Many-Body Entanglement in Classical & Quantum Simulators

Total Page:16

File Type:pdf, Size:1020Kb

Many-Body Entanglement in Classical & Quantum Simulators Many-Body Entanglement in Classical & Quantum Simulators Johnnie Gray A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Department of Physics & Astronomy University College London January 15, 2019 2 3 I, Johnnie Gray, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the work. Abstract Entanglement is not only the key resource for many quantum technologies, but es- sential in understanding the structure of many-body quantum matter. At the interface of these two crucial areas are simulators, controlled systems capable of mimick- ing physical models that might escape analytical tractability. Traditionally, these simulations have been performed classically, where recent advancements such as tensor-networks have made explicit the limitation entanglement places on scalability. Increasingly however, analog quantum simulators are expected to yield deep insight into complex systems. This thesis advances the field in across various interconnected fronts. Firstly, we introduce schemes for verifying and distributing entanglement in a quantum dot simulator, tailored to specific experimental constraints. We then confirm that quantum dot simulators would be natural candidates for simulating many-body localization (MBL) - a recently emerged phenomenon that seems to evade traditional statistical mechanics. Following on from that, we investigate MBL from an entanglement perspective, shedding new light on the nature of the transi- tion to it from a ergodic regime. As part of that investigation we make use of the logarithmic negativity, an entanglement measure applicable to many-body mixed states. In order to tie back into quantum simulators, we then propose an experimental scheme to measure the logarithmic negativity in realistic many-body settings. This method uses choice measurements on three or more copies of a mixed state along with machine learning techniques. We also introduce a fast method for computing many-body entanglement in classical simulations that significantly increases the size of system addressable. Finally, we introduce quimb, an open-source library for interactive but efficient quantum information and many-body calculations. It contains general purpose tensor-network support alongside other novel algorithms. Impact Statement Quantum technologies have the potential to make a huge impact across many ar- eas of science and industry. One such technology is quantum simulation, which aims to mimic crucial models of interacting quantum particles with other, more controllable quantum systems. Such ‘many-body’ models are likely to underpin all sorts of advanced materials and chemicals that we expect will essentially always be impossible to fully simulate on normal, or ‘classical’, computers. One of the reasons that current computers find this such a hard task is entanglement – correlations between quantum components which are stronger than anything we are used to in our ‘classical’, day-to-day lives. Beyond this, entanglement is also a key perspective for understanding a myriad of outstanding problems in fundamental physics. Clearly then, tools to address questions of entanglement in this many-body setting are highly desirable, and these are a central part of what this thesis provides. One of these is experimentally viable schemes for both measuring and dis- tributing entanglement in quantum simulators. Another is a method for computing entanglement in much larger systems than has previously been possible. These tools are relevant for both quantum physicists working experimentally on quantum simula- tion or those wanting to perform classical simulations. We also use entanglement to reveal new features of a highly unusual phenomenon – many-body localization – that has attracted much attention in the condensed matter community. These col- laborations have resulted in various academic publications. Another part of this research has been the development of open-source software for tackling quantum entanglement and simulation problems. As well as being useful in this field, work on the underlying software has involved collaborations with quantum chemists and climate scientists among many others, and produced several software publications. Publications This thesis has resulted in the following publications, the first five of which form the basis for the main chapters: • Johnnie Gray, Abolfazl Bayat, Reuben K Puddy, Charles G Smith, and Sougato Bose. Unravelling quantum dot array simulators via singlet-triplet measure- ments. Phys. Rev. B, 94(19):195136, 2016 • Johnnie Gray, Sougato Bose, and Abolfazl Bayat. Many-body localization transition: Schmidt gap, entanglement length, and scaling. Phys. Rev. B, 97(20):201105, 2018 • Johnnie Gray, Leonardo Banchi, Abolfazl Bayat, and Sougato Bose. Machine- learning-assisted many-body entanglement measurement. Phys. Rev. Lett., 121(15):150503, 2018 • Johnnie Gray. Fast computation of many-body entanglement. arXiv preprint arXiv:1809.01685, 2018 • Johnnie Gray. quimb: a python library for quantum information and many- body calculations. Journal of Open Source Software, 3(29):819, 2018 • Daniel GA Smith and Johnnie Gray. opt einsum - a python package for optimizing contraction order for einsum-like expressions. Journal of Open Source Software, 3(26):753, 2018 Acknowledgements I would like to begin of course by thanking my advisor Sougato Bose, who has been a never ending supply of knowledge and ideas across such a huge range of interesting topics. He has completely made this thesis possible. A special thanks also to Abolfazl Bayat who has not only been a fantastic collaborator but offered so much practical guidance as well. I very much hope that we get to work together in the future! The CDT in delivering quantum technologies has been a great, structured, well- rounded way to approach a PhD and I would like to thank its heads, Andrew Fisher and Dan Browne, as well as its life-force, Lopa Murgai. It has been an pleasure to have done the course with such a nice cohort – Andrew, Cameron, Carlo, Claudia, Josh, Lorenzo, Sherif, Tim, and Tom – learning how to program a vending machine would not have been nearly as bearable without you. Going back further I would like to particularly thank two of my school physics teachers, Barbara “Bob” Justham and Duncan Nicholls, who sadly passed away in my first year at university. The last chat I had with Duncan in the pub was about how confusing I found ‘vectors’ after one term – I think he would have been proud at the profligate usage of them in this thesis. Both of them were enormously successful in managing to convey the essential excitement and magic of physics and that inspiration has clearly stuck with me. It goes without saying that there are many friends, too many to name, who at various points have offered such great advice and support – I am forever grateful to know such an amazing group of people. Finally, I would like to thank my family for ultimately providing everything that has made this thesis possible – they should probably take all the credit. Contents 1 Introduction 21 1.1 Quantum Simulation . 24 1.2 Entanglement . 28 1.3 Many-Body Quantum Models . 32 1.3.1 Hubbard Model . 32 1.3.2 Heisenberg Model . 33 1.4 Many-Body Quantum Phenomena . 35 1.4.1 Quantum Phase Transitions . 36 1.4.2 Equilibration & Thermalization . 37 1.4.3 Many-Body Localization . 38 1.5 Entanglement in Classical Simulations - Tensor Networks . 39 1.6 Experimental Realizations . 42 2 Unravelling Quantum Dot Array Simulators 45 2.1 Abstract . 45 2.2 Introduction . 46 2.3 Model . 49 2.4 Characterization of Simulator . 52 2.5 Quantum Phase Transition in the J1 − J2 Model . 55 2.6 Heralded entanglement of distant spins . 56 2.7 Imperfections . 58 2.8 Experimental Realization . 63 2.9 Relation to Many-Body Localization . 65 14 Contents 2.10 Conclusions . 67 3 Entanglement & the many-body localization transition 69 3.1 Abstract . 69 3.2 Introduction . 70 3.3 Model . 71 3.4 Characterizing the MBLT . 72 3.5 Scaling . 74 3.6 Sample Fluctuations . 76 3.7 Entanglement length . 77 3.8 Conclusions . 80 4 Machine-learning-assisted many-body entanglement measurement 81 4.1 Abstract . 81 4.2 Introduction . 82 4.3 Logarithmic Negativity . 83 TB 4.4 Measuring the Moments of ρAB ................... 85 4.5 Machine Learning Entanglement . 86 4.6 Training with Random States . 88 4.7 Numerical Results for Random States . 89 4.8 Numerical Results for Physical Statesb . 89 4.9 Conclusions . 90 5 Fast computation of many-body entanglement 93 5.1 Abstract . 93 5.2 Introduction . 94 5.3 Logarithmic Negativity . 95 5.4 Stochastic Lanczos Quadrature . 96 5.5 Tensor Networks & Graphical Notation . 99 5.6 Partial Trace States . 101 5.7 Matrix Product States . 103 5.8 Results . 107 Contents 15 5.8.1 Random pure states . 108 5.8.2 Scrambling in a Quench . 109 5.8.3 Heisenberg ground-state . 111 5.9 Error Analysis . 112 5.10 Discussion . 113 6 quimb - A library for quantum many-body calculations 117 6.1 The core module . 118 6.1.1 Basic representation and operations . 118 6.1.2 Multipartite states and partial traces . 120 6.1.3 Time Evolutions . 120 6.1.4 Distributed eigensolving . 121 6.1.5 Stochastic Lanczos Quadrature . 122 6.2 The tensor network module . 123 6.2.1 Tensors . 124 6.2.2 Tensor networks . 125 6.2.3 One-dimensional tensor networks . 125 6.2.4 DMRG . 128 6.2.5 TEBD . 129 6.2.6 TNSLQ . 130 7 General Conclusions 133 Appendices 137 A Appendix for ‘Entanglement & the many-body localization transition’ 137 A.1 Quality of Collapse . 137 A.2 Entanglement Length with Larger Block Size . 138 A.3 Detailed Behaviour of the Disjoint Entanglement vs. L ....... 139 B Appendix for ‘Machine-learning-assisted many-body entanglement measurement’ 141 B.1 Measuring Moments in spin-1=2 Systems .
Recommended publications
  • Testing the Quantum-Classical Boundary and Dimensionality of Quantum Systems
    Testing the Quantum-Classical Boundary and Dimensionality of Quantum Systems Poh Hou Shun Centre for Quantum Technologies National University of Singapore This dissertation is submitted for the degree of Doctor of Philosophy September 2015 Acknowledgements No journey of scientific discovery is ever truly taken alone. Every step along the way, we encounter people who are a great source of encouragement, guidance, inspiration, joy, and support to us. The journey I have embarked upon during the course of this project is no exception. I would like to extend my gratitude to my project partner on many occasion during the past 5 years, Ng Tien Tjeun. His humorous take on various matters ensures that there is never a dull moment in any late night lab work. A resounding shout-out to the ‘elite’ mem- bers of 0205 (our office), Tan Peng Kian, Shi Yicheng, and Victor Javier Huarcaya Azanon for their numerous discourses into everything under the sun, some which are possibly work related. Thank for tolerating my borderline hoarding behavior and the frequently malfunc- tioning door? I would like to thank Alessandro Ceré for his invaluable inputs on the many pesky problems that I had with data processing. Thanks for introducing me to world of Python programming. Now there is something better than Matlab? A big thanks also goes out to all of my other fellow researchers and colleagues both in the Quantum Optics group and in CQT. They are a source of great inspiration, support, and joy during my time in the group. Special thanks to my supervisor, Christian Kurtsiefer for his constant guidance on and off the project over the years.
    [Show full text]
  • Report to Industry Canada
    Report to Industry Canada 2013/14 Annual Report and Final Report for 2008-2014 Granting Period Institute for Quantum Computing University of Waterloo June 2014 1 CONTENTS From the Executive Director 3 Executive Summary 5 The Institute for Quantum Computing 8 Strategic Objectives 9 2008-2014 Overview 10 2013/14 Annual Report Highlights 23 Conducting Research in Quantum Information 23 Recruiting New Researchers 32 Collaborating with Other Researchers 35 Building, Facilities & Laboratory Support 43 Become a Magnet for Highly Qualified Personnel in the Field of Quantum Information 48 Establishing IQC as the Authoritative Source of Insight, Analysis and Commentary on Quantum Information 58 Communications and Outreach 62 Administrative and Technical Support 69 Risk Assessment & Mitigation Strategies 70 Appendix 73 2 From the Executive Director The next great technological revolution – the quantum age “There is a second quantum revolution coming – which will be responsible for most of the key physical technological advances for the 21st Century.” Gerard J. Milburn, Director, Centre for Engineered Quantum Systems, University of Queensland - 2002 There is no doubt now that the next great era in humanity’s history will be the quantum age. IQC was created in 2002 to seize the potential of quantum information science for Canada. IQC’s vision was bold, positioning Canada as a leader in research and providing the necessary infrastructure for Canada to emerge as a quantum industry powerhouse. Today, IQC stands among the top quantum information research institutes in the world. Leaders in all fields of quantum information science come to IQC to participate in our research, share their knowledge and encourage the next generation of scientists to continue on this incredible journey.
    [Show full text]
  • Physics of Information in Nonequilibrium Systems A
    PHYSICS OF INFORMATION IN NONEQUILIBRIUM SYSTEMS A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS MAY 2019 By Elan Stopnitzky Thesis Committee: Susanne Still, Chairperson Jason Kumar Yuriy Mileyko Xerxes Tata Jeffrey Yepez Copyright c 2019 by Elan Stopnitzky ii To my late grandmother, Rosa Stopnitzky iii ACKNOWLEDGMENTS I thank my wonderful family members Benny, Patrick, Shanee, Windy, and Yaniv for the limitless love and inspiration they have given to me over the years. I thank as well my advisor Susanna Still, who has always put great faith in me and encouraged me to pursue my own research ideas, and who has contributed to this work and influenced me greatly as a scientist; my friend and collaborator Lee Altenberg, whom I have learned countless things from and who contributed significantly to this thesis; and my collaborator Thomas E. Ouldridge, who also made important contributions. Finally, I would like to thank my partner Danelle Gallo, whose kindness and support have been invaluable to me throughout this process. iv ABSTRACT Recent advances in non-equilibrium thermodynamics have begun to reveal the funda- mental physical costs, benefits, and limits to the use of information. As the processing of information is a central feature of biology and human civilization, this opens the door to a physical understanding of a wide range of complex phenomena. I discuss two areas where connections between non-equilibrium physics and information theory lead to new results: inferring the distribution of biologically important molecules on the abiotic early Earth, and the conversion of correlated bits into work.
    [Show full text]
  • Quantum Aspects of Life / Editors, Derek Abbott, Paul C.W
    Quantum Aspectsof Life P581tp.indd 1 8/18/08 8:42:58 AM This page intentionally left blank foreword by SIR ROGER PENROSE editors Derek Abbott (University of Adelaide, Australia) Paul C. W. Davies (Arizona State University, USAU Arun K. Pati (Institute of Physics, Orissa, India) Imperial College Press ICP P581tp.indd 2 8/18/08 8:42:58 AM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Quantum aspects of life / editors, Derek Abbott, Paul C.W. Davies, Arun K. Pati ; foreword by Sir Roger Penrose. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-84816-253-2 (hardcover : alk. paper) ISBN-10: 1-84816-253-7 (hardcover : alk. paper) ISBN-13: 978-1-84816-267-9 (pbk. : alk. paper) ISBN-10: 1-84816-267-7 (pbk. : alk. paper) 1. Quantum biochemistry. I. Abbott, Derek, 1960– II. Davies, P. C. W. III. Pati, Arun K. [DNLM: 1. Biogenesis. 2. Quantum Theory. 3. Evolution, Molecular. QH 325 Q15 2008] QP517.Q34.Q36 2008 576.8'3--dc22 2008029345 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Photo credit: Abigail P. Abbott for the photo on cover and title page. Copyright © 2008 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
    [Show full text]
  • Quantum Information Science and Quantum Metrology: Novel Systems and Applications
    Quantum Information Science and Quantum Metrology: Novel Systems and Applications A dissertation presented by P´eterK´om´ar to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts December 2015 c 2015 - P´eterK´om´ar All rights reserved. Thesis advisor Author Mikhail D. Lukin P´eterK´om´ar Quantum Information Science and Quantum Metrology: Novel Systems and Applications Abstract The current frontier of our understanding of the physical universe is dominated by quantum phenomena. Uncovering the prospects and limitations of acquiring and processing information using quantum effects is an outstanding challenge in physical science. This thesis presents an analysis of several new model systems and applications for quantum information processing and metrology. First, we analyze quantum optomechanical systems exhibiting quantum phenom- ena in both optical and mechanical degrees of freedom. We investigate the strength of non-classical correlations in a model system of two optical and one mechanical mode. We propose and analyze experimental protocols that exploit these correlations for quantum computation. We then turn our attention to atom-cavity systems involving strong coupling of atoms with optical photons, and investigate the possibility of using them to store information robustly and as relay nodes. We present a scheme for a robust two-qubit quantum gate with inherent error-detection capabilities. We consider several remote entanglement protocols employing this robust gate, and we use these systems to study the performance of the gate in practical applications. iii Abstract Finally, we present a new protocol for running multiple, remote atomic clocks in quantum unison.
    [Show full text]
  • The Catalan Mathematical Society EMS June 2000 3 EDITORIAL
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 NEWSLETTER No. 36 DK-2800 Kgs. Lyngby, Denmark e-mail: [email protected] KRZYSZTOF CIESIELSKI June 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm, Bedlewo Meeting, Limes Project ........... 2 e-mail: [email protected] KATHLEEN QUINN Open University [address as above] Catalan Mathematical Society ........................................................................... 3 e-mail: [email protected] SPECIALIST EDITORS The Hilbert Problems ....................................................................................... 10 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Peter Deuflhard ....................................................................... 14 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Jaroslav Kurzweil ..................................................................... 16 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A Major Challenge for Mathematicians ........................................................... 20 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta EMS Position Paper: Towards a European Research Area ............................. 24
    [Show full text]
  • Quantum, Classical, and Total Amount of Correlations in a Quantum State
    PHYSICAL REVIEW A 72, 032317 ͑2005͒ Quantum, classical, and total amount of correlations in a quantum state Berry Groisman,1,* Sandu Popescu,1,2,† and Andreas Winter3,‡ 1H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom 2Hewlett-Packard Laboratories, Stoke Gifford, Bristol BS12 6QZ, United Kingdom 3Department of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom ͑Received 1 February 2005; published 13 September 2005͒ We give an operational definition of the quantum, classical, and total amounts of correlations in a bipartite quantum state. We argue that these quantities can be defined via the amount of work ͑noise͒ that is required to erase ͑destroy͒ the correlations: for the total correlation, we have to erase completely, for the quantum corre- lation we have to erase until a separable state is obtained, and the classical correlation is the maximal corre- lation left after erasing the quantum correlations. In particular, we show that the total amount of correlations is equal to the quantum mutual information, thus providing it with a direct operational interpretation. As a by-product, we obtain a direct, operational, and elementary proof of strong subadditivity of quantum entropy. DOI: 10.1103/PhysRevA.72.032317 PACS number͑s͒: 03.67.Mn, 03.65.Ud, 03.65.Yz I. INTRODUCTION 1 1 ␳ = ͉⌽+͗͘⌽+͉ + ͉⌽−͗͘⌽−͉, 2 2 Landauer ͓1͔, in analyzing the physical nature of ͑classi- cal͒ information, showed that the amount of information where stored, say, in a computer’s memory, is proportional to the 1 work required to erase the memory ͑reset to zero all the bits͒.
    [Show full text]
  • Multiple-Time States and Multiple-Time Measurements in Quantum Mechanics Yakir Aharonov Chapman University, [email protected]
    Chapman University Chapman University Digital Commons Mathematics, Physics, and Computer Science Science and Technology Faculty Articles and Faculty Articles and Research Research 2009 Multiple-Time States and Multiple-Time Measurements In Quantum Mechanics Yakir Aharonov Chapman University, [email protected] Sandu Popescu University of Bristol Jeff olT laksen Chapman University, [email protected] Lev Vaidman Tel Aviv University Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles Part of the Quantum Physics Commons Recommended Citation Aharonov, Yakir, Sandu Popescu, Jeff oT llaksen, and Lev Vaidman. "Multiple-time States and Multiple-time Measurements in Quantum Mechanics." Physical Review A 79.5 (2009). doi: 10.1103/PhysRevA.79.052110 This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Multiple-Time States and Multiple-Time Measurements In Quantum Mechanics Comments This article was originally published in Physical Review A, volume 79, issue 5, in 2009. DOI: 10.1103/ PhysRevA.79.052110 Copyright American Physical Society This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/281 PHYSICAL REVIEW A 79, 052110 ͑2009͒ Multiple-time states and multiple-time measurements in quantum mechanics Yakir Aharonov,1,2 Sandu Popescu,3,4 Jeff Tollaksen,2 and Lev Vaidman1 1Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel 2Department of Physics, Computational Science, and Engineering, Schmid College of Science, Chapman University, 1 University Drive, Orange, California 92866, USA 3H.H.
    [Show full text]
  • CURRICULUM VITA N. David Mermin Laboratory of Atomic and Solid State Physics Clark Hall, Cornell University, Ithaca, NY 14853-2501
    CURRICULUM VITA N. David Mermin Laboratory of Atomic and Solid State Physics Clark Hall, Cornell University, Ithaca, NY 14853-2501 Born: 30 March 1935, New Haven, Connecticut, USA Education: 1956 A.B., Harvard (Mathematics, summa cum laude) 1957 A.M., Harvard (Physics) 1961 Ph.D., Harvard (Physics) Positions: 1961 - 1963 NSF Postdoctoral Fellow, University of Birmingham, England 1963 - 1964 Postdoctoral Associate, University of California, San Diego 1964 - 1967 Assistant Professor, Cornell University 1967 - 1972 Associate Professor, Cornell University 1972 - 1990 Professor, Cornell University 1984 - 1990 Director, Laboratory of Atomic and Solid State Physics 1990 - 2006 Horace White Professor of Physics, Cornell University 2006 - Horace White Professor of Physics Emeritus, Cornell University Visiting Positions and Lecturerships: 1970 - 1971 Visiting Professor, Instituto di Fisica \G. Marconi," Rome 1978 - 1979 Senior Visiting Fellow, University of Sussex 1980 Morris Loeb Lecturer, Harvard University 1981 Emil Warburg Professor, University of Bayreuth 1982 Phillips Lecturer, Haverford College 1982 Japan Association for the Advancement of Science Fellow, Nagoya 1984 Walker-Ames Professor, University of Washington 1987 Welch Lecturer, University of Toronto 1990 Sargent Lecturer, Queens University, Kingston Ontario 1991 Joseph Wunsch Lecturer, the Technion, Haifa 1993 Feenberg Lecturer, Washington University, St. Louis 1993 Guptill Lecturer, Dalhousie University, Halifax 1994 Chesley Lecturer, Carleton College 1995 Lorentz Professor, University
    [Show full text]
  • Quantum Nonlocality As an Axiom
    Foundations of Physics, Vol. 24, No. 3, 1994 Quantum Nonlocality as an Axiom Sandu Popescu t and Daniel Rohrlich 2 Received July 2, 1993: revised July 19, 1993 In the conventional approach to quantum mechanics, &determinism is an axiom and nonlocality is a theorem. We consider inverting the logical order, mak#1g nonlocality an axiom and indeterminism a theorem. Nonlocal "superquantum" correlations, preserving relativistic causality, can violate the CHSH inequality more strongly than any quantum correlations. What is the quantum principle? J. Wheeler named it the "Merlin principle" after the legendary magician who, when pursued, could change his form again and again. The more we pursue the quantum principle, the more it changes: from discreteness, to indeterminism, to sums over paths, to many worlds, and so on. By comparison, the relativity principle is easy to grasp. Relativity theory and quantum theory underlie all of physics, but we do not always know how to reconcile them. Here, we take nonlocality as the quantum principle, and we ask what nonlocality and relativistic causality together imply. It is a pleasure to dedicate this paper to Professor Fritz Rohrlich, who has contributed much to the juncture of quantum theory and relativity theory, including its most spectacular success, quantum electrodynamics, and who has written both on quantum paradoxes tll and the logical structure of physical theory, t2~ Bell t31 proved that some predictions of quantum mechanics cannot be reproduced by any theory of local physical variables. Although Bell worked within nonrelativistic quantum theory, the definition of local variable is relativistic: a local variable can be influenced only by events in its back- ward light cone, not by events outside, and can influence events in its i Universit6 Libre de Bruxelles, Campus Plaine, C.P.
    [Show full text]
  • Arxiv:1708.06101V1 [Quant-Ph] 21 Aug 2017 High-Dimensional OAM States 10 B
    Twisted Photons: New Quantum Perspectives in High Dimensions Manuel Erhard,1, 2, ∗ Robert Fickler,3, y Mario Krenn,1, 2, z and Anton Zeilinger1, 2, x 1Vienna Center for Quantum Science & Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria. 2Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria. 3Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada. CONTENTS E. Stronger Violations of Quantum Mechanical vs. Local Realistic Theories 11 I. General Introduction 1 VI. Final remark 11 II. OAM of photons 2 References 11 III. Advantages of Higher Dimensional Quantum Systems 3 A. Higher Information Capacity 3 I. GENERAL INTRODUCTION B. Enhanced robustness against eavesdropping and quantum cloning 3 C. Quantum Communication without Quantum information science and quantum in- monitoring signal disturbance 4 formation technology have seen a virtual explosion D. Larger Violation of Local-Realistic world-wide. It is all based on the observation that Theories and its advantages in Quantum fundamental quantum phenomena on the individual Communication 4 particle or system-level lead to completely novel ways E. Quantum Computation with QuDits 5 of encoding, processing and transmitting information. Quantum mechanics, a child of the first third of the IV. Recent Developments in High Dimensional 20th century, has found numerous realizations and Quantum Information with OAM 5 technical applications, much more than was thought A. Creation of High Dimensional at the beginning. Decades later, it became possible Entanglement 5 to do experiments with individual quantum particles B. Unitary Transformations 6 and quantum systems.
    [Show full text]
  • 2016 Annual Report Vision
    “Perimeter Institute is now one of the world’s leading centres in theoretical physics, if not the leading centre.” – Stephen Hawking, Emeritus Lucasian Professor, University of Cambridge 2016 ANNUAL REPORT VISION To create the world's foremostcentre for foundational theoretlcal physics, uniting publlc and private partners, and the world's best scientific minds, in a shared enterprise to achieve breakthroughs that will transform ourfuture CONTENTS Welcome . .2 Message from the Board Chair . 4 Message from the Institute Director . 6 Research . .8 At the Quantum Frontier . 10 Exploring Exotic Matter . .12 A New Window to the Cosmos . .14 A Holographic Revolution . .16 Honours, Awards, and Major Grants . .18 Recruitment . 20 Research Training . .24 Research Events . 26 Linkages . 28 Educational Outreach and Public Engagement . 30 Advancing Perimeter’s Mission . .36 Blazing New Paths . 38 Thanks to Our Supporters . .40 Governance . 42 Facility . 46 Financials . .48 Looking Ahead: Priorities and Objectives for the Future . 53 Appendices . 54 This report covers the activities and finances of Perimeter Institute for Theoretical Physics from August 1, 2015, to July 31, 2016 . Photo credits The Royal Society: Page 5 Istock by Getty Images: 11, 13, 17, 18 Adobe Stock: 23, 28 NASA: 14, 36 WELCOME Just one breakthrough in theoretical physics can change the world. Perimeter Institute is an independent research centre located in Waterloo, Ontario, Canada, which was created to accelerate breakthroughs in our understanding of the cosmos. Here, scientists seek to discover how the universe works at all scales – from the smallest particle to the entire cosmos. Their ideas are unveiling our remote past and enabling the technologies that will shape our future.
    [Show full text]