Yersinia Aldovae (Formerly Yersinia Enterocolitica-Like Group X2): a New Species of Enterobacteriaceae Isolated from Aquatic Ecosystems HERVE BERCOVIER,'T ARNOLD G

Total Page:16

File Type:pdf, Size:1020Kb

Yersinia Aldovae (Formerly Yersinia Enterocolitica-Like Group X2): a New Species of Enterobacteriaceae Isolated from Aquatic Ecosystems HERVE BERCOVIER,'T ARNOLD G INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1984, p. 166-172 Vol. 34, No. 2 OO20-7713/84/020166-07$02.00/0 Yersinia aldovae (Formerly Yersinia enterocolitica-Like Group X2): a New Species of Enterobacteriaceae Isolated from Aquatic Ecosystems HERVE BERCOVIER,'t ARNOLD G. STEIGERWALT,2 ANNIE GUIYOULE,' GERALDINE HUNTLEY-CARTER,3 AND DON J. BRENNER2* Centre National des Yersinia, fnstitut Pasteur, 15724 Paris, Cedek 15, France,' and Molecular Biology Laboratory, Biotechnology Branch,2 and Enteric Laboratory Section, Enteric Diseases Branch13Division of Bacterial Diseases, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333 Previously, a group of 40 Yersinia enterocolitica-like strains that were isolated from water and fish were called group X2. These strains produced acid from L-rhamnose, did not ferment sorbose, cellobiose, melibiose, or raffinose, and rarely fermented sucrose (5% in 48 h, 10% in 7 days). This pattern of reactions separated group X2 strains from Yersinia enterocolitica, Yersinia intermedia, Yersinia frederiksenii, and Yersinia kristensenii. Positive reactions for acetoin production (Voges-Proskauer test), ornithine decarbox- ylase, and lack of acid production from melibiose distinguished group X2 strains from both Yersinia pseudotuberculosis and Yersinia pestis. Group X2 strains exhibited variable reactions only in tests for citrate utilization, hydrolysis of Tween 80, and acid production from maltose. Genetically, group X2 strains formed a single deoxyribonucleic acid hybridization group with an average level of relatedness of 86% or more (86% as determined by the S1 method at 60°C or by the hydroxyapatite method at 75°C and 92% as determined by the hydroxyapatite method at 60°C). The level of divergence among related sequences in 60°C reactions was 0.5%, as determined by the hydroxyapatite method. The relatedness of group X2 strains to other Yersinia species was 42 to 73% in 60°C reactions. The divergence in these reactions was 11.0 to 15.5%, and the relatedness to other yersiniae in 75°C reactions was 21 to 38%. Group X2 strains were 11 to 32% related to 67 species of the Enterobacteriaceae that belonged to genera other than Yersinia. On the basis of these biochemical and genetic data, we believe that group X2 represents a single new species in the genus Yersinia. The name Yersinia aldovae sp. nov. is proposed for this species. The type strain of Y. aldovae is strain CNY 6005 (= CDC 669-83 = ATCC 35236). Strains that resembled Yersinia enterocolitica but were have all been deposited in the American Type Culture atypical by virtue of acid production from L-rhamnose and Collection, Rockville, Md. All bacteria were cultivated negative reactions for fermentation of sorbose, cellobiose, either at 28°C (most Yersinia strains) or at 36°C and were melibiose, and usually sucrose were described as group X2 maintained on nutrient agar. strains by Bercovier et al. (3). Subsequently, Brenner et al. Cultural and biochemical characteristics. The colonial mor- showed that strain CNY 6005T (T = type strain), represent- phology of Y. aldovae was observed after 2 days of aerobic ing group X2, was substantially related to, but genetically growth at 28°C on petri plates containing nutrient agar. The distinct from, all Yersinia species, as determined by deoxyri- flagella of Y. aldovae strain CNY 6005= were studied by light bonucleic acid (DNA) hybridization (8). microscopy after cells grown overnight at 28°C on semisolid In this report we describe the biochemical characteristics nutrient agar were stained with Rhodes flagellum strain. The and sources of 40 group X2 strains and the levels of DNA biochemical tests were done as previously described (1, 2, relatedness among 28 of these strains. We show that group 12). Unless otherwise stated, the biochemical tests were X2 strains do, in fact, constitute a new species in the genus done at 28°C. Hafnia-specific bacteriophage 1672 of Guinee Yersinia. The name Yersinia aldovae sp. nov. is proposed and Valkenburg was used as described previously (11). for this new species. DNA methods. DNA was isolated by the methods of Brenner et al. and Hickman et al. (7, 13). The guanine-plus- MATERIALS AND METHODS cytosine content of Y.aldovae strain CNY 6005T DNA was Bacterial strains. The 40 Y. aldovae strains which we determined by optical denaturation of high-molecular-weight studied were sent to the Centre National des Yersinia (H. H. DNA diluted in 0.1X SSC (1x SSC is 0.15 M NaCl plus 0.015 Mollaret, Institut Pasteur, Paris, France) from Czechoslova- M sodium citrate) (14). Using the equation of Owen et al. kia and Norway as atypical Y. enterocolitica-like strains. (15), we calculated the base compositions; these were deter- The origins and serological and phage-typing characteristics mined in triplicate, and Escherichia coli B DNA was includ- of these strains are shown in Table 1. The strains represent- ed as a control in each determination (the thermal denatur- ing other Yersinia species and other genera of the Enterobac- ation midpoint of Escherichia coli B DNA in 0.1 X SSC was teriaceae that were used in the DNA hybridization studies 75.5OC). DNAs from Y. aldovae strains CNY 6005= and CNY 7618 were labeled with 32P04in vivo or with 3H in vitro (7, 13). DNA hybridization was done first at 60°C by using * Corresponding author. the S1 endonuclease method and diethylaminoethyl cellulose t Present address: Department of Clinical Microbiology, The filters, as described by Popoff and Coynault (16). In these Hebrew University, Hadassah Medical School, Jerusalem, Israel. experiments DNA from Y. aldovae CNY 6005T was labeled 166 VOL. 34, 1984 YERSZNZA ALDOVAE SP. NOV. 167 TABLE 1. Origins and serological and phage typing characteristics of the 40 Y. aldovae strains studied Laboratory strain no. CNY strain no.a Habitat Countryb Sent by: Serogroup Phage type 1 6005T Drinking water C E. Aldova NT' XO 2 6679 Drinking water C E. Aldova 17 XO 3 7089 Surface water C E. Aldova 17 XO 4 7090 Drinking water C E. Aldova 17 5 7091 Drinking water C E. Aldova 17 6 7092 Drinking water C E. Aldova NT 7 7096 River C E. Aldova NT 8 7109 Water C E. Aldova NT 9 7111 Surface water C E. Aldova 17 10 7112 Surface water C E. Aldova 7,8 11 7328 Drinking water C E. Aldova 798 12 7330 Swimming pool C E. Aldova NT 13 7331 Surface water C E. Aldova NT 14 7332 Surface water C E. Aldova NT 15 7618 Fish N G. Kapperud NT 16 7622 Fish N G. Kapperud NT 17 7632 Fish N G. Kapperud NT 18 7683 Water C E. Aldova 22 19 7898 Water N G. Langeland NT 20 7927 Water N G. Langeland NT 21 7928 Water N G. Langeland NT 22 7970 Water N G. Langeland NT 23 7971 Water N G. Langeland NT 24 8285 Water N G. Langeland 6,31 25 8286 Water N G. Langeland 6,31 26 8287 Water N G. Langeland NT 27 8288 Water N G. Langeland 6,31 28 8290 Water N G. Langeland NT 29 8516 Drinking water C E. Aldova 17 30 8619 Drinking water C E. Aldova NT 31 8626 Drinking water C E. Aldova NT 32 863 1 Drinking water C E. Aldova NT 33 8632 Drinking water C E. Aldova NT 34 8780 Drinking water C E. Aldova 6,30 35 8784 Drinking water C E. Aldova 21 36 8789 Drinking water C E. Aldova NT 37 8790 Drinking water C E. Aldova 17 38 8791 Drinking water C E. Aldova 17 39 8793 Drinking water C E. Aldova 6,30 40 9553 Drinking water C E. Aldova NT a CNY, Centre National des Yersinia (H. H. Mollaret, Institut Pasteur, Paris, France). C, Czechoslovakia; N, Norway. NT, Untypable. in vitro with [3H]thymidine. Subsequently, DNA hybridiza- L-rhamnose, D-xylose, i-inositol, the Voges-Proskauer reac- tion was done by the hydroxyapatite method at 60 and 75"C, tion, Simmons citrate, ornithine decarboxylase, beta-galac- using DNAs from Y. aldovae strains CNY 6005T and CNY tosidase (o-nitrophenyl-P-D-galactopyranoside),and, of 7618 that were labeled with 32P04in vivo. course, motility. These data (except the motility, methyl red, Voges-Proskauer, beta-xylosidase, and Simmons citrate RESULTS data) are not shown for all strains, but the results of the 36 k Phenotypic characteristics, The 40 strains of Y. aldovae 1°C reactions for representative strains CNY 6005T and examined gave mostly homogeneous reactions in biochemi- CNY 7618 are shown in Table 2. cal tests done at 28°C (Table 2). The characteristics common Of the 40 Y. aldovae strains, 17 were typable in slide to all of the strains studied are listed below. A total of 36 agglutination tests for 0 antigens by the scheme of Wauters strains did not ferment sucrose; 2 strains fermented sucrose et al. (19). Eight strains were serogroup 0:17 strains, fol- within 48 h, and 2 strains fermented sucrose after 4 days. lowed by decreasing numbers of strains in serogroups Utilization of citrate (Simmons), acid production from malt- 0:6,31, 0:6,30, 0:7,8, 0:21, and 0:22 (Table 1). All but 1 of ose, and hydrolysis of Tween 80 were independently vari- the 40 strains belonged to either phage type X, or phage type able reactions in the 40 Y. aldovae strains. Two strains were X,; these phage types consist of bacteriophages that are nonmotile at 28"C, and two other strains gave negative isolated from sewage, not of specific temperate bacterio- reactions for urease. A single strain gave a negative test for i- phages that are isolated from Y. enterocolitica (Table 1). inositol. Like other Yersinia species, especially the L-rham- Genetic characteristics.
Recommended publications
  • Yersiniosis** Non-Immediate Notification Epidemiology Program
    YERSINIOSIS** NON-IMMEDIATE NOTIFICATION EPIDEMIOLOGY PROGRAM Event Name: YER Event Time Period: 1 year Clinical Description: N/A CDC Event Classification (N/A): N/A Massachusetts Event Classification (2015): Confirmed Positive culture of Yersinia enterocolitica or Yersinia pseudotuberculosis from throat swabs, mesenteric lymph nodes, peritoneal fluid, stool, and blood, OR Positive PCR result for Yersinia sp **If report is concerning a Yersinia pestis event, please refer to “Plague”. Y. pestis should not be entered as a YER** Test New or beyond Report Type Source Result Data Entry Type report period? Laboratory report Culture Clinical specimen Yersinia enterocolitica Yes New event OR CONFIRMED Yersinia No pseudotuberculosis Same event Select (no sub-type specified): Microorganism: PrId: Pt: xxx: Nom: Culture Select (sub-type specified): Microorganism: PrId: Pt: Islt: Nom: Bacterial subtyping Laboratory report Culture Stool Yersinia enterocolitica Yes New event OR CONFIRMED Yersinia No pseudotuberculosis Same event Select: Yersinia sp identified: Prld: Pt: Stl: Nom: Organism specific culture Laboratory report Culture Clinical specimen Yersinia enterocolitica Yes New event OR CONFIRMED Yersinia No pseudotuberculosis Same event Select: Yersinia sp identified: Prld : Pt : XXX : Nom : Organism specific culture Laboratory report PCR Clinical specimen Positive Yes New event CONFIRMED No Same event Select: Yersinia DNA XXX PCR MDPH Case Classification Manual Page 1 of 2 Yersiniosis Last modified: Jan 2017 Test New or beyond Report Type Source Result Data Entry Type report period? Laboratory report PCR Stool Detected Yes New event CONFIRMED No Same event Select: Y enterocol DNA: Stl: Ql: Non-probe: PCR Laboratory report PCR Stool Yersinia enterocolitica Yes New event CONFIRMED No Same event Select: GI path DNA+RNA: Pnl: Stl: Non-probe PCR We do not accept: Yersinia aldovae, Y.
    [Show full text]
  • George Michael Humphrey Birchenough
    GEORGE MICHAEL HUMPHREY BIRCHENOUGH Analysis of intestinal factors contributing to the age- dependency of systemic neuropathogenic Escherichia coli K1 infection in the neonatal rat Thesis submitted in accordance with the requirements of the UCL School of Pharmacy for the degree of Doctor of Philosophy Microbiology Group, Department of Pharmaceutics, UCL School of Pharmacy July 2012 PLAGIARISM STATEMENT This thesis describes research conducted in the UCL School of Pharmacy between October 2008 and July 2012 under the supervision of Professor Peter W. Taylor. I certify that the research described is original and that any parts of the work that have been conducted by collaboration are clearly indicated. I also certify that I have written all the text herein and have clearly indicated by suitable citation any part of the dissertation that has already appeared in publication. Signature: Date: Acknowledgements Firstly I wish to thank my supervisor, Professor Peter Taylor, for giving me the opportunity to work on such an interesting and rewarding project. Your continued support and enthusiasm has been a constant source of encouragement and I greatly appreciate all the advice and help (both scientific and general!) that you have provided over the last four years. I owe you a lot of beer. I also wish to thank my amazing parents for all their love and support over the eight years of my higher education. Without your enthusiasm and belief I would not have been able to follow this path. I sincerely promise I will now get a job! Furthermore, I wish to thank colleagues at the London School of Hygiene & Tropical Medicine, Dr.
    [Show full text]
  • Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
    Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Yersinia Enterocolitica Monographic Study
    Tirziu E. et. al./Scientific Papers: Animal Science and Biotechnologies, 2011, 44 (2) Yersinia enterocolitica Monographic Study Emil Tirziu, Ciceronis Cumpanasoiu, Radu Valentin Gros, Monica Seres Faculty of Veterinary Medicine, 300645, Timisoara, Calea Aradului, 119, Romania Abstract Germs from Yersinia genus have a vast ecologic niche, being met at different domestic and wild animal species, but also in food, water and soil. The majority of yersinis live in the digestive tract of human and numerous animal species, especially rodents, but also in soil, plant debris, waters etc. Numerous species of Yersinia genus could produce characteristic infections in human, the main source of infections is represented by rodents and hematophagous insects or, more frequently, by water or contaminated food. In a 1999 study, Mead and coauthors established that the Yersinia enterocolitica prevalence in food, in USA, is around 90%. Foods of animal origin more frequently contaminated with Yersinia enterocolitica are: pork, poultry, beef and lamb meat, milk, ice-cream, sea fruits etc., among them pork meat and milk represents the sources of the most numerous toxi-infection outbreaks in human, in different world regions. Bacteria determine infections which interest the digestive tract in numerous animal species and human, with diarrhea, lymphadenitis, pneumonia and abortion are the most important symptoms. Yersinia enterocolitica enter the human body regularly by oral ingestion, and localize itself with predilection in the distal portion of the ileum and at the ileocaecal appendix and proximal colon level, were determine a terminal ileitis with lymphadenitis, acute enterocolitis, and secondary accompanied with nodosum erythema, poliartritis that could be complicated with septicemia, sometimes leading to death.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • A New Evaluation Method for Antibiotic-Resistant Bacterial Groups in Environment
    Advances in Microbiology, 2016, 6, 133-151 Published Online March 2016 in SciRes. http://www.scirp.org/journal/aim http://dx.doi.org/10.4236/aim.2016.63014 A New Evaluation Method for Antibiotic-Resistant Bacterial Groups in Environment Katsuji Watanabe1*, Naoto Horinishi1, Kunimasa Matsumoto1, Akihiro Tanaka2, Kenichi Yakushido3 1Department of Life, Environment and Materials Science, Fukuoka Institute of technology, Fukuoka, Japan 2National Agricultural Research Center for Kyushu-Okinawa Region, National Agriculture and Food Research Organization, Kumamoto, Japan 3National Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Japan Received 31 January 2016; accepted 8 March 2016; published 11 March 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract In the present manuscript it was presented whether spreading of antibiotic resistant bacterial groups in environment could be monitored by our newly developed method by enumerating anti- biotic resistant bacterial groups in various biological wastes and composts. Although the numbers were not so high, diverse kinds of colistin resistant bacteria (25 mg∙L−1) were included in row cat- tle feces (1.78 × 104 MPN g−1) and cattle feces manure (>3.84 × 104 MPN g−1). Compost originated from leftover food (>44.8 × 104 MPN g−1) and shochu lee (>320 × 104 MPN g−1) included higher numbers of chlortetracycline resistant Pseudomonas sp., (25 mg∙L−1), and row cattle feces included higher numbers of chlortetracycline resistant Enterobacteriacea (15.7 × 104 MPN g−1), which mostly consisted from Pantoea sp.
    [Show full text]
  • WO 2019/094700 Al 16 May 2019 (16.05.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/094700 Al 16 May 2019 (16.05.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors: SANTOS, Michael; One Kendall Square, C07K 14/435 (2006.01) A01K 67/04 (2006.01) Building 200, Cambridge, Massachusetts 02139 (US). A01K 67/00 (2006.01) C07K 14/00 (2006.01) DELISLE, Scott; One Kendall Square, Building 200, Cam¬ A01K 67/033 (2006.01) bridge, Massachusetts 02139 (US). TWEED-KENT, Ailis; One Kendall Square, Building 200, Cambridge, Massa¬ (21) International Application Number: chusetts 02139 (US). EASTHON, Lindsey; One Kendall PCT/US20 18/059996 Square, Building 200, Cambridge, Massachusetts 02139 (22) International Filing Date: (US). PATTNI, Bhushan S.; 15 Evergreen Circle, Canton, 09 November 2018 (09. 11.2018) Massachusetts 02021 (US). (25) Filing Language: English (74) Agent: WARD, Donna T. et al; DT Ward, P.C., 142A Main Street, Groton, Massachusetts 01450 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/584,153 10 November 2017 (10. 11.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/659,213 18 April 2018 (18.04.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/659,209 18 April 2018 (18.04.2018) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/680,386 04 June 2018 (04.06.2018) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/680,371 04 June 2018 (04.06.2018) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (71) Applicant: COCOON BIOTECH INC.
    [Show full text]
  • VITEK® MS Microbiology Powered by Mass Spectrometry DELIVER ACTIONABLE RESULTS to CLINICIANS to SUPPORT INFORMED TREATMENT DECISIONS
    VITEK® MS Microbiology Powered by Mass Spectrometry DELIVER ACTIONABLE RESULTS TO CLINICIANS TO SUPPORT INFORMED TREATMENT DECISIONS. Fast and actionable organism identification provides clinicians with valuable diagnostic information that helps them tailor antimicrobial therapy. Incorporating fast identification and AST* with stewardship interventions has been shown to reduce time to appropriate therapy and to reduce hospital length of stay.1 • Safe and effective inactivation and extraction protocols offer excellent performance for identification of pathogenic microorganisms • Easy workflow with convenient, prepackaged reagent kits • In-lab solution to save time and costs compared to sending out tests or using other methods *Antimicrobial Susceptibility Testing TRULY INTEGRATED ID & AST SETUP Simple, step-by-step guided slide preparation for ID and connection with AST using the on-screen VITEK MS Prep Station. SIMPLE SPOTTING Easy sample preparation step of spotting organism onto slide and applying sample matrix for bacteria or matrix plus formic acid for yeasts. FLEXIBLE SAMPLE LOADING VITEK MS carrier can be loaded with up to four prepared slides and introduced into the instrument. With 48 sample spots per target slide, 192 isolates can be tested per run. References 1. Cavalieri SJ, Kwon S, Vivekanandan R, et al. Effect of antimicrobial stewardship with rapid MALDI-TOF identification and VITEK 4. Dunne WMJ, Doing K, Miller E, et al. Rapid Inactivation of Mycobacterium and Nocardia species before identification using 2 antimicrobial susceptibility testing on hospitalization outcome. Diagn Microbiol Infec Dis. 2019. http://doi.org/10.1016/j. Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry. J Clin Microbiol. 2014;52:3654-3659.
    [Show full text]
  • 2014 Randolphclinita
    BACTERIA INVOLVED IN THE HEALTH OF HONEY BEE (APIS MELLIFERA) COLONIES by Clinita Evette Randolph A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences Summer 2014 © 2014 Clinita Evette Randolph All Rights Reserved UMI Number: 1567820 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 1567820 Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 BACTERIA INVOLVED IN THE HEALTH OF HONEY BEE (APIS MELLIFERA) COLONIES by Clinita Evette Randolph Approved: __________________________________________________________ Diane S. Herson, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Randall L. Duncan, Ph.D. Chair of the Department of Department Biological Sciences Approved: __________________________________________________________ George H. Watson, Ph.D. Dean of the College of Arts and Sciences Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I would like to thank Dr. Herson who has been an amazing advisor and mentor. Dr. Herson’s lab was the perfect lab for me to begin my graduate studies.
    [Show full text]
  • Effects of Gallium-Desferrioxamine Compounds on Bacteria
    Effects of Gallium-Desferrioxamine Compounds on Bacteria ABSTRACT Title of dissertation: EFFECTS OF GALLIUM-DESFERRIOXAMINE COMPOUNDS ON BACTERIA Mohammad Ahmed, Emily Brode, Thomas Brown, Somayah Eltoweissy, Stephanie Gross, Seth Markowitz, Michael McCutchen, Reed Portney, Jacob Reinhart, Cristian Salgado,Melissa Walsh, Sean Wassel Mentor: Ben Woodard Biotechnology Research and Education Program Over 70% of nosocomial infections in the United States are resistant to one or more traditional antibiotics, necessitating research for alternative treatment options. This study aims to chelate gallium (Ga) onto a bacterial siderophore, desferrioxamine (DFO), to retard bacterial growth. By exploiting natural bacterial pathways, metal-siderophore treatments are hypothesized to circumvent traditional resistance mechanisms. Additionally, the GaDFO complex will be tested against several bacterial species to determine the specificity of DFO uptake. This research aims to prove the feasibility of siderophore piracy as an alternative to antibiotics. In showing the feasibility of siderophore piracy mechanisms, this research will enable the development of future avenues for protecting against resistant nosocomial infections. Effects of Gallium-Desferrioxamine Compounds on Bacteria Effects of Gallium-Desferrioxamine Compounds on Bacteria Team Silver Mohammad Ahmed, Emily Brode, Thomas Brown, Somayah Eltoweissy, Stephanie Gross, Seth Markowitz, Michael McCutchen, Reed Portney, Jacob Reinhart, Cristian Salgado, Melissa Walsh, Sean Wassel Mentor: Ben Woodard Thesis submitted in partial fulfillment of the requirements of the Gemstone Program, University of Maryland, 2015 Advisory committee: Dr. Frank Coale. Gemstone Program Director Dr. Kristan Skendall. Mr. Ben Woodard Mr. John Kerwin Dr. David Rozak Dr. Andrew Lees Ms. Marybeth Shea Dr. Steve Hutcheson Effects of Gallium-Desferrioxamine Compounds on Bacteria Acknowledgments Team Silver would like to thank the following individuals and organizations for their support and contributions: Ms.
    [Show full text]
  • Yersinia Novum MAC Was Isolated from Loyalsock Creek, a Freshwater Stream in Northeastern Pennsylvania
    Mariano 1 Abstract: Yersinia novum MAC was isolated from Loyalsock Creek, a freshwater stream in northeastern Pennsylvania. The microbe can be distinguished from other species of Yersinia through biochemical differentiation as it possesses dissimilar metabolic and enzymatic profiles. The strain is differentiated from closely related species by high concentrations of 18:1 w7c and 19:0 cyclo w8c and low concentrations of 16:1 w7c, 16:1 w6c, and 17:0 cyclo. Yersinia novum MAC was susceptible to most antibiotics. 16S rRNA gene sequence analysis revealed pairwise similarities of 98.46%, 98.39%, and 98.32% to Yersinia mollaretii, Yersinia rohdei, and Yersinia aldovae, respectively. Further 16S rRNA gene sequence analysis revealed a pairwise similarity of 99.9% to an unpublished strain labeled Yersinia MH-1. Multi-Locus Sequence Typing examining the glnA, gyrB, recA, and Y-HSP60 housekeeping genes generated pairwise similarities of less than 95% to all published Yersinia species. Pairwise similarities of above 95% were generated when comparing Yersinia novum MAC and Yersinia MH-1. The current study proposes that Yersinia novum MAC and Yersinia MH-1 constitute a novel species of bacteria. Introduction: Yersinia novum MAC was isolated from Loyalsock Creek, a small stream that drains into the Susquehanna River. Preliminary 16S rRNA gene sequencing, which was performed by Melissa Cashner (MAC) in Lycoming College’s Spring 2009 Microbiology course, suggested the strain is a novel species belonging to the genus Mariano 2 Yersinia. The current study tested the hypothesis that Yersinia novum MAC is a novel microbe. With the exception of Yersinia pestis, Yersinia species are ubiquitous organisms.
    [Show full text]