::::::::::::::::::: iv ABSTRACT ::::::::::::::::::::::::::::::::::: v 1 INTRODUCTION :::::::::::::::::::::::::::::: 1 2 PRELIMINARIES :::::::::::::::::::::::::::::: 4 2.1 Kneading Theory :::::::::::::::::::::::::::: 4 2.2 Sharkovsky's Theorem ::::::::::::::::::::::::: 12 2.3 Periodic Orbits of Interval Maps :::::::::::::::::::: 16 3 PERIODIC ORBITS OF PIECEWISE MONOTONE MAPS ::::::: 20 3.1 Horizontal/Vertical Families and Order Type ::::::::::::: 23 3.2 Extremal Points ::::::::::::::::::::::::::::: 35 3.3 Characterizing P :::::::::::::::::::::::::::: 46 4 MATCHING :::::::::::::::::::::::::::::::::: 55 4.1 Matching :::::::::::::::::::::::::::::::: 58 4.2 Topological entropy ::::::::::::::::::::::::::: 62 4.3 Transitivity ::::::::::::::::::::::::::::::: 64 4.4 Beyond transitivity ::::::::::::::::::::::::::: 67 LIST OF REFERENCES :::::::::::::::::::::::::::: 71 VITA ::::::::::::::::::::::::::::::::::::::: 73 iv LIST OF FIGURES Figure Page 1.1 An example of a two-sided truncated tent map. ::::::::::::: 2 2.1 This truncated tent map cannot have the min-max periodic orbit (RLR)1, and hence does not have a period 3 periodic point. ::::::::::: 15 2.2 The period 6 orbit with itinerary [R ∗ (RLR)]1. Notice that the first return map on the blue interval is f 2 and that the three points form a periodic orbit under f 2. :::::::::::::::::::::::::: 19 3.1 This truncated tent map cannot have the orbit (RLR)1. However, it does have the orbit (RLL)1. :::::::::::::::::::::::::: 21 3.2 This truncated tent map cannot have the orbit (RL)1.
    [Show full text]
  • C*-ALGEBRAS ASSOCIATED with INTERVAL MAPS 1. Introduction
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 359, Number 4, April 2007, Pages 1889–1924 S 0002-9947(06)04112-2 Article electronically published on November 22, 2006 C*-ALGEBRAS ASSOCIATED WITH INTERVAL MAPS VALENTIN DEACONU AND FRED SHULTZ Abstract. For each piecewise monotonic map τ of [0, 1], we associate a pair of C*-algebras Fτ and Oτ and calculate their K-groups. The algebra Fτ is an AI-algebra. We characterize when Fτ and Oτ aresimple.Inthosecases,Fτ has a unique trace, and Oτ is purely infinite with a unique KMS state. In the case that τ is Markov, these algebras include the Cuntz-Krieger algebras OA, and the associated AF-algebras FA. Other examples for which the K-groups are computed include tent maps, quadratic maps, multimodal maps, inter- val exchange maps, and β-transformations. For the case of interval exchange maps and of β-transformations, the C*-algebra Oτ coincides with the algebras defined by Putnam and Katayama-Matsumoto-Watatani, respectively. 1. Introduction Motivation. There has been a fruitful interplay between C*-algebras and dynam- ical systems, which can be summarized by the diagram dynamical system → C*-algebra → K-theoretic invariants. A classic example is the pair of C*-algebras FA, OA that Krieger and Cuntz [10] associated with a shift of finite type. They computed the K-groups of these alge- bras, and observed that K0(FA) was the same as a dimension group that Krieger had earlier defined in dynamical terms [34]. Krieger [35] had shown that this di- mension group, with an associated automorphism, determined the matrix A up to shift equivalence.
    [Show full text]
  • On the Topological Conjugacy Problem for Interval Maps
    On the topological conjugacy problem for interval maps Roberto Venegeroles1, ∗ 1Centro de Matem´atica, Computa¸c~aoe Cogni¸c~ao,UFABC, 09210-170, Santo Andr´e,SP, Brazil (Dated: November 6, 2018) We propose an inverse approach for dealing with interval maps based on the manner whereby their branches are related (folding property), instead of addressing the map equations as a whole. As a main result, we provide a symmetry-breaking framework for determining topological conjugacy of interval maps, a well-known open problem in ergodic theory. Implications thereof for the spectrum and eigenfunctions of the Perron-Frobenius operator are also discussed. PACS numbers: 05.45.Ac, 02.30.Tb, 02.30.Zz Introduction - From the ergodic point of view, a mea- there exists a homeomorphism ! such that sure describing a chaotic map T is rightly one that, after S ! = ! T: (2) iterate a randomly chosen initial point, the iterates will ◦ ◦ be distributed according to this measure almost surely. Of course, the problem refers to the task of finding !, if This means that such a measure µ, called invariant, is it exists, when T and S are given beforehand. −1 preserved under application of T , i.e., µ[T (A)] = µ(A) Fundamental aspects of chaotic dynamics are pre- for any measurable subset A of the phase space [1, 2]. served under conjugacy. A map is chaotic if is topo- Physical measures are absolutely continuous with respect logical transitive and has sensitive dependence on initial to the Lebesgue measure, i.e., dµ(x) = ρ(x)dx, being the conditions. Both properties are preserved under conju- invariant density ρ(x) an eigenfunction of the Perron- gacy, then T is chaotic if and only if S is also.
    [Show full text]
  • Improved Tent Map and Its Applications in Image Encryption
    International Journal of Security and Its Applications Vol.9, No.1 (2015), pp.25-34 http://dx.doi.org/10.14257/ijsia.2015.9.1.03 Improved Tent Map and Its Applications in Image Encryption Xuefeng Liao Oujiang College, Wenzhou University, Wenzhou, China 325035 [email protected] Abstract In this paper, an improved tent map chaotic system with better chaotic performance is introduced. The improved tent map has stronger randomness, larger Lyapunov exponents and C0 complexity values compare with the tent map. Then by using the improved tent map, a new image encryption scheme is proposed. Based on all analysis and experimental results, it can be concluded that, this scheme is efficient, practicable and reliable, with high potential to be adopted for network security and secure communications. Although the improved tent chaotic maps presented in this paper aims at image encryption, it is not just limited to this area and can be widely applied in other information security fields. Keywords: Improved tent map; Chaos performance; Image encryption; Shuffle; Diffuse 1. Introduction With the rapid development in digital image processing and network communication, information security has become an increasingly serious issue. All the sensitive data should be encrypted before transmission to avoid eavesdropping. However, bulk data size and high redundancy among the raw pixels of a digital image make the traditional encryption algorithms, such as DES, IDEA, AES, not able to be operated efficiently. Therefore, designing specialized encryption algorithms for digital images has attracted much research effort. Because chaotic systems/maps have some intrinsic properties, such as ergodicity, sensitive to the initial condition and control parameters, which are analogous to the confusion and diffusion properties specified by Shannon [1].
    [Show full text]
  • On the Beta Transformation
    On the Beta Transformation Linas Vepstas December 2017 (Updated Feb 2018 and Dec 2018) [email protected] doi:10.13140/RG.2.2.17132.26248 Abstract The beta transformation is the iterated map bx mod 1. The special case of b = 2 is known as the Bernoulli map, and is exactly solvable. The Bernoulli map provides a model for pure, unrestrained chaotic (ergodic) behavior: it is the full invariant shift on the Cantor space f0;1gw . The Cantor space consists of infinite strings of binary digits; it is notable for many properties, including that it can represent the real number line. The beta transformation defines a subshift: iterated on the unit interval, it sin- gles out a subspace of the Cantor space that is invariant under the action of the left-shift operator. That is, lopping off one bit at a time gives back the same sub- space. The beta transform seems to capture something basic about the multiplication of two real numbers: b and x. It offers insight into the nature of multiplication. Iterating on multiplication, one would get b nx – that is, exponentiation; the mod 1 of the beta transform contorts this in strange ways. Analyzing the beta transform is difficult. The work presented here is more-or- less a research diary: a pastiche of observations and some shallow insights. One is that chaos seems to be rooted in how the carry bit behaves during multiplication. Another is that one can surgically insert “islands of stability” into chaotic (ergodic) systems, and have some fair amount of control over how those islands of stability behave.
    [Show full text]
  • Private Digital Communications Using Fully-Integrated Discrete-Time Synchronized Hyper Chaotic Maps
    PRIVATE DIGITAL COMMUNICATIONS USING FULLY-INTEGRATED DISCRETE-TIME SYNCHRONIZED HYPER CHAOTIC MAPS by BOSHAN GU Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Adviser: Dr. Soumyajit Mandal Department of Electrical, Computer, and Systems Engineering CASE WESTERN RESERVE UNIVERSITY May, 2020 Private Digital Communications Using Fully-Integrated Discrete-time Synchronized Hyper Chaotic Maps Case Western Reserve University Case School of Graduate Studies We hereby approve the thesis1 of BOSHAN GU for the degree of Master of Science Dr. Soumyajit Mandal 4/10/2020 Committee Chair, Adviser Date Dr. Christos Papachristou 4/10/2020 Committee Member Date Dr. Francis Merat 4/10/2020 Committee Member Date 1We certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables v List of Figures vi Acknowledgements ix Acknowledgements ix Abstract x Abstract x Chapter 1. Introduction1 Nonlinear Dynamical Systems and Chaos1 Digital Generation of Chaotic Masking7 Motivation for This Project 11 Chapter 2. Mathematical Analysis 13 System Characteristic 13 Synchronization 16 Chapter 3. Circuit Design 19 Fully Differential Operational Amplifier 19 Expand and Folding function 27 Sample and Hold Circuits 31 Digital Signal Processing Block and Clock Generator 33 Bidirectional Hyperchaotic Encryption System 33 Chapter 4. Simulation Results 37 iii Chapter 5. Suggested Future Research 41 Current-Mode Chaotic Generators for Low-Power Applications 41 Appendix. Complete References 43 iv List of Tables 1.1 Different chaotic map and its system function.6 1.2 Similar factors between chaotic encryption and traditional cryptography.8 3.1 Op-amp performance simulated using different process parameter 23 3.2 Different gate voltage of transistor in corner case simulation 23 4.1 System performance comparison between previous work and this project.
    [Show full text]
  • A Study of Chaotic Maps Producing Symmetric Distributions in the Fish School Search Optimization Algorithm with Exponential Step Decay
    S S symmetry Article A Study of Chaotic Maps Producing Symmetric Distributions in the Fish School Search Optimization Algorithm with Exponential Step Decay Liliya A. Demidova * and Artyom V. Gorchakov * Institute of Integrated Safety and Special Instrumentation, Federal State Budget Educational Institution of Higher Education «MIREA–Russian Technological University», 78, Vernadskogo Avenye, 119454 Moscow, Russia * Correspondence: [email protected] (L.A.D.); [email protected] (A.V.G.) Received: 17 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: Inspired by the collective behavior of fish schools, the fish school search (FSS) algorithm is a technique for finding globally optimal solutions. The algorithm is characterized by its simplicity and high performance; FSS is computationally inexpensive, compared to other evolution-inspired algorithms. However, the premature convergence problem is inherent to FSS, especially in the optimization of functions that are in very-high-dimensional spaces and have plenty of local minima or maxima. The accuracy of the obtained solution highly depends on the initial distribution of agents in the search space and on the predefined initial individual and collective-volitive movement step sizes. In this paper, we provide a study of different chaotic maps with symmetric distributions, used as pseudorandom number generators (PRNGs) in FSS. In addition, we incorporate exponential step decay in order to improve the accuracy of the solutions produced by the algorithm. The obtained results of the conducted numerical experiments show that the use of chaotic maps instead of other commonly used high-quality PRNGs can speed up the algorithm, and the incorporated exponential step decay can improve the accuracy of the obtained solution.
    [Show full text]
  • Mostly Conjugate: Relating Dynamical Systems — Beyond Homeomorphism
    Mostly Conjugate: Relating Dynamical Systems — Beyond Homeomorphism Joseph D. Skufca1, ∗ and Erik M. Bollt1, † 1 Department of Mathematics, Clarkson University, Potsdam, New York (Dated: April 24, 2006) A centerpiece of Dynamical Systems is comparison by an equivalence relationship called topolog- ical conjugacy. Current state of the field is that, generally, there is no easy way to determine if two systems are conjugate or to explicitly find the conjugacy between systems that are known to be equivalent. We present a new and highly generalizable method to produce conjugacy functions based on a functional fixed point iteration scheme. In specific cases, we prove that although the conjugacy function is strictly increasing, it is a.e. differentiable, with derivative 0 everywhere that it exists — a Lebesgue singular function. When applied to non-conjugate dynamical systems, we show that the fixed point iteration scheme still has a limit point, which is a function we now call a “commuter” — a non-homeomorphic change of coordinates translating between dissimilar systems. This translation is natural to the concepts of dynamical systems in that it matches the systems within the language of their orbit structures. We introduce methods to compare nonequivalent sys- tems by quantifying how much the commuter functions fails to be a homeomorphism, an approach that gives more respect to the dynamics than the traditional comparisons based on normed linear spaces, such as L2. Our discussion includes fundamental issues as a principled understanding of the degree to which a “toy model” might be representative of a more complicated system, an important concept to clarify since it is often used loosely throughout science.
    [Show full text]
  • Dynamics of Unimodal Interval Maps Notes for the Mini-Course at the University of Vienna, May 2017
    Dynamics of unimodal interval maps Notes for the mini-course at the University of Vienna, May 2017 Ana Anuˇsi´c,University of Zagreb Version of May 4, 2017 1 Discrete dynamical systems - basic definitions Definition 1.1. Dynamical system is a pair (X; f), where X is a compact metric space and f : X ! X is (piecewise) continuous. For n 2 N denote by f n := f ◦f ◦:::◦f (n times). The forward orbit of x 2 X is Orb(x) := fx; f(x); f 2(x); f 3(x);:::g: The !-limit set of x is a set of accumulation points of Orb(x), i.e., ni !(x; f) = fy 2 X : there exists a strictly increasing (ni)i2N; f (x) ! y as i ! 1g: We say that x is periodic if there exists n 2 N such that f n(x) = x. The smallest such n 2 N is called a prime period of x. If x has period one, it is called a fixed point. If x is not periodic but there exists m 2 N such that f m(x) is periodic, then x is called preperiodic. If x 2 !(x), then x is called recurrent. Definition 1.2. Let (X; f) and (Y; g) be dynamical systems. We say that the systems (or maps f, g) are topologically conjugate if there exists a homeomorphism h: X ! Y such that h ◦ f = g ◦ h. Such h is called a topological conjugation of f and g. If h can be taken at most continuous and surjective, systems are topologically semi-conjugate and g is called a factor of f.
    [Show full text]
  • Closure Measures and the Tent Map
    Max-Planck-Institut fur¨ Mathematik in den Naturwissenschaften Leipzig Closure Measures and the Tent Map by Oliver Pfante, Eckehard Olbrich, Nils Bertschinger, Nihat Ay, and J¨urgen Jost Preprint no.: 108 2013 CLOSURE MEASURES AND THE TENT operations like coarse-graining, aggregation, averag- MAP ing etc., and X and X^ represent, respectively, micro- scopic and macroscopic state spaces. Furthermore, the maps φα, with their scalar parameter α ≥ 0, re- 1;A) 1;B) OLIVER PFANTE , ECKEHARD OLBRICH , NILS fer to different scales where the coarse-graining, etc. BERTSCHINGER1;C), NIHAT AY1;2;D),JURGEN¨ JOST1;2;E) is carried out. We characterize a relevant scale as one where special structural or dynamical regularities can be detected. Abstract. We quantify the relationship be- Closure measures provide a link between the two con- tween the dynamics of a particular time- discrete dynamical system, the tent map, cepts of \levels" and \scales" because they should and the induced dynamics at a symbolical allow us to identify emergent levels, i.e scales for level in information theoretical terms. The which a(n approximately) closed description exists, symbol dynamics is obtained by choosing by means of quantifying to which extent the induced a partition point α 2 [0; 1] and lumping system deviates from being closed. The following clo- together the points in the intervals [0; α] or (α, 1], resp. Interpreting the original sure measures have been proposed so far: dynamics and the symbolic one as differ- Informational closure: In [11] we called the higher ent levels, this allows us to quantitatively process to be informationally closed, if there is no evaluate and compare various closure mea- information flow from the lower to the higher level.
    [Show full text]