Raoul Bott (1923–2005)

Total Page:16

File Type:pdf, Size:1020Kb

Raoul Bott (1923–2005) Remembering Raoul Bott (1923–2005) Loring W. Tu, Coordinating Editor With contributions from Rodolfo Gurdian, Stephen Smale, David Mumford, Arthur Jaffe, Shing-Tung Yau, and Loring W. Tu Raoul Bott passed away The contributions are listed in the order in on December 20, 2005. which the contributors first met Raoul Bott. As Over a five-decade career the coordinating editor, I have added a short he made many profound introductory paragraph (in italics) to the beginning and fundamental contri- of each contribution. —Loring Tu butions to geometry and topology. This is the sec- Rodolfo Gurdian ond part of a two-part article in the Notices to Rodolfo Gurdian was one of Raoul Bott’s room- commemorate his life and mates when they were undergraduates at McGill. work. The first part was The imaginary chicken-stealing incident in this arti- an authorized biography, cle is a reference to a real chicken leg incident they “The life and works of experienced together at Mont Tremblant, recounted Raoul Bott” [4], which in [4]. he read and approved What follows is an account of some of the mischief a few years before his that Raoul Bott and I carried out during our days Photo by Bachrach. at McGill. Figure 1. Raoul Bott in 2002. death. Since then there have been at least three I met Raoul in 1941, when we were in our volumes containing remembrances of Raoul Bott first year at McGill University. Both of us lived in by his erstwhile collaborators, colleagues, students, Douglas Hall, a student dormitory of the university, and friends [1], [2], [7]. I have also written elsewhere but we were in different apartments. He paid about my experiences working with him [5]. This attention to me because I got a higher grade in second part presents some personal recollections trigonometry. He also noticed that I played the that do not overlap with what has already appeared guitar, and I appreciated his piano playing. in print. More reminiscences and appreciations The following year we shared an apartment, to- of his work may be found in the upcoming final gether with Frazer Farlinger, a student in medicine. volume of the Collected Papers of Raoul Bott [6]. Raoul majored in electrical engineering and I in Bott had a passion for mathematics, which he chemical engineering. The difference among us kept to the very end, even after his retirement from was that Frazer and I had to study very hard, while Harvard. At the same time, he was firmly planted Raoul didn’t. He used to say that attending the in the real world. As many of his acquaintances lectures was sufficient for him, since electrical would agree, he exemplified the French phrase joie engineering was a very logical subject. His marks de vivre. His mathematical work speaks for itself, were satisfactory but could have been much better but it is hoped that the following reminiscences if he had only worked harder. can give some idea of his personality, his zest for I met Oskar and Celia Pfeffer, his charming life, and his humanity. stepparents. Realizing that they were not very well off, I called Raoul’s attention to the fact that, being Loring W. Tu is professor of mathematics at Tufts University. His email address is [email protected]. Rodolfo Gurdian, who has since passed away, wrote this DOI: http://dx.doi.org/10.1090/noti977 piece around the year 2000 and Raoul Bott read it. 398 Notices of the AMS Volume 60, Number 4 so talented in mathematics, he could easily obtain shout back, “Of course, I a scholarship by studying just a little more. I think recognize you,” and would I influenced him, because he improved his grades shoot him dead anyway. and became one of the best students in the class. One reason we became In his last years at McGill, I believe he did obtain a good friends might have scholarship. been that, during our Rooming together, we became close friends. We childhood, we both en- loved to make mischief. On Saturdays we used to gaged in similar mischief. go to the movies, often to a theater called The Moreover, Latin Ameri- System. Buying just one ticket, we could watch cans may have more in three movies in a row. Although the ticket price was common with Europeans low, both of us being broke, we found a “system” than with North Amer- to sneak into The System without paying by taking icans. So we enjoyed advantage of the fact that only one person was in making pranks together. charge of the theater’s two entrances. One of the entrances gave access to the upper floor through a Stephen Smale wooden staircase, and the other went to the first At a conference in 1967 floor. The trick we devised was for one of us to talk Stephen Smale orga- to the ticket clerk, while the other would distract nized a beach hike in him by running upstairs and making a lot of noise. which Raoul Bott nearly As the ticket clerk followed the noisemaker, the drowned. Afterwards, Bott Figure 2. Raoul Bott (left) in the other one took advantage of the situation to sneak sometimes joked that 1930s. into the theater’s first floor. Of course, once we Smale tried to kill him. were in, it was difficult for the ticket clerk to find us, When Bott said Smale was because we sat in the first available seats, feigning his “worst” student, it was to be regular customers. not in the mathematical During the summer months every engineering sense but in the moral student was required to work to get some practical sense. Here is Smale’s ver- experience. Since Douglas Hall was closed for sion of the event. the summer, we rented a room together near the university. Raoul was six foot two, and I just Raoul often introduced me under five foot six. So you can imagine what a with the words “Steve was strange-looking pair we made! One summer Sunday my first student” and then we decided on a prank. Raoul put on his gray and added with great empha- red bathrobe and a turban and armed himself with sis “and my worst!” He a small dagger. I put on my red short pants and described our relationship (often tumultuous) in his a green T-shirt and carried a tambourine. When 1 Raoul went out to the street, I followed, playing talk at the conference for the tambourine and dancing in circles around him. my sixtieth birthday. Raoul says there, “Steve tried to People in the street were shocked. Suddenly, Raoul Figure 3. Rodolfo Gurdian and drown me,” as he describes approached an old lady and threatened her with Raoul Bott as undergraduates at one of our excursions. the dagger. When she started screaming, we ran McGill, c. 1942. like hell, realizing that the joke and the fun were It is true that I mis- getting out of hand. calculated the timing and We used to talk about our future careers. I dangers of an incoming tide at Taylor’s Point on told him that, due to my facility with money, I the Olympic Peninsula. It was at a 1967 Battelle would dedicate myself to business, which, in fact, conference in Seattle on general relativity that I I successfully achieved in life. He joked that, since put together a group of about a dozen people I would become a wealthy man while he, as a for a three-day hike, camping along the ocean professor, would be very poor, eventually he would beach. Toward the end of the trip we came to be forced to come to Costa Rica to seek my help. (the notorious) Taylor’s Point and had to make Our first meeting would be in the backyard of my a decision. My wife, Clara; daughter, Laura; and house, where he, out of hunger, would be stealing a few others decided on a detour. I convinced my chickens. Finding a thief in my backyard, I the remainder, including Raoul; his wife, Phil; his would come out with a gun. Upon seeing me, Raoul Stephen Smale is professor emeritus of mathematics at would shout, “Please, Rodolfo, don’t shoot. It’s me, the University of California, Berkeley. His email address is Raoul, your old friend.” By that time, I would have [email protected]. become an insensitive wealthy man, so I would 1The Collected Papers of Stephen Smale, Vol. 1, p. 8. April 2013 Notices of the AMS 399 Figure 6. At the Bombay Airport on the occasion Figure 4. International Symposium on Algebraic of the Colloquium on Differential Analysis, Tata Topology, Mexico City, 1956. Front row, from left Institute, Bombay, 1964. Left to right: Mr. Jalihal to right: 1 = William Massey (?), 3 = Friedrich (Public Relations Officer, Tata), Deane Hirzebruch (?), 4 = Hans Samelson, 5 = Raoul Bott, Montgomery, Donald C. Spencer, Georges de 6 = J. H. C. Whitehead. Second row: 5 = Witold Rham, Mrs. Gårding, Lars Gårding, Komaravolu S. Hurewicz (who was killed a few days later falling Chandrasekharan, Raoul Bott, Michael Atiyah, Mr. off a pyramid), 7 = Solomon Lefschetz. Third row: Puthran (Registrar, Tata). 3 = Morris Hirsch, 7 = Leopoldo Nachbin. According to Michael Atiyah, since he was not in the photo, he might have been the lecturer. was thinking, “This is how one drowns.” In fact, we all survived (my backpack was lost to the seas). Raoul also writes that, after an excursion with me, he often got on his knees to give thanks: “Back home again and still alive!” Raoul Bott and I were close friends for over five decades.
Recommended publications
  • Commentary on the Kervaire–Milnor Correspondence 1958–1961
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk.
    [Show full text]
  • Ravi's Speech at the Banquet
    Speech at the Conference on Conformal Geometry and Riemann Surfaces October 27, 2013 Ravi S. Kulkarni October 29, 2013 1 Greetings I am very happy today. I did not know that so many people loved me enough to gather at Queens College to wish me a healthy, long, and productive life over and above the 71 years I have already lived. It includes my teacher Shlomo Sternberg, present here on skype, and my \almost"-teachers Hyman Bass, and Cliff Earle. Alex Lubotzky came from Israel, Ulrich Pinkall from Germany, and Shiga from Japan. If I have counted correctly there are 14 people among the speakers who are above 65, and 5 below 65, of which only 3 in their 30s to 50s. There are many more in the audience who are in their 50s and below. I interpret this as: we old people have done something right. And of course that something right, is that we have done mathematics. The conference of this type is new for the Math department at Queens College, although it had many distinguished mathematicians like Arthur Sard, Leo Zippin, Banesh Hoffman, Edwin Moise, ... before, on its faculty. I find this Conference especially gratifying since I already went back to In- dia in 2001, enjoyed several leaves without pay, and finally retired from Queens College, in Feb 2008. However I keep coming back to Queens college and Grad- uate Center twice a year and enjoy my emeritus positions with all the office and library/computer advantages. For a long time, I felt that people here thought that I was an Indian in America.
    [Show full text]
  • Millennium Prize for the Poincaré
    FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T.
    [Show full text]
  • Math Spans All Dimensions
    March 2000 THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA Math Spans All Dimensions April 2000 is Math Awareness Month Interactive version of the complete poster is available at: http://mam2000.mathforum.com/ FOCUS March 2000 FOCUS is published by the Mathematical Association of America in January. February. March. April. May/June. August/September. FOCUS October. November. and December. a Editor: Fernando Gouvea. Colby College; March 2000 [email protected] Managing Editor: Carol Baxter. MAA Volume 20. Number 3 [email protected] Senior Writer: Harry Waldman. MAA In This Issue [email protected] Please address advertising inquiries to: 3 "Math Spans All Dimensions" During April Math Awareness Carol Baxter. MAA; [email protected] Month President: Thomas Banchoff. Brown University 3 Felix Browder Named Recipient of National Medal of Science First Vice-President: Barbara Osofsky. By Don Albers Second Vice-President: Frank Morgan. Secretary: Martha Siegel. Treasurer: Gerald 4 Updating the NCTM Standards J. Porter By Kenneth A. Ross Executive Director: Tina Straley 5 A Different Pencil Associate Executive Director and Direc­ Moving Our Focus from Teachers to Students tor of Publications and Electronic Services: Donald J. Albers By Ed Dubinsky FOCUS Editorial Board: Gerald 6 Mathematics Across the Curriculum at Dartmouth Alexanderson; Donna Beers; J. Kevin By Dorothy I. Wallace Colligan; Ed Dubinsky; Bill Hawkins; Dan Kalman; Maeve McCarthy; Peter Renz; Annie 7 ARUME is the First SIGMAA Selden; Jon Scott; Ravi Vakil. Letters to the editor should be addressed to 8 Read This! Fernando Gouvea. Colby College. Dept. of Mathematics. Waterville. ME 04901. 8 Raoul Bott and Jean-Pierre Serre Share the Wolf Prize Subscription and membership questions 10 Call For Papers should be directed to the MAA Customer Thirteenth Annual MAA Undergraduate Student Paper Sessions Service Center.
    [Show full text]
  • Bibliography
    Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
    [Show full text]
  • AMERICAN MATHEMATICAL SOCIETY Business Office: P.O. Box 6248, Providence, Rhode Island 02940 William J
    AMERICAN MATHEMATICAL SOCIETY Business Office: P.O. Box 6248, Providence, Rhode Island 02940 William J. LeVeque, Executive Director Lincoln K. Durst, Deputy Director OFFICERS President: R. H. Bing, Dept. of Mathematics, University of Texas at Austin, Austin, TX 78712 President-elect: Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 Vice-Presidents: William Browder, Dept. of Mathematics, Box 708, Fine Hall, Princeton University, Princeton, NJ 08540; Julia B. Robinson, 243 Lake Dr., Berkeley, CA 94708; George W. Whitehead, Dept. of Mathematics, Room 2-284, Massachusetts Institute of Technology, Cambridge, MA 02139 Secretary: Everett Pitcher, Dept. of Mathematics, Lehigh University, Bethelehem, PA 18015 Associate Secretaries: Raymond G. Ayoub, Dept. of Mathematics, 203 McAllister Building, Pennsylvania State University, University Park, PA 16802; Paul T. Bateman, Dept. of Mathematics, University of Illinois, Urbana, IL 61801; Frank T. Birtel, College of Arts and Sciences, Tulane University, New Orleans, LA 70118; Kenneth A. Ross, Dept. of Mathema­ tics, University of Oregon, Eugene, OR 97403 Treasurer: Franklin P. Peterson, Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 Associate Treasurer: Steve Armentrout, Dept. of Mathematics, 230 McAllister Building, Penn­ sylvania State University, University Park, PA 16802 Board of Trustees: Steve Armentrout (ex officio); R. H. Bing (ex officio); Joseph J. Kohn, Dept. of Mathematics, Princeton University, Princeton, NJ 08540; Calvin C. Moore, Dept. of Mathematics, University of California, Berkeley, CA 94720; Cathleen S. Morawetz, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012; Richard S. Palais, Dept. of Mathematics, Brandeis University, Waltham, MA 02154; Franklin P.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Prizes and Awards Session
    PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes ....................................................................................................................
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • The Legacy of Norbert Wiener: a Centennial Symposium
    http://dx.doi.org/10.1090/pspum/060 Selected Titles in This Series 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. Parshall, Editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, Editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, Editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, Editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, Editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, Editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, Editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, Editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R.
    [Show full text]
  • 17 Oct 2019 Sir Michael Atiyah, a Knight Mathematician
    Sir Michael Atiyah, a Knight Mathematician A tribute to Michael Atiyah, an inspiration and a friend∗ Alain Connes and Joseph Kouneiher Sir Michael Atiyah was considered one of the world’s foremost mathematicians. He is best known for his work in algebraic topology and the codevelopment of a branch of mathematics called topological K-theory together with the Atiyah-Singer index theorem for which he received Fields Medal (1966). He also received the Abel Prize (2004) along with Isadore M. Singer for their discovery and proof of the index the- orem, bringing together topology, geometry and analysis, and for their outstanding role in building new bridges between mathematics and theoretical physics. Indeed, his work has helped theoretical physicists to advance their understanding of quantum field theory and general relativity. Michael’s approach to mathematics was based primarily on the idea of finding new horizons and opening up new perspectives. Even if the idea was not validated by the mathematical criterion of proof at the beginning, “the idea would become rigorous in due course, as happened in the past when Riemann used analytic continuation to justify Euler’s brilliant theorems.” For him an idea was justified by the new links between different problems which it illuminated. Our experience with him is that, in the manner of an explorer, he adapted to the landscape he encountered on the way until he conceived a global vision of the setting of the problem. Atiyah describes here 1 his way of doing mathematics2 : arXiv:1910.07851v1 [math.HO] 17 Oct 2019 Some people may sit back and say, I want to solve this problem and they sit down and say, “How do I solve this problem?” I don’t.
    [Show full text]
  • Calculus Redux
    THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 6 NUMBER 2 MARCH-APRIL 1986 Calculus Redux Paul Zorn hould calculus be taught differently? Can it? Common labus to match, little or no feedback on regular assignments, wisdom says "no"-which topics are taught, and when, and worst of all, a rich and powerful subject reduced to Sare dictated by the logic of the subject and by client mechanical drills. departments. The surprising answer from a four-day Sloan Client department's demands are sometimes blamed for Foundation-sponsored conference on calculus instruction, calculus's overcrowded and rigid syllabus. The conference's chaired by Ronald Douglas, SUNY at Stony Brook, is that first surprise was a general agreement that there is room for significant change is possible, desirable, and necessary. change. What is needed, for further mathematics as well as Meeting at Tulane University in New Orleans in January, a for client disciplines, is a deep and sure understanding of diverse and sometimes contentious group of twenty-five fac­ the central ideas and uses of calculus. Mac Van Valkenberg, ulty, university and foundation administrators, and scientists Dean of Engineering at the University of Illinois, James Ste­ from client departments, put aside their differences to call venson, a physicist from Georgia Tech, and Robert van der for a leaner, livelier, more contemporary course, more sharply Vaart, in biomathematics at North Carolina State, all stressed focused on calculus's central ideas and on its role as the that while their departments want to be consulted, they are language of science. less concerned that all the standard topics be covered than That calculus instruction was found to be ailing came as that students learn to use concepts to attack problems in a no surprise.
    [Show full text]