WO 2015/028034 Al 5 March 2015 (05.03.2015) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2015/028034 Al 5 March 2015 (05.03.2015) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/028034 Al 5 March 2015 (05.03.2015) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A01N 53/00 (2006.01) A01N 47/02 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A01N 43/90 (2006.01) A01P 7/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A01N 57/ (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/DK20 14/050264 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 1 September 2014 (01 .09.2014) ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, PA 2013 00494 2 September 2013 (02.09.2013) DK TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: CHEMINOVA A S [DK/DK]; Thyboranvej LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 78, DK-7673 Harbo0re (DK). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (72) Inventor: 0STERGAARD, Niels; R0dem0llevej 20, DK- 7660 Bffikmarksbro (DK). Declarations under Rule 4.17 : (74) Agents: RASMUSSEN, Torben Ravn et al; Awapatent — as to applicant's entitlement to apply for and be granted a A/S, Rigensgade 11, DK-13 16 K0benhavn K (DK). patent (Rule 4.1 7(H)) (81) Designated States (unless otherwise indicated, for every Published: kind of national protection available): AE, AG, AL, AM, — with international search report (Art. 21(3)) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, o 00 (54) Title: COMBINATION OF 2,3,5, 6-TETRAFLUORO-4-METHYLBENZYL (Z)-(l R)-CIS-3-(2-CHLORO-3,3,3-TRIFLUORO-l © -PROPENYL)-2,2-DIMETHYLCYCLOPROPANECARBOXYLATE WITH AT LEAST ONE INSECTICIDE, ACARICIDE, NEMATICIDE AND/OR FUNGICIDE. o (57) Abstract: Presented are new pesticidal mixtures comprising 2,3,5, 6-tetrafluoro-4- methylbenzyl(Z)-(lR)-cis-3-(2-chloro-3,3,3- trifluoro-l-propenyl)-2,2- dimethylcyclopropanecarboxylate and one or more of compound(s) (II) which is an insecticide, acaricide, nematicide and/or fungicide. The invention relates also to methods and use of these mixtures for controlling harmful pests such as o insects, arachnids, nematodes and fungie.g.in and on plants, and for protecting such plants being infested with pests and also for pro - tecting seeds. COMBINATION OF 2,3,5,6-TETRAFLUORO-4-METHYLBENZYL (Z)-(1 R)-CIS-3-(2-CHLORO-3,3,3-TRIFLUORO-1 -PROPENYL)-2,2-DIMETHYLCYCLOPROPANECARBOXYLATE WITH AT LEAST ONE INSECTICIDE, ACARICIDE, NEMATODE AND/OR FUNGICIDE Introduction The invention relates to new pesticidal mixtures comprising a pyrethroid compound (I) which is 2,3,5,6-tetrafluoro-4-methylbenzyl (Z)-(\R)-cis-3-(2- chloro-3,3,3-trifluoro-l-propenyl)-2,2-dimethylcyclopropanecarboxylate and one or more compounds (II) chosen among insecticides, acaricides, nematicides and/or fungicides. The invention relates also to a method and use of these mixtures for controlling harmful pests (e.g. insects, arachnids, nematodes and fungi) e.g. in and on plants and non-crops, and for protecting such plants being infested with pests and also for protecting seeds. Background One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control. Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests. There also exists the need for pest control agents that combine knock-down activity with prolonged control, that is, fast action with long lasting action. Another difficulty in relation to the use of pesticides is that the repeated and exclusive application of an individual pesticidal compound leads in many cases to a rapid selection of pests which have developed natural or adapted resistance against the active compound in question. Therefore there is a need for pest control agents that help prevent or overcome resistance. It was therefore an object of the present invention to provide pesticidal mixtures which solves at least one of the discussed problems such as reducing the dosage rate, enhancing the spectrum of activity or combining knock-down activity with prolonged control or as to resistance management. It has been found that this object is in part or in whole achieved by the combination of active compounds defined at the outset. Moreover, it has been found that simultaneous, that is joint or separate, application of an active compound (I) and one or more compounds (II) or successive application of an active compound (I) and one or more compounds (II) allows enhanced control of pests compared to the control rates that are possible with the individual compounds. The pesticidal active compound tefluthrin is a racemic mixture comprised of mainly two isomers out of 8 possible due to the Z/E configuration on the vinyl group and the two chiral centers on the cyclopropane ring (IRS, RS , i.e. present in the molecule 2,3,5,6-tetrafluoro-4-methylbenzyl 3-(2-chloro-3,3,3- trifluoro-l-propenyl)-2,2-dimethylcyclopropanecarboxylate. One of these 8 isomers being the compound (I). Tefluthrin is primarily a mixture of the two compounds (Z)-( \R)-cis-3 -(2-chloro-3,3,3-trifluoro- 1-propenyl)-2,2- dimethylcyclopropanecarboxylate and (Z)-(l,S)-czs-3-(2-chloro-3,3,3-trifluoro-l- propenyl)-2,2-dimethylcyclopropanecarboxylate; i.e. two cis-isomers. On a commercial scale, tefluthrin is produced according to methods that provide such mixture, and the single most active isomer is not easily separated. The use of tefluthrin in crop protection is well known e.g. as described in British Crop Protection Conference Pests and Diseases,(l), p . 97-106 (1986). It is known that the pesticidal effect of tefluthrin is found primarily in one of the isomers, i.e. compound (I), as described in British Crop Protection Conference Pests and Diseases, (1), p . 199-206 (1986). One would expect that when combining tefluthrin with another pesticide, the same combination would require approximately half the amount of the most active isomer (i.e. compound (I)) to provide the same pesticidal effect. However, it has now surprisingly been found that an improved effect is observed when substituting tefluthrin (including any of the other isomers) with the compound (I), preferably substantially free of any of the others isomers of 2,3,5,6-tetrafluoro-4-methylbenzyl 3-(2-chloro- 3,3,3-trifluoro-l-propenyl)-2,2-dimethylcyclopropanecarboxylate. That is, it has been found that an improved synergistic effect is present for pesticidal mixtures comprising the compound (I) over the same mixtures comprising tefluthrin. The unexpected finding has several important implications, e.g. both economical but also environmental in that the pesticidal mixtures as herein described preferably need only to be applied at a lower dose and advantageously without the presence of potentially detrimental isomers. It is a standard demand in crop protection to achieve an optimal effect with active ingredients at the lowest dosage rate required while simultaneously keeping the pollution of the environment as low as possible. Description of the invention The present invention relates to a mixture comprising compound (I) which is 2,3,5,6-tetrafluoro-4-methylbenzyl (Z)-(\R)-cis-3-(2-chloro-3,3,3-trifluoro- 1- propenyl)-2,2-dimethylcyclopropanecarboxylate and one or more compound(s) (II) which is either an insecticide, nematicide, acaricide or fungicide. One aspect of the invention relates to a mixture comprising, as pesticidal active ingredients, the compound (I) and just one other compound (II) which is an insecticide, nematicide, acaricide or fungicide, i.e. a mixture containing the compound (I) and one other compound (II) which is an insecticide, nematicide, acaricide or fungicide as the sole active ingredients. Preferably the compound (II) is an insecticide, nematicides or acaricide and most preferably an insecticide or acaricide. Another apect of the invention relates to a mixture comprising, as pesticidal active ingredients, the compound (I) and just two other compounds (II) which are selected among insecticides, nematicides, acaricides and/or fungicides, i.e. a mixture containing the compound (I) and two other compounds (II) which are selected among insecticides, nematicides, acaricides and/or fungicides as the sole active ingredients. Preferably at least one of the two compounds (II) is a insecticide or an acaricide. More preferably the second of the two compounds (II) is chosen among insecticides, nematicides or acaricides; with insecticides and acaricides being of particular use. In another aspect the two compounds (II) are both insecticides, nematicides, acaricides or fungicides, more preferably the two compounds (II) are both insecticides, nematicides or acaricides and most preferably the two compounds (II) are both insecticides or acaricides.
Recommended publications
  • Orthoptera: Ensifera) in Rajshahi City, Bangladesh Shah HA Mahdi*, Meherun Nesa, Manzur-E-Mubashsira Ferdous, Mursalin Ahmed
    Scholars Academic Journal of Biosciences Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Zoology Journal homepage: https://saspublishers.com/sajb/ Species Abundance, Occurrence and Diversity of Cricket Fauna (Orthoptera: Ensifera) in Rajshahi City, Bangladesh Shah HA Mahdi*, Meherun Nesa, Manzur-E-Mubashsira Ferdous, Mursalin Ahmed Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh DOI: 10.36347/sajb.2020.v08i09.003 | Received: 06.09.2020 | Accepted: 14.09.2020 | Published: 25.09.2020 *Corresponding author: Shah H. A. Mahdi Abstract Original Research Article The present study was done to assess the species abundance, monthly occurrence and diversity of cricket fauna (Orthoptera: Ensifera) in Rajshahi City, Bangladesh. A total number of 283 individuals of cricket fauna were collected and they were identified into three families, six genera and seven species. The collected specimens belonged to three families such as Gryllidae (166), Tettigoniidae (59) and Gryllotalpidae (58). The seven species and their relative abundance were viz. Gryllus texensis (36.40%), Gryllus campestris (18.37%), Lepidogryllus comparatus (3.89%), Neoconocephalus palustris (9.89%), Scudderia furcata (4.95%), Montezumina modesta (6.01%) and Gryllotalpa gryllotalpa (20.49%). Among them, highest population with dominance was Gryllus texensis (103) and lowest population was Lepidogryllus comparatus (11). Among the collected species, the status of Gryllus texensis, Gryllus campestris and Gryllotalpa gryllotalpa were very common (VC); Neoconocephalus palustris and Montezumina modesta were fairly common (FC) and Lepidogryllus comparatus and Scudderia furcata were considered as rare (R). Base on monthly occurrence 2 species of cricket were found throughout 12 months, 2 were 9-11 months, 2 were 6-8 months and 1 was 3-5 months.
    [Show full text]
  • Evaluation of 99 Pesticide Residues in Major Agricultural Products
    foods Article Evaluation of 99 Pesticide Residues in Major Agricultural Products from the Western Highlands Zone of Cameroon Using QuEChERS Method Extraction and LC-MS/MS and GC-ECD Analyses Joseph H. Y. Galani 1,2,* , Michael Houbraken 2, Abukari Wumbei 2 , Joseph F. Djeugap 3, Daniel Fotio 4 and Pieter Spanoghe 2 1 Department of Agriculture and Veterinary Medicine, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon 2 Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; [email protected] (M.H.); [email protected] (A.W.); [email protected] (P.S.) 3 Department of Plant Protection, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 222, Dschang, Cameroon; [email protected] 4 Inter-States Pesticides Committee of Central Africa, P.O. Box 16344, Yaounde, Cameroon; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +237-674244181 Received: 17 October 2018; Accepted: 6 November 2018; Published: 7 November 2018 Abstract: There is no information available on pesticide residue levels in major food commodities harvested in Cameroon, especially from the western highlands region, the food basket of the country. Hence, this study evaluated the residues of 99 pesticides in 72 samples of 12 agricultural products collected in the region, using QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method extraction, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography with electron capture detection (GC-ECD). This method was suitable for detecting the targeted compounds: For 81 pesticides by LC-MS/MS, the limit of quantification (LOQ) was between 0.0004 and 0.0537 mg/kg; and for 18 halogenated pesticides by GC-ECD, it ranged from 0.0012 to 0.2180 mg/kg.
    [Show full text]
  • Nematicide/Insecticide
    PULL HERE TO OPEN RESTRICTED USE PESTICIDE DUE TO TOXICITY FOR RETAIL SALE TO AND USE ONLY BY CERTIFIED APPLICATORS OR PERSONS UNDER THEIR DIRECT SUPERVISION, AND ONLY FOR THOSE USES COVERED BY THE CERTIFIED APPLICATOR’S CERTIFICATION. Nematicide/Insecticide A Seed Treatment Product to Protect Corn Seedlings from Early Season Nematode and Insect Damage For use only in Syngenta-certified corn seed treatment facilities and only in seed treatment equipment with closed transfer and application systems. Not for use in hopper box, planter box, slurry box, or other farmer-applied applications. Active Ingredients: Abamectin (CAS No. 65195-56-4 and No. 65195-55-3) 11.3% Thiamethoxam (CAS No. 153719-23-4) 14.2% Other Ingredients: 74.5% Total: 100.0% *1 fluid ounce of Avicta Duo 250 Corn contains 3.72 grams of abamectin and 4.65 grams of thiamethoxam. KEEP OUT OF REACH WARNING/AVISO OF CHILDREN. Si usted no entiende la etiqueta, busque a alguien para que se la explique a usted en detalle. (If you do not understand the label, find someone to explain it to you in detail.) See additional precautionary statements and directions for use in booklet. EPA Reg. No. 100-1353 EPA Est. 100-NE-001 15 gallons SCP 1353B-L1 1009 Net Contents FIRST AID If inhaled • Move person to fresh air. • If person is not breathing, call 911 or an ambulance, then give artificial respiration, preferably by mouth-to-mouth, if possible. • Call a poison control center or doctor for further treatment advice. If swallowed • Call poison control center or doctor immediately for treatment advice.
    [Show full text]
  • Manual for Certificate Course on Plant Protection & Pesticide Management
    Manual for Certificate Course on Plant Protection & Pesticide Management (for Pesticide Dealers) For Internal circulation only & has no legal validity Compiled by NIPHM Faculty Department of Agriculture , Cooperation& Farmers Welfare Ministry of Agriculture and Farmers Welfare Government of India National Institute of Plant Health Management Hyderabad-500030 TABLE OF CONTENTS Theory Practical CHAPTER Page No. class hours hours I. General Overview and Classification of Pesticides. 1. Introduction to classification based on use, 1 1 2 toxicity, chemistry 2. Insecticides 5 1 0 3. fungicides 9 1 0 4. Herbicides & Plant growth regulators 11 1 0 5. Other Pesticides (Acaricides, Nematicides & 16 1 0 rodenticides) II. Pesticide Act, Rules and Regulations 1. Introduction to Insecticide Act, 1968 and 19 1 0 Insecticide rules, 1971 2. Registration and Licensing of pesticides 23 1 0 3. Insecticide Inspector 26 2 0 4. Insecticide Analyst 30 1 4 5. Importance of packaging and labelling 35 1 0 6. Role and Responsibilities of Pesticide Dealer 37 1 0 under IA,1968 III. Pesticide Application A. Pesticide Formulation 1. Types of pesticide Formulations 39 3 8 2. Approved uses and Compatibility of pesticides 47 1 0 B. Usage Recommendation 1. Major pest and diseases of crops: identification 50 3 3 2. Principles and Strategies of Integrated Pest 80 2 1 Management & The Concept of Economic Threshold Level 3. Biological control and its Importance in Pest 93 1 2 Management C. Pesticide Application 1. Principles of Pesticide Application 117 1 0 2. Types of Sprayers and Dusters 121 1 4 3. Spray Nozzles and Their Classification 130 1 0 4.
    [Show full text]
  • Orthoptera: Gryllotalpidae)
    3613 The Journal of Experimental Biology 211, 3613-3618 Published by The Company of Biologists 2008 doi:10.1242/jeb.023143 Hearing and spatial behavior in Gryllotalpa major Saussure (Orthoptera: Gryllotalpidae) Daniel R. Howard1,2,*, Andrew C. Mason2 and Peggy S. M. Hill1 1University of Tulsa, Faculty of Biological Sciences, 600 South College, Tulsa, OK 74104, USA and 2University of Toronto Scarborough, Department of Life Sciences, 1265 Military Trail, Scarborough, ON, M1C 1A4, Canada *Author for correspondence (e-mail: [email protected]) Accepted 23 September 2008 SUMMARY The prairie mole cricket (Gryllotalpa major Saussure) is a rare orthopteran insect of the tallgrass prairie ecosystem of the south central USA. Populations are known to currently occupy fragmented prairie sites in Oklahoma, Arkansas, Kansas and Missouri, including The Nature Conservancyʼs Tallgrass Prairie Preserve in north central Oklahoma. Prairie mole cricket populations were surveyed at this site and at another site in Craig County, OK during the spring of 2005 and 2006, using the male cricketʼs acoustic call to locate advertising aggregations of males. Five males from one large aggregation were removed in a study to describe (1) the hearing thresholds across the callʼs range of frequencies, (2) the distances over which the higher harmonic components of the maleʼs calls are potentially detectable, (3) the speciesʼ sensitivity to ultrasound and (4) the spatio-auditory dynamics of the prairie mole cricket lek. Results indicate that G. major has a bimodal pattern of frequency tuning, with hearing sensitivities greatest at the 2 kHz carrier frequency (41 dB SPL) and declining through the callʼs frequency range (84 dB at 10 kHz).
    [Show full text]
  • MOCAP® 15% Granular Nematicide-Insecticide
    MOCAP® 15% Granular Nematicide-Insecticide EPA Reg. No. 264-457 Bayer CropScience LP P.O. Box 12014 2 T.W. Alexander Drive Use Directions for: Mints Research Triangle Park, North Carolina 27709 1-866-99BAYER (1-866-992-2937) http://www.bayercropscienceus.com Supplemental Label RESTRICTED USE PESTICIDE ACUTE DERMAL TOXICITY For retail sale to and use only by Certified Applicators or persons under the direct supervision of a Certified Applicator, and only for those uses covered by the Certified Applicator's certification. MOCAP® 15% Granular Nematicide-Insecticide DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling. Read this label and the product package label before using this product. This Supplemental Label must be in possession of the user at the time of pesticide application. Follow all applicable directions, restrictions, Worker Protection Standard requirements, and precautions on the registered product label. MINT POUNDS OF MOCAP® 15% GRANULAR APPLICATION PEST CONTROLLED BROADCAST PER ACRE APPLICATION DIRECTIONS TIMING New Mint: Symphylans 20 Broadcast over the field and incorporate into the soil to Apply preplant a depth of at least 2 to 4 inches, during or immediately Nematodes 40 following application by mechanical means, including by rotary tiller, rotary hoe, springtooth harrow, or by double Mint Symphylans 20 discing, or by immediate application of 1 to 2 inches of Apply after last Mint Root Borer overhead irrigation. Repeat irrigation before soil dries. harvest of the growing Nematodes 40 season RESTRICTIONS AND PRECAUTIONS FOR MINT • Make only 1 MOCAP® 15G application per growing season (either preplant, or after last harvest of the growing season).
    [Show full text]
  • Supplement of Hydrol
    Supplement of Hydrol. Earth Syst. Sci., 22, 2717–2737, 2018 https://doi.org/10.5194/hess-22-2717-2018-supplement © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Long-term temporal trajectories to enhance restoration efficiency and sustainability on large rivers: an interdisciplinary study David Eschbach et al. Correspondence to: David Eschbach ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Table S1. Physico-chemical characteristics of 38 legacy and modern organic chemical pollutants (including 30 pesticides, the hexachlorobenzene and 7 polychlorinated biphenyls) a -1 a a Name Famille Type Solubility (mg.L ) KOC DT50 In water at 20°C (mg.L-1) [L.kg-1 of carbon] [Days] (2-Hydroxy)-terbutilazine Triazine Herbicide, microbiocide, Algicide 6.6 230.7944162 75.1 (Beta-)endosulfan organochlorine Insecticide 0.32 11500 50 2, 4 DDT Organochlorine Insecticide 0.006 151000 6200 4, 4 DDT Organochlorine Insecticide 0.006 151000 6200 Atrazine Triazine Herbicide 35 100 75 Atrazine-Desethyl Transformation product Transformation product - 24b 238b Azinphos-ethyl Organophosphate Insecticide/acaricide 4.5 1500 50 Carbendazime Benzimidazole Fungicide 8 264 40 Carbofuran Carbamate Insecticide, Nematicide, Acaricide 322 276 29 Chloropyrifos-methyle Organophosphate Insecticide/acaricide 2.74 4645 3 Chlorothalonil chloronitrile fongicide 0.81 850 22 Chlorpyrifos-ethyl Organophosphate Insecticide 1.05 8151 50 Cyproconazole Triazole
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • US EPA, Pesticide Product Label, ACTINOVATE STP FUNGICIDE,11/08/2017
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION November 8, 2017 J. Austin Burns, Ph.D. Regulatory Affairs Manager Monsanto Company 1300 I Street, NW Suite 450 East Washington, D.C. 20005 Subject: Non-PRIA (Pesticide Registration Improvement Act) Labeling and Formulation Amendment – Add nematicide applications to the label, add an alternate brand name to the label, update an inert ingredient description on the basic confidential statement of formula (CSF), and make other changes to the label and basic CSF (including those requested by the EPA) (e.g., clarify the application rates) Product Name: Actinovate STP Fungicide EPA Registration Number: 524-643 Date of Applications: April 4, 2017 OPP Decision Numbers: 528593 and 528594 Dear Dr. Burns: The amended labeling and Confidential Statement of Formula (CSF) referred to above, submitted in connection with registration under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as amended, are acceptable. This non-PRIA amendment includes a change proposed in a labeling notification (OPP Decision No. 528594). The alternate brand name Actinovate STP Fungicide / Nematicide has been added to the registration, and our records have been updated accordingly. This approval does not affect any terms or conditions that were previously imposed on this registration. You continue to be subject to existing terms or conditions on your registration and any deadlines connected with them. Please note that the record for this product currently contains the following acceptable CSF: x Basic CSF dated 10/05/2017 Any CSFs other than that listed above are superseded/no longer valid.
    [Show full text]
  • Rep12/Pr Joint Fao/Who Food Standards Programme
    E REP12/PR JOINT FAO/WHO FOOD STANDARDS PROGRAMME CODEX ALIMENTARIUS COMMISSION 35th Session Geneva, Switzerland, 2 – 7 July 2012 REPORT OF THE 44th SESSION OF THE CODEX COMMITTEE ON PESTICIDE RESIDUES Shanghai, China, 23 - 28 April 2012 Note: This report includes Codex Circular Letter CL 2012/10-PR. E CX 4/40.2 CL 2012/10-PR May 2012 To: - Codex Contact Points - Interested International Organizations From: Secretariat, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, E-mail: [email protected], Fax: +39 06 57054593) Viale delle Terme di Caracalla, 00153 Rome, Italy SUBJECT: DISTRIBUTION OF THE REPORT OF THE 44TH SESSION OF THE CODEX COMMITTEE ON PESTICIDE RESIDUES (REP11/PR) The report of the 44th Session of the Codex Committee on Pesticide Residues will be considered by the 35th Session of the Codex Alimentarius Commission (Rome, Italy, 2 – 7 July 2012). PART A: MATTERS FOR ADOPTION BY THE 35TH SESSION OF THE CODEX ALIMENTARIUS COMMISSION: 1. Draft Maximum Residue Limits for Pesticides at Step 8 (paras. 28 - 85 and Appendix II); 2. Draft Revision to the Codex Classification of Food and Animal Feed (fruit commodity groups) at Step 8 (para. 107 and Appendix VIII); 3. Draft Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides to Commodity Groups (including Table 1: Examples of the selection of representative commodities - fruit commodity groups) at Step 8 (para. 127 and Appendix XI); and 4. Proposed Draft Maximum Residue Limits for Pesticides at Step 5/8 (with omission of Steps 6/7) (paras.
    [Show full text]
  • Nwjz 141206 Jafari.Pdf
    NORTH-WESTERN JOURNAL OF ZOOLOGY 11 (1): 58-61 ©NwjZ, Oradea, Romania, 2015 Article No.: 141206 http://biozoojournals.ro/nwjz/index.html Acoustic burrow structures of European mole crickets, Gryllotalpa gryllotalpa (Orth.: Gryllotalpidae) in Northwestern Iran Shabnam JAFARI¹, Mohammad Hossein KAZEMI¹ and Hossein LOTFALIZADEH²,* 1. Department of Plant Protection, Tabriz branch, Islamic Azad University, Tabriz, Iran. 2. Department of Plant Pests and Diseases, Agricultural and Natural Resources Research Center of East Azarbaijan, Tabriz, Iran. * Corresponding author, H. Lotfalizadeh, Email: [email protected] Received: 7. April 2014 / Accepted: 1. July 2014 / Available online: 01. January 2015 / Printed: June 2015 Abstract. The acoustic chambers of the European mole cricket Gryllotalpa gryllotalpa (L., 1758) were studied in the north-west of Iran. Observations showed that all the calling burrows in this area had one horn shape entrance and branching tunnels beyond the bulb (the site of the head and thorax of insect in calling position). The patterns of these burrows were alike; however, the sizes of different parts of tunnels were dependent on the dimension of males. This is the first report of a single entrance calling chamber for European mole cricket. Key words: acoustic chambers, calling song, horn shape, European Mole Cricket. Introduction about half an hour (15-46 min) (Kazemi et al. 2012). The Gryllotalpidae (Orthoptera) includes seven Mole crickets are burrowing insects and exca- recent genera with over 100 species in the world vate different types of tunnels during their life- (Eades et al. 2014, Walker & Moore 2014). The ge- times. Endo (2007) divided the tunnels of mole nus Gryllotalpa was once thought to be distributed crickets in to horizontal and vertical ones.
    [Show full text]
  • Pesticide Resistance in Bed Bugs Everywhere!!!!!
    2/24/2018 Pesticide Resistance in Bed bugs were virtually eradicated from the U.S. in Bed Bugs the post WWII era due to DDT and other powerful Shujuan (Lucy) Li insecticides. University of Arizona Alvaro Romero New Mexico State University 2 By the 1960s, bed bugs had developed resistance Public housing Apartments to DDT, methoxychlor and analogues, BHC, Schools dieldrin and analogues , and pyrethrins ( Busvine 1958, Hospitals Nursing homes Cwilich & Mer 1957, Mallis and Miller 1964 ) . Homes Transportation Child care Medical facilities Hotels & motels Health care facilities Airports Movie theaters Department stores Products, vendors, or commercial services mentioned or pictured in this seminar are for Everywhere!!!!! illustrative purposes only and are not meant to be endorsements. 3 4 University of Arizona; Arizona Pest Management Center 1 2/24/2018 Possible reasons for treatment failure? Missed some Clutter Reintroduction Have you seen these after treatments? 5 6 Dose - response assays for field - collected strains Bed bugs survived direct insecticide sprays 99 deltamethrin 90 Ft. Dix F1 50 ) e l a c 10 s t CIN1 i b o 1.0 r p ( y t i l a t r 99 - cyhalothrin o m e 90 g a t n Resistance ratio (RR) at least 6,000 !!! e c Ft. Dix r 50 e P 10 CIN1 Suspend® ( Deltamethrin ) 1.0 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 Treatment (mg active ingredient/cm 2 ) Products, vendors, or commercial services mentioned or pictured in this seminar are for illustrative purposes only and are not meant Romero et al.
    [Show full text]