PI English Annual Report 2020

Total Page:16

File Type:pdf, Size:1020Kb

PI English Annual Report 2020 2020 ANNUAL REPORT VISION To create the world’s foremost centre for research, graduate training, and educational outreach in theoretical physics, uniting public and private partners, and the world’s best scientific minds, in a shared enterprise to achieve breakthroughs that will transform our future. Estelle Inack, Jason Iaconis, and Roger Melko, October 2019 CONTENTS Message from the Board Chair .............................................2 Message from the Institute Director ......................................3 How Perimeter Measures Up ................................................4 Research ...............................................................................6 Training ................................................................................26 Outreach ..............................................................................32 Our Future is Bright .............................................................38 Advancement ......................................................................40 Governance and Finance ....................................................44 Appendices .........................................................................51 This report covers the activities and finances of Perimeter Institute for Theoretical Physics from August 1, 2019, to July 31, 2020. TODAY'S THEORETICAL PHYSICS IS TOMORROW'S TECHNOLOGY MESSAGE FROM THE BOARD CHAIR The coronavirus has made the past year very difficult. The loss transform epidemiology, finance and insurance, risk of loved ones and the economic, social, and emotional impact modelling, and many other branches of fundamental of physical distancing measures have touched everyone. science. I believe that Perimeter has been fortunate, and I want to Successes like these informed a recent report from the acknowledge the efforts by Director Rob Myers and his team Institute’s Scientific Advisory Committee, an oversight body to ensure above all else the safety of Perimeter’s employees, composed of eminent scientists from around the world. students, and visitors. “Perimeter is unique in the scientific landscape, Also, as you know, a fundamental aspect of the Perimeter with a forward-looking, innovative, collaborative and model is the extensive interaction among researchers and inclusive climate,” the Committee wrote. “It has greatly students. As you would expect, these types of interactions are raised Canada’s reputation in the field of high-level hard to achieve safely in our current pandemic environment. theoretical physics, and has shown a very high return on That said, Perimeter used a number of tools and a lot of government investment, and at a fast pace.” creativity to continue these interactions between researchers I am proud of this glowing report from some of the top physics from Perimeter and around the world, both safely and researchers around the world. I want to thank the Scientific effectively. The result is that a year that threatened to be very Advisory Committee and their Chair Gabriela González for their unproductive has produced or advanced a number of physics comments and the work behind this very extensive report. breakthroughs. Perimeter is a fundamental partner in the “Quantum Valley.” The Institute’s model of attracting the world’s best researchers Quantum Valley is our quantum innovation ecosystem that and enabling them to pursue their most ambitious ideas is supports and enables research and researchers as they drive paying off. Under Rob’s leadership, the Institute continues scientific breakthroughs and develop transformative quantum to move from strength to strength in quantum information technologies that are the basis for commercial products that science, as well as in the other major areas of theoretical change lives and build economies. physics. Our researchers set the global scientific agenda in many areas, as evidenced through their highly cited papers Perimeter’s activities, including those with commercialization and groundbreaking international collaborations. potential, along with the efforts at the Institute for Quantum Computing at the University of Waterloo, and at the Perimeter faculty continue to make many game-changing Quantum Valley Ideas Lab, combine to make the Quantum physics breakthroughs. Also, this year marked the Valley a global leader in both quantum research and in the advancement of some Perimeter projects with very exciting commercialization of transformative quantum technologies. We commercialization opportunities. A few of the developments I already have a number of quantum start-up companies in the want to acknowledge include the following: region, and we expect many more to be developed over the A team led by Roger Melko is collaborating with next few years and beyond. experimental physicists at Harvard University to improve I thank the Governments of Ontario and Canada, as well the testing and reliability of quantum simulations. Being as the foundations and donors who so generously support able to simulate quantum interactions opens the door the Institute and share our vision. The success of the large- to everything from creating new materials to developing scale public-private partnership at Perimeter not only enables new medicines. our exciting activities but also raises our national and global The visionary work by Will Percival came to fruition with brand, which has been an instrumental part of our ability to the release of the largest three-dimensional map of the attract top researchers to Perimeter from around the world. universe ever created. Through his work at the Extended In particular, I want to acknowledge the generous support of Baryon Oscillation Spectroscopic Survey, Percival $10 million from the Riddell Family Foundation for Perimeter’s oversaw an ambitious initiative to measure more than Clay Riddell Centre for Quantum Matter. The research done 2 million galaxies and quasars for the project. by the Quantum Matter Centre will help develop exciting new quantum materials that will enable new approaches for I am excited about the Institute’s work, led by Robert everything from power grids to medical imaging. Spekkens, in “quantum causal inference.” This new field capitalizes on remarkable new insights from foundational In addition to our researchers, the Institute owes its success quantum theory to determine causal relationships to the leadership of the members of our Board, Finance and within highly complex data sets. It has the potential to Investment Committees, and Leadership Council. A special 2 | thanks this year to Amit Chakma, President Emeritus of The Institute will continue to make new breakthroughs that will Western University, who stepped down from the Board this give this country an edge for decades to come – accelerating year, and a warm welcome to Susan Baxter, Vice Chairman, our post-COVID economic recovery and preparing us for what Enterprise Strategic Client Group at Royal Bank of Canada, comes next. who recently joined us. I want to thank everyone who has shared my vision and Canada, and the rest of the world, will of course make contributed to the success of Perimeter to date. I also want it through the current pandemic. The power of science, to encourage you to continue your commitment to the future innovation, and human resilience, in my mind, assure this. success of this exciting organization. The best is yet to come! Although we will come out of this experience with both mental and emotional scars, I believe that we will also come away − Mike Lazaridis, O.C., O.Ont., FRS, FRSC from the experience with new wisdom and new resolve that Chair, Board of Directors will ensure future health, happiness, and success. MESSAGE FROM THE INSTITUTE DIRECTOR Perimeter Institute is a place with its eye on the future. 2020, and seminars from Perimeter and other institutions around the though, caught us by surprise. world. It’s called SciTalks.ca, and we hope it will be to physics talks what the free preprint server arXiv is to physics papers. In a way we were lucky: As theorists, we have no particle accelerators to tend to, no instruments to mind. When we I am so proud of how the Perimeter community adapted to became an online institution – which happened almost the pandemic – with resilience, creativity, and heart. We pulled overnight in March – our simulations and calculations could go together, and we are pulling through. on. While our chalkboards had to stand empty, our ideas could Perhaps the biggest lesson we can take from the pandemic is follow us home. that in a universe as big and unpredictable as ours, we don’t Some of our researchers offered their expertise to biomedical know what our challenges will be. It’s clearer than ever that we collaborations as part of the worldwide effort to combat should not let the horizon of our research be set by our current COVID-19. Research continued, including stunning new problems. We have to think further out, because the horizon of results in quantum matter, quantum simulation, field theory, our imagination is bigger than the horizon of our problems. and even foundational work on the nature of time itself. We For instance, we are beginning to imagine a new wave of learned new things about the universe, with major new work technologies made possible by a much deeper understanding from the Event Horizon Telescope and the CHIME telescope. of the quantum realm. This research is poised to change the Our master’s program, Perimeter Scholars International, went world. Perimeter prides itself on spotting these moments,
Recommended publications
  • Nuclear Technology
    Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10.
    [Show full text]
  • Understanding the Intelligent Design Creationist Movement: Its True Nature and Goals
    UNDERSTANDING THE INTELLIGENT DESIGN CREATIONIST MOVEMENT: ITS TRUE NATURE AND GOALS A POSITION PAPER FROM THE CENTER FOR INQUIRY OFFICE OF PUBLIC POLICY AUTHOR: BARBARA FORREST, Ph.D. Reviewing Committee: Paul Kurtz, Ph.D.; Austin Dacey, Ph.D.; Stuart D. Jordan, Ph.D.; Ronald A. Lindsay, J. D., Ph.D.; John Shook, Ph.D.; Toni Van Pelt DATED: MAY 2007 ( AMENDED JULY 2007) Copyright © 2007 Center for Inquiry, Inc. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the Center for Inquiry, Inc. Table of Contents Section I. Introduction: What is at stake in the dispute over intelligent design?.................. 1 Section II. What is the intelligent design creationist movement? ........................................ 2 Section III. The historical and legal background of intelligent design creationism ................ 6 Epperson v. Arkansas (1968) ............................................................................ 6 McLean v. Arkansas (1982) .............................................................................. 6 Edwards v. Aguillard (1987) ............................................................................. 7 Section IV. The ID movement’s aims and strategy .............................................................. 9 The “Wedge Strategy” .....................................................................................
    [Show full text]
  • Ravi's Speech at the Banquet
    Speech at the Conference on Conformal Geometry and Riemann Surfaces October 27, 2013 Ravi S. Kulkarni October 29, 2013 1 Greetings I am very happy today. I did not know that so many people loved me enough to gather at Queens College to wish me a healthy, long, and productive life over and above the 71 years I have already lived. It includes my teacher Shlomo Sternberg, present here on skype, and my \almost"-teachers Hyman Bass, and Cliff Earle. Alex Lubotzky came from Israel, Ulrich Pinkall from Germany, and Shiga from Japan. If I have counted correctly there are 14 people among the speakers who are above 65, and 5 below 65, of which only 3 in their 30s to 50s. There are many more in the audience who are in their 50s and below. I interpret this as: we old people have done something right. And of course that something right, is that we have done mathematics. The conference of this type is new for the Math department at Queens College, although it had many distinguished mathematicians like Arthur Sard, Leo Zippin, Banesh Hoffman, Edwin Moise, ... before, on its faculty. I find this Conference especially gratifying since I already went back to In- dia in 2001, enjoyed several leaves without pay, and finally retired from Queens College, in Feb 2008. However I keep coming back to Queens college and Grad- uate Center twice a year and enjoy my emeritus positions with all the office and library/computer advantages. For a long time, I felt that people here thought that I was an Indian in America.
    [Show full text]
  • Michael Behe and the “Limits” of Evolution (Bacterial Edition). James Downard - 18 July 2014
    Michael Behe and the “Limits” of Evolution (bacterial edition). James Downard - 18 July 2014 During the Kitzmiller v. Dover Intelligent Design trial in 2005, the Expert Testimony of Michael Behe (2005a) came under fire. One of the lynchpin figures in the design movement, famed for Darwin’s Black Box, his crash-and-burn performance has been amply covered in many venues, including popular coverage by Matthew Chapman (2007) and Laurie Lebo (2008). Overlooked in the heat over irreducibly complex bacterial flagella mousetraps (and whether Behe and Ken Miller would duel with lab beakers at dawn) was a minor technical issue tossed off in Behe’s deposition and afterward, which warrants examination for the insights it gives to Behe’s use of technical citation and the degree to which he investigates the strength of the ammunition he slips into his ID shotgun. Venturing into the finer points of bacterial antibiotic resistance, Behe was bowled over by the import of Barry Hall (2004a): “In Vitro Evolution Predicts that the IMP-1 Metallo-β-Lactamase Does Not Have the Potential To Evolve Increased Activity against Imipenem.” To emphasize this “limit of Darwinian evolution” Behe included a full reprint of it for the Dover court, where one could see that he had drawn a big circle around the “Not” in the title. Arbitrarily deck-stacking his point further by asserting that evolutionists think “Darwinian processes can do everything,” Behe (2005a) summarized Hall’s findings thus: This is exemplified in some recent papers from the laboratory of Professor Barry G. Hall at the University of Rochester.
    [Show full text]
  • Negotiating a Quantum Computation Network: Mechanics, Machines, Mindsets
    Negotiating a Quantum Computation Network: Mechanics, Machines, Mindsets by Derek Noon A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Communication Carleton University Ottawa, Ontario © 2016, Derek Noon Abstract This dissertation describes the origins, development, and distribution of quantum computing from a socio-technical perspective. It depicts quantum computing as a result of the negotiations of heterogeneous actors using the concepts of ANT and socio-technical analyses of computing and infrastructure more generally. It draws on two years of participant observation and interviews with the hardware and software companies that developed, sold, and distributed both machines and a mindset for a new approach to computing: adiabatic quantum computation (AQC). It illustrates how a novel form of computation and software writing was developed by challenging and recoding the usual distinctions between digital and analogue computing, and discusses how the myriad controversies and failures attending quantum computing were resolved provisionally through a series of human and non-human negotiations. These negotiations disrupted, scrambled, and reconstituted what we usually understand as hardware, software, and mindset, and permitted a ‗disruptive‘ technology to gain common acceptance in several high profile scientific, governmental, and financial institutions. It is the relationalities established across these diverse processes that constitute quantum computing, and consequences of this account of computation are considered in the context of digital media theory, industrial histories of computing, and socio-technical theories of technological innovation. Noon ii Acknowledgements Many sources of support helped me through the PhD program. I‘m grateful to Mitacs for its financial support of this research, and for providing me such good STEM peers/research subjects.
    [Show full text]
  • Math Spans All Dimensions
    March 2000 THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA Math Spans All Dimensions April 2000 is Math Awareness Month Interactive version of the complete poster is available at: http://mam2000.mathforum.com/ FOCUS March 2000 FOCUS is published by the Mathematical Association of America in January. February. March. April. May/June. August/September. FOCUS October. November. and December. a Editor: Fernando Gouvea. Colby College; March 2000 [email protected] Managing Editor: Carol Baxter. MAA Volume 20. Number 3 [email protected] Senior Writer: Harry Waldman. MAA In This Issue [email protected] Please address advertising inquiries to: 3 "Math Spans All Dimensions" During April Math Awareness Carol Baxter. MAA; [email protected] Month President: Thomas Banchoff. Brown University 3 Felix Browder Named Recipient of National Medal of Science First Vice-President: Barbara Osofsky. By Don Albers Second Vice-President: Frank Morgan. Secretary: Martha Siegel. Treasurer: Gerald 4 Updating the NCTM Standards J. Porter By Kenneth A. Ross Executive Director: Tina Straley 5 A Different Pencil Associate Executive Director and Direc­ Moving Our Focus from Teachers to Students tor of Publications and Electronic Services: Donald J. Albers By Ed Dubinsky FOCUS Editorial Board: Gerald 6 Mathematics Across the Curriculum at Dartmouth Alexanderson; Donna Beers; J. Kevin By Dorothy I. Wallace Colligan; Ed Dubinsky; Bill Hawkins; Dan Kalman; Maeve McCarthy; Peter Renz; Annie 7 ARUME is the First SIGMAA Selden; Jon Scott; Ravi Vakil. Letters to the editor should be addressed to 8 Read This! Fernando Gouvea. Colby College. Dept. of Mathematics. Waterville. ME 04901. 8 Raoul Bott and Jean-Pierre Serre Share the Wolf Prize Subscription and membership questions 10 Call For Papers should be directed to the MAA Customer Thirteenth Annual MAA Undergraduate Student Paper Sessions Service Center.
    [Show full text]
  • Bibliography
    Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
    [Show full text]
  • Vancouver Cross-Border Investment Guide
    Claire to try illustration idea as one final cover option Vancouver Cross-Border Investment Guide Essential legal, tax and market information for cross-border investment into Vancouver, Canada Digital Download 1 Vancouver Cross-Border Contents Investment Guide Published October 2020 Why Invest in Vancouver ............................................................................1 Sectors to Watch ........................................................................................... 3 About the Vancouver Economic Commission Technology ..................................................................................................3 The Vancouver Economic Commission (VEC) serves one of the world’s fastest-growing, low- Cleantech .................................................................................................... 4 carbon economies. As the economic development agency for the city’s businesses, investors and citizens, VEC works to strengthen Vancouver’s economic future by supporting local companies, attracting high-impact investment, conducting and publishing leading-edge industry research, Media and Entertainment ............................................................................5 and promoting international trade. VEC works collaboratively to position Vancouver as a global destination for innovative, creative, diverse and sustainable development. Life Sciences ............................................................................................... 6 VEC respectfully acknowledges that it is located
    [Show full text]
  • Physics of Information in Nonequilibrium Systems A
    PHYSICS OF INFORMATION IN NONEQUILIBRIUM SYSTEMS A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS MAY 2019 By Elan Stopnitzky Thesis Committee: Susanne Still, Chairperson Jason Kumar Yuriy Mileyko Xerxes Tata Jeffrey Yepez Copyright c 2019 by Elan Stopnitzky ii To my late grandmother, Rosa Stopnitzky iii ACKNOWLEDGMENTS I thank my wonderful family members Benny, Patrick, Shanee, Windy, and Yaniv for the limitless love and inspiration they have given to me over the years. I thank as well my advisor Susanna Still, who has always put great faith in me and encouraged me to pursue my own research ideas, and who has contributed to this work and influenced me greatly as a scientist; my friend and collaborator Lee Altenberg, whom I have learned countless things from and who contributed significantly to this thesis; and my collaborator Thomas E. Ouldridge, who also made important contributions. Finally, I would like to thank my partner Danelle Gallo, whose kindness and support have been invaluable to me throughout this process. iv ABSTRACT Recent advances in non-equilibrium thermodynamics have begun to reveal the funda- mental physical costs, benefits, and limits to the use of information. As the processing of information is a central feature of biology and human civilization, this opens the door to a physical understanding of a wide range of complex phenomena. I discuss two areas where connections between non-equilibrium physics and information theory lead to new results: inferring the distribution of biologically important molecules on the abiotic early Earth, and the conversion of correlated bits into work.
    [Show full text]
  • Cornell Gets a New Chair
    PEOPLE APPOINTMENTS & AWARDS Cornell gets a new chair Two prominent accelerator physicists and Cornell alumni, Helen T Edwards and her husband, Donald A Edwards, have endowed a chair in accelerator physics at Cornell.The chair is named after Boyce D McDaniel, pro­ fessor emeritus at Cornell. The first holder of the new chair is David L Rubin, professor of physics and director of accelerator physics at Cornell.The donors David Rubin is the first incumbent of the new Boyce McDaniel Chair of Physics at Cornell, asked that the new professorship should be endowed by Helen and Donald Edwards. The chair is named after Boyce D McDaniel. Left awarded to a Cornell faculty member whose to right: Boyce McDaniel, Donald Edwards, David Rubin, Helen Edwards and Maury Tigner, discipline is particle-beam physics and who director of Cornell's Laboratory of Nuclear Studies. would teach both graduate and undergradu­ ate students in addition to doing research. McDaniel, a previous director of nuclear ingthe commissioning of the Main Ring at Helen Edwards is a 1957 graduate of science at Cornell, was Helen Edwards' thesis Fermilab and providing advice for numerous Cornell, where she also earned her PhD in adviser. Initially a graduate student at Cornell, accelerator projects throughout the US, in 1966. She works at Fermilab and at DESY in he left during the Second World War to join the addition to his notable contributions to the Germany. She played a prominent role in the Manhattan Project and returned to complete accelerator and elementary particle physics construction of Fermilab'sTevatron and has his PhD, joining the faculty in 1946.
    [Show full text]
  • Quantum Aspects of Life / Editors, Derek Abbott, Paul C.W
    Quantum Aspectsof Life P581tp.indd 1 8/18/08 8:42:58 AM This page intentionally left blank foreword by SIR ROGER PENROSE editors Derek Abbott (University of Adelaide, Australia) Paul C. W. Davies (Arizona State University, USAU Arun K. Pati (Institute of Physics, Orissa, India) Imperial College Press ICP P581tp.indd 2 8/18/08 8:42:58 AM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Quantum aspects of life / editors, Derek Abbott, Paul C.W. Davies, Arun K. Pati ; foreword by Sir Roger Penrose. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-84816-253-2 (hardcover : alk. paper) ISBN-10: 1-84816-253-7 (hardcover : alk. paper) ISBN-13: 978-1-84816-267-9 (pbk. : alk. paper) ISBN-10: 1-84816-267-7 (pbk. : alk. paper) 1. Quantum biochemistry. I. Abbott, Derek, 1960– II. Davies, P. C. W. III. Pati, Arun K. [DNLM: 1. Biogenesis. 2. Quantum Theory. 3. Evolution, Molecular. QH 325 Q15 2008] QP517.Q34.Q36 2008 576.8'3--dc22 2008029345 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Photo credit: Abigail P. Abbott for the photo on cover and title page. Copyright © 2008 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
    [Show full text]
  • Arxiv:1211.4061V3 [Physics.Hist-Ph] 8 Feb 2013
    From cosmic ray physics to cosmic ray astronomy: Bruno Rossi and the opening of new windows on the universe Luisa Bonolis Via Cavalese 13 – 00135 Rome, Italy [email protected] Abstract Bruno Rossi is considered one of the fathers of modern physics, being also a pioneer in virtually every aspect of what is today called high-energy astrophysics. At the beginning of 1930s he was the pioneer of cosmic ray research in Italy, and, as one of the leading actors in the study of the nature and behavior of the cosmic radiation, he witnessed the birth of particle physics and was one of the main investigators in this fields for many years. While cosmic ray physics moved more and more towards astrophysics, Rossi continued to be one of the inspirers of this line of research. When outer space became a reality, he did not hesitate to leap into this new scientific dimension. Rossi’s intuition on the importance of exploiting new technological windows to look at the universe with new eyes, is a fundamental key to understand the profound unity which guided his scientific research path up to its culminating moments at the beginning of 1960s, when his group at MIT performed the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth’s magnetosphere, and when he promoted the search for extra-solar sources of X rays. A visionary idea which eventually led to the breakthrough experiment which discovered Scorpius X-1 in 1962, and inaugurated X-ray astronomy.
    [Show full text]