Template B V3.0 (Beta): Created by J. Nail 06/2015 Impact of Neonicotinoids in Mid-South Row Crop Systems by TITLE PAGE John Ha

Total Page:16

File Type:pdf, Size:1020Kb

Template B V3.0 (Beta): Created by J. Nail 06/2015 Impact of Neonicotinoids in Mid-South Row Crop Systems by TITLE PAGE John Ha Template B v3.0 (beta): Created by J. Nail 06/2015 Impact of neonicotinoids in mid-south row crop systems By TITLE PAGE John Hartley North A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agricultural Life Science in the Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology Mississippi State, Mississippi May 2016 Copyright by COPYRIGHT PAGE John Hartley North 2016 Impact of Neonicotinoids in Mid-South Row Crop Systems By APPROVAL PAGE John Hartley North Approved: ____________________________________ Angus L. Catchot Jr. (Co-Major Professor) ____________________________________ Jeffrey Gore (Co-Major Professor) ____________________________________ Donald R. Cook (Committee Member) ____________________________________ Darrin M. Dodds (Committee Member) ____________________________________ Fred R. Musser (Committee Member) ____________________________________ Michael A. Caprio (Graduate Coordinator) ____________________________________ George M. Hopper Dean College of Agriculture and Life Sciences Name: John Hartley North ABSTRACT Date of Degree: May 6, 2016 Institution: Mississippi State University Major Field: Agricultural Life Science Major Professors: Dr. Angus L. Catchot Jr. and Dr. Jeffrey Gore Title of Study: Impact of Neonicotinoids in Mid-South Row Crop Systems Pages in Study: 133 Candidate for Degree of Master of Science Neonicotinoid seed treatments are widely used and highly effective against early season insect pests of all row crops throughout the Mid-South region of the United States. An analysis was performed to determine the value of neonicotinoid seed treatments across multiple trials in soybean, Glycine max L.; corn, Zea mays L.; cotton, Gossypium hirsutum L.; and sorghum, Sorghum bicolor L. production systems across the mid- southern region. Neonicotinoid seed treatments provided significant yield and economic increases when utilized the majority of the time. A second experiment was performed to determine the value of various insecticide classes when utilized in an overall systems approach when managing cotton insect pest in the Delta and Hills region of Mississippi. When all classes of insecticides were used in rotation, significant yield and economic benefits were observed in the Delta Region compared to treatment scenarios where some insecticide classes were omitted. DEDICATION This research is dedicated to my parents, Peggy North and Jeff North for the unconditional love and support throughout my life and during my time at Mississippi State University. I would not be where I stand today without your love and support that you have showed me through the years. I’m thankful for all you have done for me and words cannot express how much I have learned from each of you. You have instilled honest values and a hard work ethic that I have carried with me throughout my life and will continue to do so in the future. I would also like to thank God for the strength he has given me throughout my life and his patience. God has truly blessed me by surrounding me with outstanding mentors in my life and I have learned to never take a sunrise or sunset for granted. I also dedicate this research to Bruce Pittman of Coila, MS and Terry Ozborn of Canton, MS. Words cannot express what these two men have meant to me in my life. I feel honored to have grown up around them and witnessed there diligence in all aspects of life. I cherish their friendship and support they have displayed for me all through the years. ii ACKNOWLEDGEMENTS I sincerely thank my major advisors, Dr. Angus Catchot and Dr. Jeff Gore for giving me the opportunity to work towards a Master’s degree in entomology which has been a lifelong dream of mine to follow in my father’s footsteps. The guidance and support you have given me while working under you will be forever invaluable. The guidance you have given me while conducting research and writing my thesis has made a tremendous impact on my life as well. Words cannot express how much I have enjoyed working for you and what this experience has meant to me. I respect both of you very much and truly honored to have had the opportunity to learn from your diligence and knowledge in agriculture and everyday life. I’m honored to have been associated with two outstanding professionals and proud to call you my friends. I will be forever in your debt for the opportunity you have given me, as well as, the patience and support you have greeted me with. I would also like to thank my other graduate committee members, Dr. Don Cook, Dr. Fred Musser, and Dr. Darrin Dodds for your guidance and support you have given me throughout my time at Mississippi State University. I would like to thank Dr. Scott Stewart, Dr. Gus Lorenz, Dr. David Kerns, Chip Graham, and Bobby Hendrix for their professional assistance throughout the completion of this project. Special thanks to Dung Bao and Boise Stokes for their assistance with all research plots, as well as, fellow graduate students and summer employees. iii TABLE OF CONTENTS DEDICATION .................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF TABLES ............................................................................................................ vii CHAPTER I. INTRODUCTION ................................................................................................1 Neonicotinoids .......................................................................................................1 Origin of Neonicotinoids .................................................................................1 Neonicotinoid Mode of Action ........................................................................1 Use of Neonicotinoids Worldwide ..................................................................2 Use of Neonicotinoids in the United States .....................................................3 Risks of Neonicotinoid Insecticides ................................................................3 Advantages of Neonicotinoid Insecticides ......................................................5 Soybean .................................................................................................................6 Growth Stages and Maturity Groups of Soybean ............................................6 Soybean and U.S. Soybean Production ...........................................................6 Soybean production in the Mid-South Region ................................................7 Early Season Insect Management in Soybean with Neonicotinoids ...............8 Mid-Late Season Insect Management in Soybean with Neonicotinoids .....................................................................................9 Corn ...................................................................................................................9 Corn and U.S. Corn Production .......................................................................9 Corn Production in the Mid-South Region ....................................................10 Growth Stages and Development of Corn .....................................................10 Early Season Insect Management in Corn with Neonicotinoids ...................10 Cotton .................................................................................................................12 Cotton and U.S. Cotton Production ...............................................................12 Cotton Production in the Mid-South .............................................................13 Growth Stages of Cotton ...............................................................................13 Early Season Insect Management in Cotton with Neonicotinoids ................15 Mid-Late Season Insect Management in Cotton with Neonicotinoids ..........16 Grain Sorghum ....................................................................................................19 Grain Sorghum and U.S. Grain Sorghum Production ...................................19 Grain Sorghum Production in the Mid-South ...............................................19 iv Growth Stages of Grain Sorghum .................................................................20 Early Season Insect Management in Grain Sorghum with Neonicotinoids ...................................................................................21 Mid-Late Season Insect Management in Grain Sorghum .............................22 Justification for Further Research .......................................................................23 References ...........................................................................................................24 II. VALUE OF NEONICOTINOID INSECTICIDE SEED TREATMENTS IN MID-SOUTH SOYBEAN (GLYCINE MAX L.) PRODUCTION SYSTEMS ....................................................................35 Abstract ................................................................................................................35 Introduction .........................................................................................................36 Methods and Materials ........................................................................................38 Results and Discussion ........................................................................................40 References
Recommended publications
  • Point of Sale Promotions
    LOUISIANA DEPARTMENT OF AGRICULTURE & FORESTRY MIKE STRAIN DVM, COMMISSIONER Louisiana Specialty Crop Program Final Performance Report Agreement # 12-25-B-1464 January 8, 2016 CONTACTS Program Administration: Michelle Estay, Director of Commodity Promotion & Research Louisiana Department of Agriculture & Forestry 47076 N. Morrison Blvd. Hammond, LA 70401-7308 Financial Officer: Dane Morgan, Assistant Commissioner Office of Management & Finance Louisiana Department of Agriculture & Forestry P.O. Box 3481 Baton Rouge, LA 70821-3481 CONTENTS Abstract ......................................................................................................... 2 Project One..................................................................................................... 2 Project Two .................................................................................................... 7 Project Three .................................................................................................. 52 Project Four………………………………………………………………… 65 Project Five…………………………………………………………………. 76 Project Six………………………………………………………………….. 84 1 PROGRAM OVERVIEW The Louisiana Department of Agriculture and Forestry (LDAF) was awarded $351,115.72 in funding for the FY 2012 Specialty Crop Block Grant Program (SCBGP). LDAF implemented projects to enhance the competitiveness of specialty crops throughout the state. Louisiana’s projects focused on programs working to inform consumers of the availability of Louisiana specialty crops, where they can be purchased for increased
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • Heteronychus Arator
    Heteronychus arator Scientific Name Heteronychus arator (Fabricius) Synonyms: Heteronychus arator australis Endrödi, Heteronychus indenticulatus Endrodi, Heteronychus madagassus Endrodi, Heteronychus sanctaehelenae Blanchard, Heteronychus transvaalensis Peringuey, Scarabaeus arator Fabricius Common Name(s) Black maize beetle, African black beetle, black lawn beetle, black beetle Type of Pest Beetle Figure 1. Illustration of each stage of the life Taxonomic Position cycle of the black maize beetle, showing a close up view of each stage and a Insecta, Coleoptera, Class: Order: background view showing that the eggs, Family: Scarabaeidae larvae, and pupae are all underground stages with the adults being the only stage Reason for Inclusion appearing above ground. Illustration CAPS Target: AHP Prioritized Pest List- courtesy of NSW Agriculture. http://www.ricecrc.org/Hort/ascu/zecl/zeck11 2006 – 2009 3.htm Pest Description Life stages are shown in Figures 1 and 2. 1 Eggs: White, oval, and measuring approximately 1.8 mm (approx. /16 in) long at time of oviposition. Eggs grow larger through development and become more 3 round in shape. Eggs are laid singly at a soil depth of 1 to 5 cm (approx. /8 to 2 in). Females each lay between 12 to 20 eggs total. In the field, eggs hatch after approximately 20 days. Larvae can be seen clearly with the naked eye (CABI, 2007; Matthiessen and Learmoth, 2005). Larvae: There are three larval instars. Larvae are creamy-white except for the brown head capsule and hind segments, which appear dark where the contents of the gut show through the body wall. The head capsule is smooth textured, 1 1 measuring 1.5 mm (approx.
    [Show full text]
  • ENV /JM /M on O(2016)27 Unclassified
    Unclassified ENV/JM/MONO(2016)27 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 29-Jun-2016 ___________________________________________________________________________________________ _____________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2016)27 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 29 June 2016 CONSENSUS DOCUMENT ON THE BIOLOGY OF SORGHUM (Sorghum bicolor (L.) Moench) Series on Harmonisation of Regulatory Oversight in Biotechnology No. 62 English JT03398806 Complete document available on OLIS in its original format - This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of Or. English international frontiers and boundaries and to the name of any territory, city or area. ENV/JM/MONO(2016)27 2 ENV/JM/MONO(2016)27 OECD Environment, Health and Safety Publications Series on Harmonisation of Regulatory Oversight in Biotechnology No. 62 Consensus Document on the Biology of Sorghum (Sorghum bicolor (L.) Moench) Environment Directorate Organisation for Economic Co-operation and Development Paris 2016 3 ENV/JM/MONO(2016)27 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 1, Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results (1995) No. 2, Analysis of Information Elements Used in the Assessment of Certain Products of Modern Biotechnology (1995) No. 3, Report of the OECD Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology (1995) No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No.
    [Show full text]
  • Biological-Control-Programmes-In
    Biological Control Programmes in Canada 2001–2012 This page intentionally left blank Biological Control Programmes in Canada 2001–2012 Edited by P.G. Mason1 and D.R. Gillespie2 1Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada; 2Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada iii CABI is a trading name of CAB International CABI Head Offi ce CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 T: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 T: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org Chapters 1–4, 6–11, 15–17, 19, 21, 23, 25–28, 30–32, 34–36, 39–42, 44, 46–48, 52–56, 60–61, 64–71 © Crown Copyright 2013. Reproduced with the permission of the Controller of Her Majesty’s Stationery. Remaining chapters © CAB International 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electroni- cally, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biological control programmes in Canada, 2001-2012 / [edited by] P.G. Mason and D.R. Gillespie. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-257-4 (alk. paper) 1. Insect pests--Biological control--Canada. 2. Weeds--Biological con- trol--Canada. 3. Phytopathogenic microorganisms--Biological control- -Canada.
    [Show full text]
  • Erwinia Stewartii in Maize Seed
    www.worldseed.org PEST RISK ANALYSIS The risk of introducing Erwinia stewartii in maize seed for The International Seed Federation Chemin du Reposoir 7 1260 Nyon, Switzerland by Jerald Pataky Robert Ikin Professor of Plant Pathology Biosecurity Consultant University of Illinois Box 148 Department of Crop Sciences Taigum QLD 4018 1102 S. Goodwin Ave. Australia Urbana, IL 61801 USA 2003-02 ISF Secretariat Chemin du Reposoir 7 1260 Nyon Switzerland +41 22 365 44 20 [email protected] i PREFACE Maize is one of the most important agricultural crops worldwide and there is considerable international trade in seed. A high volume of this seed originates in the United States, where much of the development of new varieties occurs. Erwinia stewartii ( Pantoea stewartii ) is a bacterial pathogen (pest) of maize that occurs primarily in the US. In order to prevent the introduction of this bacterium to other areas, a number of countries have instigated phytosanitary measures on trade in maize seed for planting. This analysis of the risk of introducing Erwinia stewartii in maize seed was prepared at the request of the International Seed Federation (ISF) as an initiative to promote transparency in decision making and the technical justification of restrictions on trade in accordance with international standards. In 2001 a consensus among ISF (then the International Seed Trade Federation (FIS)) members, including representatives of the seed industry from more than 60 countries developed a first version of this PRA as a qualitative assessment following the international standard, FAO Guidelines for Pest Risk Analysis (Publication No. 2, February 1996). The global study completed Stage 1 (Risk initiation) and Stage 2 (Risk Assessment) but did not make comprehensive Pest Risk management recommendations (Stage 3) that are necessary for trade to take place.
    [Show full text]
  • Coleoptera: Elateridae) of Alberta, Saskatchewan, and Manitoba
    87 Chapter 2 Click Beetles and Wireworms (Coleoptera: Elateridae) of Alberta, Saskatchewan, and Manitoba Willem G. van Herk and Robert S. Vernon Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, 6947 #7 Hwy, Agassiz, British Columbia Email: [email protected] Abstract. This chapter describes the Elateridae of Alberta (144 species), Saskatchewan (108 species), and Manitoba (109 species). It provides current names for species, as well as synonymized names that persist in the literature. Also discussed are the species that have been left out during recent changes to elaterid renaming and classification, although no new name combinations are given. The chapter outlines species distributions, biogeography where known, and the life histories of five common species: Aeolus mellillus (Say), Agriotes mancus (Say), Hypnoidus bicolor (Eschscholtz), Limonius californicus (Mannerheim), and Selatosomus aeripennis destructor (Brown). An examination of the seasonal movements and activity of larvae in response to soil temperature and moisture and moulting cycles is followed by an overview of past research on Prairie Province species. The chapter concludes with a discussion of current research needs and management issues. Résumé. Le présent chapitre décrit les Elateridae de l’Alberta (138 espèces), de la Saskatchewan (76 espèces) et du Manitoba (104 espèces). Il fournit les noms actuels de ces espèces, ainsi que les synonymes qui persistent dans la documentation spécialisée. Il se penche également sur les espèces qui ont été laissées de côté lors des récents changements apportés à la nomenclature et à la classification des élatéridés, sans toutefois s’attarder aux nouvelles combinaisons de noms. Le chapitre décrit la répartition des espèces, leur caractéristiques biogéographiques — lorsqu’elles sont connues — ainsi que le cycle de vie de cinq espèces communes : Aeolus mellillus (Say), Agriotes mancus (Say), Hypnoidus bicolor (Eschscholtz), Limonius californicus (Mannerheim), et Selatosomus aeripennis destructor (Brown).
    [Show full text]
  • Butterflies of North America
    Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS
    [Show full text]
  • Identification of Economic Wireworms Using Traditional
    IDENTIFICATION OF ECONOMIC WIREWORMS USING TRADITIONAL AND MOLECULAR METHODS by Frank Eric Etzler A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology MONTANA STATE UNIVERSITY Bozeman, Montana August 2013 ©COPYRIGHT by Frank Eric Etzler 2013 All Rights Reserved ii APPROVAL of a thesis submitted by Frank Eric Etzler This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency and is ready for submission to The Graduate School. Dr. Michael A. Ivie Approved for the Department of Plant Sciences and Plant Pathology Dr. John E. Sherwood Approved for The Graduate School Dr. Ronald W. Larsen iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Frank Eric Etzler August 2013 iv DEDICATION This work is dedicated to my mother, father, and sister for always lending an ear even when they didn’t understand what I was talking about. For that, I am forever grateful.
    [Show full text]
  • A Review of the Nearctic Species of Fornax Laporte (Coleoptera: Eucnemidae: Macraulacinae: Macraulacini) with Descriptions of Six New Species
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 11-27-2020 A review of the Nearctic species of Fornax Laporte (Coleoptera: Eucnemidae: Macraulacinae: Macraulacini) with descriptions of six new species Robert L. Otto Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A journal of world insect systematics INSECTA MUNDI 0818 A review of the Nearctic species of Fornax Laporte Page Count: 26 (Coleoptera: Eucnemidae: Macraulacinae: Macraulacini) with descriptions of six new species Robert L. Otto W4806 Chrissie Circle Shawano, WI 54166 USA Date of issue: November 27, 2020 Center for Systematic Entomology, Inc., Gainesville, FL Otto RL. 2020. A review of the Nearctic species of Fornax Laporte (Coleoptera: Eucnemidae: Macraulacinae: Macraulacini) with descriptions of six new species. Insecta Mundi 0818: 1–26. Published on November 27, 2020 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medi- cal entomology, pest control research, etc.), and no longer publishes book reviews or editorials.
    [Show full text]
  • Abstract Freeman, Callie Prater
    ABSTRACT FREEMAN, CALLIE PRATER. Biology, Ecology, and Management of White Grubs in North Carolina Turfgrass. (Under the direction of Rick L. Brandenburg.) Larval scarabs (Coleoptera: Scarabaeidae) known as white grubs, are an increasingly important pest of turfgrass in North Carolina. This research was conducted to gain knowledge of white grub ecology and develop a cost effective management program incorporating conventional insecticides and “non-traditional” control strategies for North Carolina turfgrass managers. A 3-year statewide pheromone and blacklight trapping study was conducted to identify the seasonal activity, relative abundance, and distribution of key damaging species. The Japanese beetle, Popillia japonica, was present at all 9 trapping sites. Peak flight generally occurred 22 Jun – 21 Jul. The oriental beetle, Anomala orientalis, was localized to Buncombe Co. in western North Carolina with activity peaking 22 Jun – 7 Jul annually. Masked chafers (Cyclocephala spp.) represented 87.5 to 96.6% of species in blacklight traps in western trapping sites. Cyclocephala spp. flight peaked between 1 – 21 Jul. Species of Phyllophaga were dominant in central North Carolina representing 33 – 45% of species collected and exhibited peak flight in late July. The rice beetle, Dyscinetus morator made up 74 – 84% of species at coastal sites and were active Jun to Jul. Anomala marginata, A. flavipennis, Pelidnota punctata, Tomarus gibbosus, Euetheola humilis rugiceps, Maladera castanea, and species of Polyphylla were routinely trapped. This study documents the occurrence of multiple species of injurious white grubs at most sites throughout North Carolina. Small arena choice and no-choice tests and large cage choice tests were conducted to determine if P.
    [Show full text]
  • Alternative Strategies for Controlling Wireworms in Field Crops: a Review
    agriculture Review Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi 1,* , Ronan Le Cointe 1, Jörn Lehmhus 2, Manuel Plantegenest 1 and Lorenzo Furlan 3 1 INRAE, Institute for Genetics, Environment and Plant Protection (IGEPP), Agrocampus Ouest, Université de Rennes, 35650 Le Rheu, France; [email protected] (R.L.C.); [email protected] (M.P.) 2 Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institute, 38104 Braunschweig, Germany; [email protected] 3 Veneto Agricoltura, 35020 Legnaro, Italy; [email protected] * Correspondence: [email protected] Abstract: Wireworms, the soil-dwelling larvae of click beetles (Coleoptera: Elateridae), comprise major pests of several crops worldwide, including maize and potatoes. The current trend towards the reduction in pesticides use has resulted in strong demand for alternative methods to control wireworm populations. This review provides a state-of-the-art of current theory and practice in order to develop new agroecological strategies. The first step should be to conduct a risk assessment based on the production context (e.g., crop, climate, soil characteristics, and landscape) and on adult and/or larval population monitoring. When damage risk appears significant, prophylactic practices can be applied to reduce wireworm abundance (e.g., low risk rotations, tilling, and irrigation). Additionally, curative methods based on natural enemies and on naturally derived insecticides are, respectively, under development or in practice in some countries. Alternatively, practices may target a reduction in crop damage instead of pest abundance through the adoption of selected cultural practices (e.g., Citation: Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, resistant varieties, planting and harvesting time) or through the manipulation of wireworm behavior L.
    [Show full text]