The Diplopoda

Total Page:16

File Type:pdf, Size:1020Kb

The Diplopoda -» VIII * THE DIPLOPODA THE diplopods are distinguished from all other arthropods by the fact that most of their body segments are "double" and, as implied in the group name, carry each two pairs of legs. The double nature of the segments is evident not only from their two pairs of legs but also in the presence of two pairs of ganglionic centers in the ventral nerve cord, two pairs of lateral pouches of the male gonads, and two pairs of cardiac ostia and alary muscles. The double segments are termed diplosomites. Since it would seem most probable that the diplopods have been derived from ancestors having single segments, it may be supposed that the diplosomites represent two primitive segments united; in their ontogenetic development, as shown by PHugfelder (1932), the double segments are formed from two con­ secutive sets of somite rudiments that are not differentiated into separate segments. It is not clear what advantage the diplopods have gained from having two pairs of legs on each functional seg­ ment, or, otherwise stated, in having the segments united in pairs. By comparison with the agile chilopods, they are sluggish creatures, their gait is a leisurely crawl, and they make no effort to escape capture. Their curious organization, however, gives the diplopods a distinctive place among the arthropods. In certain features of the head and the mandibles the diplopods are evidently related to the chilopods, while, on the other hand, there is little doubt that they are allied to the pauropods and the symphylids. The four groups, therefore, have generally been classed together as the Myriapoda. The Diplopoda, Pauropoda, and Sym­ phyla, however, differ from the Chilopoda in that the genital open- 225 ARTHROPOD ANATOMY ings are near the anterior end of the body, instead of at the posterior end. They are hence distinguished as the Progoneata, or progoneate myriapods, in contrast to the opisthogoneate chilopods. It is possible, however, that the progoneate condition is not primary, since Tiegs ( 1940 ) has shown that there is evidence in the ontogenetic develop­ ment of the symphylids of a primitive posterior connection of the genital ducts with the exterior. The definitive anterior exit ducts, he says (1947 ), in both Pauropoda and Symphyla are not persisting coelomoducts but ectodermal ingrowths. The class Diplopoda includes a large number of species, which taxonomists divide into three principal groups : the Pselaphognatha, the Opisthandria, and the Proterandria. The Pselaphognatha are mi­ nute forms comprised in the family Polyxenidae, having not more than 13 body segments, and are recognizable by the presence of large tufts of hair on the back and sides of the body. The Opisthandria are of larger size, and the males are characterized by having the last pair or the last two pairs of legs modified as clasping organs by which the male in copulation holds the female, while he places the sperm in her genital openings by means of his mandibles. The Proterandria include most of the more common types of diplopods; their distin­ guishing feature is the modification in the male of one pair or both pairs of legs, usually on the seventh body segment, to serve as the functional intromittent organs, termed gonopods, by which the sperm is transferred from the male genital openings on the third body segment to the receptacles of the female on the corresponding seg­ ment. The Proterandria are divided into four orders : the Polydes­ moidea, the Nematophora, the Juliformia, and the Colobognatha. Representatives of the Polydesmoidea and the Juliformia will be described here as examples of the more familiar types of diplopods. For a full account of the structure and classification of the diplopods the student is referred to the comprehensive works of Silvestri (1903 ), Verhoeff (1926-1931 ), and Attems (1926b). The diplopods feed principally on decaying vegetable matter, particularly on the dead leaves of certain kinds of trees and shrubs; fresh leaves and fruit they seldom eat, and carnivorous habits have been observed only in members of one family, which are said to at­ tack earthworms and phalangids. The alimentary canal is a wide, simple tube extending straight through the body, and has a single pair of excretory Malpighian vessels arising from the anterior end 226 THE DIPLOPODA of the proctodaeum. Salivary glands of the anterior part of the head open into the preoral cavity through the epipharyngeal wall, and glands in the anterior region of the body discharge on the base of the inner wall of the gnathochilarium. A distinctive feature of the diplopods is the nature of the respira­ tory system. The breathing organs are bundles of tracheae given off from hollow sternal apodemes that are open to the exterior by apertures called spiracles, closely associated with the bases of the legs. Descriptions of the apodemes and tracheae of various diplo­ pod genera will be found in papers by Effenberger (1907), Ziegler ( 1907), Krug (1907), Wernitzsch (1910), Reinecke (1910), Voges ( 1916), Ripper (1931 ), and Seifert (1932). In general, the tracheae are fine, unbranched tubes, with spiral taenidia, and do not unite with each other, but in the Polyxenidae and Glomeridae they are branched. The apodemes, which are variously developed, serve also for the attachment of the leg muscles, and usually the apodemes of the first three body segments have no tracheae. It seems probable that the apodemes were developed originally for muscle attachments; the spiracles of the diplopods evidently can have no relation to the lateral spiracles of the chilopods and insects. In their mode of development the diplopods are anamorphic, as are the Scutigeromorpha and Lithobiomorpha among the chilopods. The young of most species leave the egg with only three pairs of legs, which are the first three pairs of the adult, and have not more than seven body segments. The definitive segmentation is acquired gradually at the subsequent moults, accompanied by an increase in the number of legs. The new segments are formed in a zone of growth at the posterior end of the body, which remains active throughout life. Inasmuch as adult diplopods of different groups differ much in the number of body segments, the anamorphic pro­ gression of segment formation is not the same in all of them. A de­ tailed account of the manner of segment generation in the zone of growth is given by PHugfelder (1932). The postembryonic develop­ ment of lulus is described by Krug (1907), that of several species of Polydesmoidea by Miley (1927), PHugfelder (1932), and Seifert ( 1932), and a general account of diplopod anamorphosis is given by Attems (1926b). Each successive stage of growth is accompanied by a moult, preliminary to which the young diplopod encloses itself in an earthen nest. At each moult the head capsule of the exuviae is 227 ARTHROPOD ANATOMY disarticulated from the body, and ecdysis is accomplished by the animal's crawling out of the old cuticle of the trunk. Miley (1927) observes that in Euryurus the shed cuticle is "split down the mid­ ventral line and also somewhat laterally, just above the articulation of the legs on one side or on both sides." The Head and the Mouth Parts The diplopod head (fig. 63 ) is strongly convex above (D) and Battened beneath. Eyes are present in some forms (C, D) and ab­ sent in others (A). The antennae arise well back from the anterior margin, so that before them is a wide epistomal area (A, D, Epst ) , but the latter is in no way specifically separated from the rest of the cranial wall. With the margin of the epistome is united the nar­ row, dentate labrum (A, C, Lm). On the sides of the head are the large, convex bases of the mandibles (A, B, C, D, mdB ), and the ventral surface of the head is covered by a broad Hat appendage known as the gnathochilarium (B, D, Gnch). The antennae are seven-segmented appendages (A, Ant), as are the legs, and each segment is individually musculated. The eyes, when present, have superficially the appearance of compound eyes (C, D), but they are merely groups of simple eyes like those of the chilopods, as seen at F, C, and H on figure 69. Postantennal organs of Tomosvary are present in most of the diplopods, except Juliformia and Colobognatha. In some forms the sensory cells lie beneath open pits or grooves; in others they are en­ tirely covered by the cuticle. In the polydesmoids each organ is marked externally by an oval groove of the cuticle with a thickened central disc (fig. 63 A, OT); the sense cells lie beneath the groove and have no communication with the exterior. Beneath the epistome (fig. 63 F, Epst) is a long palatal, or epipharyngeal, surface (Ephy ) which extends posteriorly from the labrum (Lm) to the mouth (Mth ) and forms the roof of a large preoral food cavity (Pre ) closed ventrally by the gnathochilarium. At the base of the inner surface of the gnathochilarium is a group of Battened suboral lobes that constitute the hypopharynx (Hphy ) , which in the diplopods does not have the form of a projecting tongue­ like organ, such as that of the chilopods and insects. The preoral cavity is occupied mostly by the gnathal lobes of the mandibles, which close against the hypopharynx. The epipharyngeal surface 228 THE DIPLOPODA usually presents a transverse ridge behind the labrum (E) and a low median elevation. The segmental composition of the diplopod head is a subject on �r, m l ' I' /.� Ephy c�_/ E Poe D �--,r-_ Mth meR/ E pI;"y \ Ep�t " Lm-_ Fig. 63. Diplopoda-Polydesmoidea and Juliformia. The head. A, Apheloria coriacea (Koch ), head, anterior. B, Habrostrepus sp., head, ven­ tral.
Recommended publications
  • Supra-Familial Taxon Names of the Diplopoda Table 4A
    Milli-PEET, Taxonomy Table 4 Page - 1 - Table 4: Supra-familial taxon names of the Diplopoda Table 4a: List of current supra-familial taxon names in alphabetical order, with their old invalid counterpart and included orders. [Brackets] indicate that the taxon group circumscribed by the old taxon group name is not recognized in Shelley's 2003 classification. Current Name Old Taxon Name Order Brannerioidea in part Trachyzona Verhoeff, 1913 Chordeumatida Callipodida Lysiopetalida Chamberlin, 1943 Callipodida [Cambaloidea+Spirobolida+ Chorizognatha Verhoeff, 1910 Cambaloidea+Spirobolida+ Spirostreptida] Spirostreptida Chelodesmidea Leptodesmidi Brölemann, 1916 Polydesmida Chelodesmidea Sphaeriodesmidea Jeekel, 1971 Polydesmida Chordeumatida Ascospermophora Verhoeff, 1900 Chordeumatida Chordeumatida Craspedosomatida Jeekel, 1971 Chordeumatida Chordeumatidea Craspedsomatoidea Cook, 1895 Chordeumatida Chordeumatoidea Megasacophora Verhoeff, 1929 Chordeumatida Craspedosomatoidea Cheiritophora Verhoeff, 1929 Chordeumatida Diplomaragnoidea Ancestreumatoidea Golovatch, 1977 Chordeumatida Glomerida Plesiocerata Verhoeff, 1910 Glomerida Hasseoidea Orobainosomidi Brolemann, 1935 Chordeumatida Hasseoidea Protopoda Verhoeff, 1929 Chordeumatida Helminthomorpha Proterandria Verhoeff, 1894 all helminthomorph orders Heterochordeumatoidea Oedomopoda Verhoeff, 1929 Chordeumatida Julida Symphyognatha Verhoeff, 1910 Julida Julida Zygocheta Cook, 1895 Julida [Julida+Spirostreptida] Diplocheta Cook, 1895 Julida+Spirostreptida [Julida in part[ Arthrophora Verhoeff,
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • Gonopod Mechanics in Centrobolus Cook (Spirobolida: Trigoniulidae) II
    Journal of Entomology and Zoology Studies 2016; 4(2): 152-154 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2016; 4(2): 152-154 Gonopod mechanics in Centrobolus Cook © 2016 JEZS (Spirobolida: Trigoniulidae) II. Images Received: 06-01-2016 Accepted: 08-02-2016 Mark Ian Cooper Mark Ian Cooper A) Department of Biological Sciences, Private Bag X3, Abstract University of Cape Town, Gonopod mechanics were described for four species of millipedes in the genus Centrobolus and are now Rondebosch 7701, South Africa. figured using scanning electron microscopy (SEM) with the aim to show the mechanism of sperm B) Electron Microscope Unit & Structural Biology Research competition. Structures of sperm displacement include projections on a moveable telopodite and tips on a Unit, University of Cape Town, distal process (opisthomerite). Three significant contact zones between the male and female genitalia South Africa. were recognized: (1) distal telopodite of the coleopod and the vulva, (2) phallopod and the bursa, (3) sternite and legs of the female. Keywords: coleopods, diplopod, gonopods, phallopods 1. Introduction The dual function of millipede male genitalia in sperm displacement and transfer were predicted from the combined examination of the ultrastructures of the male and female genitalia [1-3]. Genitalic structures function do not only in sperm transfer during the time of copulation, but that they perform copulatory courtship through movements and interactions with the female genitalia [4-5]. These 'functional luxuries' can induce cryptic female choice by stimulating structures on the female genitalia while facilitating rival-sperm displacement and sperm transfer. Genitalic complexity is probably underestimated in many species because they have only been studied in the retracted or relaxed state [4].
    [Show full text]
  • Exploring Phylogenomic Relationships Within Myriapoda: Should High Matrix Occupancy Be the Goal?
    bioRxiv preprint doi: https://doi.org/10.1101/030973; this version posted November 9, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exploring phylogenomic relationships within Myriapoda: should high matrix occupancy be the goal? ROSA FERNÁNDEZ1, GREGORY D. EDGECOMBE2 AND GONZALO GIRIBET1 1Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 2Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 1 bioRxiv preprint doi: https://doi.org/10.1101/030973; this version posted November 9, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract.—Myriapods are one of the dominant terrestrial arthropod groups including the diverse and familiar centipedes and millipedes. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes in many species) or on maximizing matrix occupancy (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed forty Illumina transcriptomes representing three myriapod classes (Diplopoda, Chilopoda and Symphyla); twenty-five transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda.
    [Show full text]
  • Annexure I Fauna & Flora Assessment.Pdf
    Fauna and Flora Baseline Study for the De Wittekrans Project Mpumalanga, South Africa Prepared for GCS (Pty) Ltd. By Resource Management Services (REMS) P.O. Box 2228, Highlands North, 2037, South Africa [email protected] www.remans.co.za December 2008 I REMS December 2008 Fauna and Flora Assessment De Wittekrans Executive Summary Mashala Resources (Pty) Ltd is planning to develop a coal mine south of the town of Hendrina in the Mpumalanga province on a series of farms collectively known as the De Wittekrans project. In compliance with current legislation, they have embarked on the process to acquire environmental authorisation from the relevant authorities for their proposed mining activities. GCS (Pty) Ltd. commissioned Resource Management Services (REMS) to conduct a Faunal and Floral Assessment of the area to identify the potential direct and indirect impacts of future mining, to recommend management measures to minimise or prevent these impacts on these ecosystems and to highlight potential areas of conservation importance. This is the wet season survey which was done in the November 2008. The study area is located within the highveld grasslands of the Msukaligwa Local Municipality in the Gert Sibande District Municipality in Mpumalanga Province on the farms Tweefontein 203 IS (RE of Portion 1); De Wittekrans 218 IS (RE of Portion 1 and Portion 2, Portions 7, 11, 10 and 5); Groblershoek 191 IS; Groblershoop 192 IS; and Israel 207 IS. Within this region, precipitation occurs mainly in the summer months of October to March with the peak of the rainy season occurring from November to January.
    [Show full text]
  • A New Species of Illacme Cook & Loomis, 1928
    A peer-reviewed open-access journal ZooKeys 626: 1–43A new (2016) species of Illacme Cook and Loomis, 1928 from Sequoia National Park... 1 doi: 10.3897/zookeys.626.9681 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida) Paul E. Marek1, Jean K. Krejca2, William A. Shear3 1 Virginia Polytechnic Institute and State University, Department of Entomology, Price Hall, Blacksburg, Virginia, USA 2 Zara Environmental LLC, 1707 W FM 1626, Manchaca, Texas, USA 3 Hampden-Sydney College, Department of Biology, Gilmer Hall, Hampden-Sydney, Virginia, USA Corresponding author: Paul E. Marek ([email protected]) Academic editor: R. Mesibov | Received 25 July 2016 | Accepted 19 September 2016 | Published 20 October 2016 http://zoobank.org/36E16503-BC2B-4D92-982E-FC2088094C93 Citation: Marek PE, Krejca JK, Shear WA (2016) A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). ZooKeys 626: 1–43. doi: 10.3897/zookeys.626.9681 Abstract Members of the family Siphonorhinidae Cook, 1895 are thread-like eyeless millipedes that possess an astounding number of legs, including one individual with 750. Due to their cryptic lifestyle, rarity in natural history collections, and sporadic study over the last century, the family has an unclear phylogenetic placement, and intrafamilial relationships remain unknown. Here we report the discovery of a second spe- cies of Illacme, a millipede genus notable for possessing the greatest number of legs of any known animal on the planet.
    [Show full text]
  • Order CALLIPODIDA Manual Versión Española
    Revista IDE@ - SEA, nº 25B (30-06-2015): 1–12. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Class: Diplopoda Order CALLIPODIDA Manual Versión española CLASS DIPLOPODA Order Callipodida Jörg Spelda Bavarian State Collection of Zoology Münchhausenstraße 21, 81247 Munich, Germany [email protected] 1. Brief characterization of the group and main diagnostic characters 1.1. Morphology The members of the order Callipodida are best recognized by their putative apomorphies: a divided hypoproct, divided anal valves, long extrusible tubular vulvae, and, as in all other helminthomorph milli- pede orders, a characteristic conformation of the male gonopods. As in Polydesmida, only the first leg pair of the 7th body ring is transformed into gonopods, which are retracted inside the body. Body rings are open ventrally and are not fused with the sternites, leaving the coxae of the legs free. Legs in the anterior half of the body carry coxal pouches. The small collum does not overlap the head. Callipodida are of uniformly cylindrical external appearance. The number of body rings is only sometimes fixed in species and usually exceeds 40. There are nine antennomeres, as the 2nd antennomere of other Diplopoda is subdivided (= antennomere 2 and 3 in Callipodida). The general struc- ture of the gnathochilarium is shared with the Chordeumatida and Polydesmida. Callipodida are said to be characterised by longitudinal crests, which gives the order the common name “crested millipedes”. Although crest are present in most species, some genera (e.g. Schizopetalum) lack a crest, while some Spirostreptida ( e.g. in Cambalopsidae, ‘Trachystreptini’) and some Julida (e.g.
    [Show full text]
  • The Millipedes and Centipedes of Chiapas Amber
    14 4 ANNOTATED LIST OF SPECIES Check List 14 (4): 637–646 https://doi.org/10.15560/14.4.637 The millipedes and centipedes of Chiapas amber Francisco Riquelme1, Miguel Hernández-Patricio2 1 Laboratorio de Sistemática Molecular. Escuela de Estudios Superiores del Jicarero, Universidad Autónoma del Estado de Morelos, Jicarero C.P. 62909, Morelos, Mexico. 2 Subcoordinación de Inventarios Bióticos, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Tlalpan C.P. 14010, Mexico City, Mexico. Corresponding author: Francisco Riquelme, [email protected] Abstract An inventory of fossil millipedes (class Diplopoda) and centipedes (class Chilopoda) from Miocene Chiapas amber, Mexico, is presented, with the inclusion of new records. For Diplopoda, 34 members are enumerated, for which 31 are described as new fossil records of the orders Siphonophorida Newport, 1844, Spirobolida Bollman, 1893, Polydesmida Leach, 1895, Stemmiulida Pocock, 1894, and the superorder Juliformia Attems, 1926. For Chilopoda 8 fossils are listed, for which 3 are new records of the order Geophilomorpha Pocock, 1895 and 2 are of the order Scolopendromorpha Pocock, 1895. Key words Miocene, Mexico, Diplopoda, Chilopoda. Academic editor: Peter Dekker | Received 14 May 2018 | Accepted 26 July 2018 | Published 10 August 2018 Citation: Riquelme F, Hernández-Patricio F (2018) The millipedes and centipedes of Chiapas amber. Check List 14 (4): 637–646. https://doi. org/10.15560/14.4.637 Introduction Diplopoda fossil record worldwide (Edgecombe 2015). Two other centipedes have been reported in Ross et al. The extant species of millipedes and centipedes distributed (2016). Other records of millipedes have been mentioned across Mexico have been studied since the initial reports in the literature but are questionable because of a lack of Brand (1839) and Persbosc (1839).
    [Show full text]
  • Ordinal-Level Phylogenomics of the Arthropod Class
    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.
    [Show full text]
  • Diplopoda, Sphaerotheriida, Arthrosphaeridae)
    European Journal of Taxonomy 758: 1–48 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.758.1423 www.europeanjournaloftaxonomy.eu 2021 · Wesener T. & Sagorny C. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:01BBC12C-E715-4393-A9F6-6EA85CB1289F Seven new giant pill-millipede species and numerous new records of the genus Zoosphaerium from Madagascar (Diplopoda, Sphaerotheriida, Arthrosphaeridae) Thomas WESENER 1,* & Christina SAGORNY 2 1,2 Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for Animal Biodiversity, Section Myriapoda, Adenauerallee 160, D-53113 Bonn, Germany. 2 University of Bonn, Institute of Evolutionary Biology and Ecology, D-53121 Bonn, Germany. * Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:86DEA7CD-988C-43EC-B9D6-C51000595B47 2 urn:lsid:zoobank.org:author:9C89C1B7-897A-426E-8FD4-C747DF004C85 Abstract. Seven new species of the giant pill-millipede genus Zoosphaerium Pocock, 1895 are described from Madagascar: Z. nigrum sp. nov., Z. silens sp. nov., Z. ambatovaky sp. nov., Z. beanka sp. nov., Z. voahangy sp. nov., Z. masoala sp. nov. and Z. spinopiligerum sp. nov. All species are described based on drawings and scanning electron microscopy, while genetic barcoding of the COI gene was successful for six of the seven new species. Additional COI barcode information is provided for the fi rst time for Z. album Wesener, 2009 and Z. libidinosum (de Saussure & Zehntner, 1897). Zoosphaerium nigrum sp. nov. and Z. silens sp. nov. belong to the Z. libidinosum species-group, Z.
    [Show full text]
  • An Apparently Non-Swinging Tentorium in the Diplopoda (Myriapoda): Comparative Morphology of the Tentorial Complex in Giant Pill-Millipedes (Sphaerotheriida)
    A peer-reviewed open-access journal ZooKeys 741: 77–91An (2018) apparently non-swinging tentorium in the Diplopoda (Myriapoda)... 77 doi: 10.3897/zookeys.741.21909 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research An apparently non-swinging tentorium in the Diplopoda (Myriapoda): comparative morphology of the tentorial complex in giant pill-millipedes (Sphaerotheriida) Leif Moritz1, Thomas Wesener1, Markus Koch2,3 1 Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Section Myria- poda, Adenauerallee 160, 53113 Bonn, Germany 2 Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany 3 Senckenberg Gesellschaft für Naturforschung, Dept. In- formation Technology and Biodiversity Informatics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany Corresponding author: Leif Moritz ([email protected]) Academic editor: G.D. Edgecombe | Received 29 October 2017 | Accepted 20 December 2017 | Published 7 March 2018 http://zoobank.org/8F4AEFD3-9943-42D5-9E08-11C0F1D94FB4 Citation: Moritz L, Wesener T, Koch M (2018) An apparently non-swinging tentorium in the Diplopoda (Myriapoda): comparative morphology of the tentorial complex in giant pill-millipedes (Sphaerotheriida). In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 77–91. https://doi.org/10.3897/zookeys.741.21909 Abstract The presence of a swinging tentorium is a key apomorphy of Myriapoda, but this character has been studied in detail in only few species. Here the tentorium, i.e., the peristomatic skeleton of the preoral chamber, is comparatively studied in three species of the millipede order Sphaerotheriida Brandt, 1833. Since dissections of the fragile tentorial components proved to be difficult, despite the large head size, they were analysed mainly in situ via micro-computed tomography.
    [Show full text]
  • Monophyly of the Ring-Forming Group in Diplopoda (Myriapoda, Arthropoda) Based on SSU and LSU Ribosomal RNA Sequences
    Available online at www.sciencedirect.com Progress in Natural Science 19 (2009) 1297–1303 www.elsevier.com/locate/pnsc Monophyly of the ring-forming group in Diplopoda (Myriapoda, Arthropoda) based on SSU and LSU ribosomal RNA sequences Peiyun Cong a,b, Xuhua Xia c, Qun Yang a,* a State Key Laboratory of Palaeobiology and Strategraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China b Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China c Department of Biology, University of Ottawa, Ont., Canada K1N 6N5 Received 13 February 2009; received in revised form 15 March 2009; accepted 17 March 2009 Abstract Two controversies exist in the phylogeny of the derived millipedes (Diplopoda). The first is whether millipedes with a fusion ring, including Polydesmida, Spirobolida, Spirostreptida and Julida, form a monophyletic group (the ring-forming group). The second con- cerns the phylogenetic relationship within the three orders of Juliformia, i.e. Julida, Spirostreptida and Spirobolida. To resolve these phylogenetic controversies, we sequenced 18S and 28S rDNA from six millipede orders and retrieved several homologous sequences from GenBank. Our results give robust support to the monophyly of the ring-forming group based on maximum parsimony methods, max- imum likelihood methods and Bayesian inference. The monophyly of the ring-forming group suggests that the fusion of segment sclerites might have occurred only once during millipede evolutionary history. We also established a sister-group relationship between Spirobol- ida and Spirostreptida within Juliformia after eliminating a short-branch attraction phenomenon, which is consistent with that from the mitochondrial genome analysis.
    [Show full text]