PI English Annual Report 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear Technology
Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10. -
Understanding the Intelligent Design Creationist Movement: Its True Nature and Goals
UNDERSTANDING THE INTELLIGENT DESIGN CREATIONIST MOVEMENT: ITS TRUE NATURE AND GOALS A POSITION PAPER FROM THE CENTER FOR INQUIRY OFFICE OF PUBLIC POLICY AUTHOR: BARBARA FORREST, Ph.D. Reviewing Committee: Paul Kurtz, Ph.D.; Austin Dacey, Ph.D.; Stuart D. Jordan, Ph.D.; Ronald A. Lindsay, J. D., Ph.D.; John Shook, Ph.D.; Toni Van Pelt DATED: MAY 2007 ( AMENDED JULY 2007) Copyright © 2007 Center for Inquiry, Inc. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the Center for Inquiry, Inc. Table of Contents Section I. Introduction: What is at stake in the dispute over intelligent design?.................. 1 Section II. What is the intelligent design creationist movement? ........................................ 2 Section III. The historical and legal background of intelligent design creationism ................ 6 Epperson v. Arkansas (1968) ............................................................................ 6 McLean v. Arkansas (1982) .............................................................................. 6 Edwards v. Aguillard (1987) ............................................................................. 7 Section IV. The ID movement’s aims and strategy .............................................................. 9 The “Wedge Strategy” ..................................................................................... -
Ravi's Speech at the Banquet
Speech at the Conference on Conformal Geometry and Riemann Surfaces October 27, 2013 Ravi S. Kulkarni October 29, 2013 1 Greetings I am very happy today. I did not know that so many people loved me enough to gather at Queens College to wish me a healthy, long, and productive life over and above the 71 years I have already lived. It includes my teacher Shlomo Sternberg, present here on skype, and my \almost"-teachers Hyman Bass, and Cliff Earle. Alex Lubotzky came from Israel, Ulrich Pinkall from Germany, and Shiga from Japan. If I have counted correctly there are 14 people among the speakers who are above 65, and 5 below 65, of which only 3 in their 30s to 50s. There are many more in the audience who are in their 50s and below. I interpret this as: we old people have done something right. And of course that something right, is that we have done mathematics. The conference of this type is new for the Math department at Queens College, although it had many distinguished mathematicians like Arthur Sard, Leo Zippin, Banesh Hoffman, Edwin Moise, ... before, on its faculty. I find this Conference especially gratifying since I already went back to In- dia in 2001, enjoyed several leaves without pay, and finally retired from Queens College, in Feb 2008. However I keep coming back to Queens college and Grad- uate Center twice a year and enjoy my emeritus positions with all the office and library/computer advantages. For a long time, I felt that people here thought that I was an Indian in America. -
Michael Behe and the “Limits” of Evolution (Bacterial Edition). James Downard - 18 July 2014
Michael Behe and the “Limits” of Evolution (bacterial edition). James Downard - 18 July 2014 During the Kitzmiller v. Dover Intelligent Design trial in 2005, the Expert Testimony of Michael Behe (2005a) came under fire. One of the lynchpin figures in the design movement, famed for Darwin’s Black Box, his crash-and-burn performance has been amply covered in many venues, including popular coverage by Matthew Chapman (2007) and Laurie Lebo (2008). Overlooked in the heat over irreducibly complex bacterial flagella mousetraps (and whether Behe and Ken Miller would duel with lab beakers at dawn) was a minor technical issue tossed off in Behe’s deposition and afterward, which warrants examination for the insights it gives to Behe’s use of technical citation and the degree to which he investigates the strength of the ammunition he slips into his ID shotgun. Venturing into the finer points of bacterial antibiotic resistance, Behe was bowled over by the import of Barry Hall (2004a): “In Vitro Evolution Predicts that the IMP-1 Metallo-β-Lactamase Does Not Have the Potential To Evolve Increased Activity against Imipenem.” To emphasize this “limit of Darwinian evolution” Behe included a full reprint of it for the Dover court, where one could see that he had drawn a big circle around the “Not” in the title. Arbitrarily deck-stacking his point further by asserting that evolutionists think “Darwinian processes can do everything,” Behe (2005a) summarized Hall’s findings thus: This is exemplified in some recent papers from the laboratory of Professor Barry G. Hall at the University of Rochester. -
Negotiating a Quantum Computation Network: Mechanics, Machines, Mindsets
Negotiating a Quantum Computation Network: Mechanics, Machines, Mindsets by Derek Noon A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Communication Carleton University Ottawa, Ontario © 2016, Derek Noon Abstract This dissertation describes the origins, development, and distribution of quantum computing from a socio-technical perspective. It depicts quantum computing as a result of the negotiations of heterogeneous actors using the concepts of ANT and socio-technical analyses of computing and infrastructure more generally. It draws on two years of participant observation and interviews with the hardware and software companies that developed, sold, and distributed both machines and a mindset for a new approach to computing: adiabatic quantum computation (AQC). It illustrates how a novel form of computation and software writing was developed by challenging and recoding the usual distinctions between digital and analogue computing, and discusses how the myriad controversies and failures attending quantum computing were resolved provisionally through a series of human and non-human negotiations. These negotiations disrupted, scrambled, and reconstituted what we usually understand as hardware, software, and mindset, and permitted a ‗disruptive‘ technology to gain common acceptance in several high profile scientific, governmental, and financial institutions. It is the relationalities established across these diverse processes that constitute quantum computing, and consequences of this account of computation are considered in the context of digital media theory, industrial histories of computing, and socio-technical theories of technological innovation. Noon ii Acknowledgements Many sources of support helped me through the PhD program. I‘m grateful to Mitacs for its financial support of this research, and for providing me such good STEM peers/research subjects. -
Math Spans All Dimensions
March 2000 THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA Math Spans All Dimensions April 2000 is Math Awareness Month Interactive version of the complete poster is available at: http://mam2000.mathforum.com/ FOCUS March 2000 FOCUS is published by the Mathematical Association of America in January. February. March. April. May/June. August/September. FOCUS October. November. and December. a Editor: Fernando Gouvea. Colby College; March 2000 [email protected] Managing Editor: Carol Baxter. MAA Volume 20. Number 3 [email protected] Senior Writer: Harry Waldman. MAA In This Issue [email protected] Please address advertising inquiries to: 3 "Math Spans All Dimensions" During April Math Awareness Carol Baxter. MAA; [email protected] Month President: Thomas Banchoff. Brown University 3 Felix Browder Named Recipient of National Medal of Science First Vice-President: Barbara Osofsky. By Don Albers Second Vice-President: Frank Morgan. Secretary: Martha Siegel. Treasurer: Gerald 4 Updating the NCTM Standards J. Porter By Kenneth A. Ross Executive Director: Tina Straley 5 A Different Pencil Associate Executive Director and Direc Moving Our Focus from Teachers to Students tor of Publications and Electronic Services: Donald J. Albers By Ed Dubinsky FOCUS Editorial Board: Gerald 6 Mathematics Across the Curriculum at Dartmouth Alexanderson; Donna Beers; J. Kevin By Dorothy I. Wallace Colligan; Ed Dubinsky; Bill Hawkins; Dan Kalman; Maeve McCarthy; Peter Renz; Annie 7 ARUME is the First SIGMAA Selden; Jon Scott; Ravi Vakil. Letters to the editor should be addressed to 8 Read This! Fernando Gouvea. Colby College. Dept. of Mathematics. Waterville. ME 04901. 8 Raoul Bott and Jean-Pierre Serre Share the Wolf Prize Subscription and membership questions 10 Call For Papers should be directed to the MAA Customer Thirteenth Annual MAA Undergraduate Student Paper Sessions Service Center. -
Bibliography
Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977. -
Vancouver Cross-Border Investment Guide
Claire to try illustration idea as one final cover option Vancouver Cross-Border Investment Guide Essential legal, tax and market information for cross-border investment into Vancouver, Canada Digital Download 1 Vancouver Cross-Border Contents Investment Guide Published October 2020 Why Invest in Vancouver ............................................................................1 Sectors to Watch ........................................................................................... 3 About the Vancouver Economic Commission Technology ..................................................................................................3 The Vancouver Economic Commission (VEC) serves one of the world’s fastest-growing, low- Cleantech .................................................................................................... 4 carbon economies. As the economic development agency for the city’s businesses, investors and citizens, VEC works to strengthen Vancouver’s economic future by supporting local companies, attracting high-impact investment, conducting and publishing leading-edge industry research, Media and Entertainment ............................................................................5 and promoting international trade. VEC works collaboratively to position Vancouver as a global destination for innovative, creative, diverse and sustainable development. Life Sciences ............................................................................................... 6 VEC respectfully acknowledges that it is located -
Physics of Information in Nonequilibrium Systems A
PHYSICS OF INFORMATION IN NONEQUILIBRIUM SYSTEMS A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS MAY 2019 By Elan Stopnitzky Thesis Committee: Susanne Still, Chairperson Jason Kumar Yuriy Mileyko Xerxes Tata Jeffrey Yepez Copyright c 2019 by Elan Stopnitzky ii To my late grandmother, Rosa Stopnitzky iii ACKNOWLEDGMENTS I thank my wonderful family members Benny, Patrick, Shanee, Windy, and Yaniv for the limitless love and inspiration they have given to me over the years. I thank as well my advisor Susanna Still, who has always put great faith in me and encouraged me to pursue my own research ideas, and who has contributed to this work and influenced me greatly as a scientist; my friend and collaborator Lee Altenberg, whom I have learned countless things from and who contributed significantly to this thesis; and my collaborator Thomas E. Ouldridge, who also made important contributions. Finally, I would like to thank my partner Danelle Gallo, whose kindness and support have been invaluable to me throughout this process. iv ABSTRACT Recent advances in non-equilibrium thermodynamics have begun to reveal the funda- mental physical costs, benefits, and limits to the use of information. As the processing of information is a central feature of biology and human civilization, this opens the door to a physical understanding of a wide range of complex phenomena. I discuss two areas where connections between non-equilibrium physics and information theory lead to new results: inferring the distribution of biologically important molecules on the abiotic early Earth, and the conversion of correlated bits into work. -
Cornell Gets a New Chair
PEOPLE APPOINTMENTS & AWARDS Cornell gets a new chair Two prominent accelerator physicists and Cornell alumni, Helen T Edwards and her husband, Donald A Edwards, have endowed a chair in accelerator physics at Cornell.The chair is named after Boyce D McDaniel, pro fessor emeritus at Cornell. The first holder of the new chair is David L Rubin, professor of physics and director of accelerator physics at Cornell.The donors David Rubin is the first incumbent of the new Boyce McDaniel Chair of Physics at Cornell, asked that the new professorship should be endowed by Helen and Donald Edwards. The chair is named after Boyce D McDaniel. Left awarded to a Cornell faculty member whose to right: Boyce McDaniel, Donald Edwards, David Rubin, Helen Edwards and Maury Tigner, discipline is particle-beam physics and who director of Cornell's Laboratory of Nuclear Studies. would teach both graduate and undergradu ate students in addition to doing research. McDaniel, a previous director of nuclear ingthe commissioning of the Main Ring at Helen Edwards is a 1957 graduate of science at Cornell, was Helen Edwards' thesis Fermilab and providing advice for numerous Cornell, where she also earned her PhD in adviser. Initially a graduate student at Cornell, accelerator projects throughout the US, in 1966. She works at Fermilab and at DESY in he left during the Second World War to join the addition to his notable contributions to the Germany. She played a prominent role in the Manhattan Project and returned to complete accelerator and elementary particle physics construction of Fermilab'sTevatron and has his PhD, joining the faculty in 1946. -
Quantum Aspects of Life / Editors, Derek Abbott, Paul C.W
Quantum Aspectsof Life P581tp.indd 1 8/18/08 8:42:58 AM This page intentionally left blank foreword by SIR ROGER PENROSE editors Derek Abbott (University of Adelaide, Australia) Paul C. W. Davies (Arizona State University, USAU Arun K. Pati (Institute of Physics, Orissa, India) Imperial College Press ICP P581tp.indd 2 8/18/08 8:42:58 AM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Quantum aspects of life / editors, Derek Abbott, Paul C.W. Davies, Arun K. Pati ; foreword by Sir Roger Penrose. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-84816-253-2 (hardcover : alk. paper) ISBN-10: 1-84816-253-7 (hardcover : alk. paper) ISBN-13: 978-1-84816-267-9 (pbk. : alk. paper) ISBN-10: 1-84816-267-7 (pbk. : alk. paper) 1. Quantum biochemistry. I. Abbott, Derek, 1960– II. Davies, P. C. W. III. Pati, Arun K. [DNLM: 1. Biogenesis. 2. Quantum Theory. 3. Evolution, Molecular. QH 325 Q15 2008] QP517.Q34.Q36 2008 576.8'3--dc22 2008029345 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Photo credit: Abigail P. Abbott for the photo on cover and title page. Copyright © 2008 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. -
Arxiv:1211.4061V3 [Physics.Hist-Ph] 8 Feb 2013
From cosmic ray physics to cosmic ray astronomy: Bruno Rossi and the opening of new windows on the universe Luisa Bonolis Via Cavalese 13 – 00135 Rome, Italy [email protected] Abstract Bruno Rossi is considered one of the fathers of modern physics, being also a pioneer in virtually every aspect of what is today called high-energy astrophysics. At the beginning of 1930s he was the pioneer of cosmic ray research in Italy, and, as one of the leading actors in the study of the nature and behavior of the cosmic radiation, he witnessed the birth of particle physics and was one of the main investigators in this fields for many years. While cosmic ray physics moved more and more towards astrophysics, Rossi continued to be one of the inspirers of this line of research. When outer space became a reality, he did not hesitate to leap into this new scientific dimension. Rossi’s intuition on the importance of exploiting new technological windows to look at the universe with new eyes, is a fundamental key to understand the profound unity which guided his scientific research path up to its culminating moments at the beginning of 1960s, when his group at MIT performed the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth’s magnetosphere, and when he promoted the search for extra-solar sources of X rays. A visionary idea which eventually led to the breakthrough experiment which discovered Scorpius X-1 in 1962, and inaugurated X-ray astronomy.