Cipangopaludina Hannibal, 1912
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogenetic Evidence That the Chinese Viviparid Genus Margarya (Gastropoda: Viviparidae) Is Polyphyletic
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Article SPECIAL ISSUE June 2013 Vol.58 No.18: 21542162 Adaptive Evolution and Conservation Ecology of Wild Animals doi: 10.1007/s11434-012-5632-y Molecular phylogenetic evidence that the Chinese viviparid genus Margarya (Gastropoda: Viviparidae) is polyphyletic DU LiNa1, YANG JunXing1*, RINTELEN Thomas von2*, CHEN XiaoYong1 & 3 ALDRIDGE David 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin 10115, Germany; 3 Aquatic Ecology Group, Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK Received February 28, 2012; accepted May 25, 2012; published online February 1, 2013 We investigated the phylogeny of the viviparid genus Margarya, endemic to Yunnan, China, using two mitochondrial gene frag- ments (COI and 16S rRNA). The molecular phylogeny based on the combined dataset indicates that Margarya is polyphyletic, as two of the three well-supported clades containing species of Margarya also comprise species from other viviparid genera. In one clade, sequences of four species of Margarya even cluster indiscriminately with those of two species of Cipangopaludina, indi- cating that the current state of Asian viviparid taxonomy needs to be revised. Additionally, these data suggest that shell evolution in viviparids is complex, as even the large and strongly sculptured shells of Margarya, which are outstanding among Asian viviparids, can apparently be easily converted to simple smooth shells. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Occurrence of the Chinese Mystery Snail, Cipangopaludina Chinensis
BioInvasions Records (2016) Volume 5, Issue 3: 149–154 Open Access DOI: http://dx.doi.org/10.3391/bir.2016.5.3.05 © 2016 The Author(s). Journal compilation © 2016 REABIC Rapid Communication Occurrence of the Chinese mystery snail, Cipangopaludina chinensis (Gray, 1834) (Mollusca: Viviparidae) in the Saint John River system, New Brunswick, with review of status in Atlantic Canada Donald F. McAlpine1,*, Dwayne A. W. Lepitzki2, Frederick W. Schueler3, Fenning J.T. McAlpine1, Andrew Hebda4, Robert G. Forsyth1, Annegret Nicolai5, John E. Maunder6 and Ron G. Noseworthy7 1New Brunswick Museum, 277 Douglas Avenue, Saint John, New Brunswick, E2K 1E5 Canada 2Wildlife Systems Research, P.O. Box 1311, Banff, Alberta, T1L 1B3 Canada 3RR # 2, Bishops Mills, Ontario, K0G 1T0 Canada 4Nova Scotia Museum of Natural History, 1747 Summer Street, Halifax, Nova Scotia, B3H 3A6 Canada 5UMR-CNRS 6553 EcoBio, Campus Beaulieu, Université Rennes 1, 35042 Rennes cedex, France 6P.O. Box 250, Pouch Cove, Newfoundland and Labrador, A0A 3L0 Canada 7School of Marine Biomedical Science, Jeju National University, Jeju 690-756, Republic of Korea *Corresponding author E-mail: [email protected] Received: 27 February 2016 / Accepted: 1 July 2016 / Published online: 20 July 2016 Handling editor: Carles Alcaraz Abstract The Chinese mystery snail, Cipangopaludina [=Bellamya] chinensis, is documented for the first time in the Saint John River, New Brunswick, a watercourse which drains the largest watershed in Atlantic Canada. This is the first non-native mollusc known to be established in the Saint John River system. Although significant ecosystem effects of the species seem unlikely, possible introduction of C. -
Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5
Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5 Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5 Prepared by: Amy J. Benson, Colette C. Jacono, Pam L. Fuller, Elizabeth R. McKercher, U.S. Geological Survey 7920 NW 71st Street Gainesville, Florida 32653 and Myriah M. Richerson Johnson Controls World Services, Inc. 7315 North Atlantic Avenue Cape Canaveral, FL 32920 Prepared for: U.S. Fish and Wildlife Service 4401 North Fairfax Drive Arlington, VA 22203 29 February 2004 Table of Contents Introduction ……………………………………………………………………………... ...1 Aquatic Macrophytes ………………………………………………………………….. ... 2 Submersed Plants ………...………………………………………………........... 7 Emergent Plants ………………………………………………………….......... 13 Floating Plants ………………………………………………………………..... 24 Fishes ...…………….…………………………………………………………………..... 29 Invertebrates…………………………………………………………………………...... 56 Mollusks …………………………………………………………………………. 57 Bivalves …………….………………………………………………........ 57 Gastropods ……………………………………………………………... 63 Nudibranchs ………………………………………………………......... 68 Crustaceans …………………………………………………………………..... 69 Amphipods …………………………………………………………….... 69 Cladocerans …………………………………………………………..... 70 Copepods ……………………………………………………………….. 71 Crabs …………………………………………………………………...... 72 Crayfish ………………………………………………………………….. 73 Isopods ………………………………………………………………...... 75 Shrimp ………………………………………………………………….... 75 Amphibians and Reptiles …………………………………………………………….. 76 Amphibians ……………………………………………………………….......... 81 Toads and Frogs -
Limnologica Effect of Eutrophication on Molluscan Community
Limnologica 41 (2011) 213–219 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Contents lists available at ScienceDirect provided by Elsevier - Publisher Connector Limnologica journal homepage: www.elsevier.de/limno Effect of eutrophication on molluscan community composition in the Lake Dianchi (China, Yunnan) Du Li-Na 1, Li Yuan 1, Chen Xiao-Yong ∗, Yang Jun-Xing ∗ State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China article info abstract Article history: In this paper, three historical biodiversity datasets (from 1940s, 1980–1999 and 2000–2004) and results Received 9 September 2009 from the recent inventory are used to trace the long-term changes of the mollusks in the eutrophic Lake Received in revised form 28 July 2010 Dianchi. Comparison of the obtained results with those of earlier investigations performed during the Accepted 24 September 2010 period of 1940s and 1980–1999 as well as 2000–2004 showed that changes have occurred in the interval. There were 31 species and 2 sub-species recorded prior to the 1940s, but the species richness decreased Keywords: from a high level of 83 species and 7 sub-species to 16 species and one sub-species from 1990s to the Eutrophication early of 21st century in lake body. Species from the genera of Kunmingia, Fenouilia, Paraprygula, Erhaia, Mollusks community Dianchi basin Assiminea, Galba, Rhombuniopsis, Unionea and Aforpareysia were not found in Dianchi basin after 2000. The Historical datasets species from the genera Lithoglyphopsis, Tricula, Bithynia, Semisulcospira and Corbicula were only found in the springs and upstream rivers. -
Recent and Fossil Viviparidae. a Study in Distribution, Evolution and Palaeogeography
RECENT AND FOSSIL VIVIPARIDAE. A STUDY IN DISTRIBUTION, EVOLUTION AND PALAEOGEOGRAPHY. By B. PRASHAD, D.Sa., F.R.S.E., Zoological Survey of India, Indian Museum, Oalautta. (Pia te XIX.) CONTENTS. Page. 1. Introduction .. 153 2. Distribution 155 3. Zoo-geographical Regions .. 157 4. Recent Viviparidae .. 160 I. Asia 162 II. Australia 178 III. Africa .. 179 IV. Europe 185 V. America .... .. 186 5. Fossil Viviparidae .. 189 I. Asia .. 191 II. Africa .. 195 III. Europe 1 ~16 IV . North- America 219 V. South America 223 6. Palaeogeographical Notes .. .. 223 I. Asia (excluding India) and Australia II. India .. III. I~do- African Connections 234 IV. Africa .. 238 V. Europe 2;)9 VI. North America .. 212 7. Relationships, Origin and Distribution .. :.H3 I. Asia and Africa .. 2·10 II. Australia .. 217 III. Europe IV. North America 249 8. Summary 249 1. INTRODUCTION. The following paper does not presume to be a monograph or a systematln revision of the recent and fossil Viviparidae, but is the result of my examination of extensive collections of the family and a, careful scrutiny of the literature on the subject. The work was started in connection with my studies on the development and formation of the sculpture on the [ 153 ] n 154 Memoirs of the Indian MUseum. [VOL. VIII,. shells of the differ~nt members of the fanlily. On working through the literature on the ; subject it was found that the question of the nomenclature of the species o~ this family was greatly confused, and that no attempt had hitherto been made to classify ~nto groups, genera or subgenera, the sI)ecies which have similar types 01 shells and which are evidently related to one another. -
Management Approaches for the Alien Chinese Mystery Snail (Bellamya Chinensis)
2017 Management approaches for the alien Chinese mystery snail (Bellamya chinensis) J. Matthews, F.P.L. Collas, L. de Hoop, G. van der Velde & R.S.E.W. Leuven 1 Management approaches for the alien Chinese mystery snail (Bellamya chinensis) J. Matthews, F.P.L. Collas, L. de Hoop, G. van der Velde & R.S.E.W. Leuven 14 July 2017 Radboud University Institute for Water and Wetland Research Department of Environmental Science and Department of Animal Ecology and Physiology Commissioned by Invasive Alien Species Team Office for Risk Assessment and Research Netherlands Food and Consumer Product Safety Authority i Series of Reports Environmental Science The Reports Environmental Science are edited and published by the Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands (tel. secretariat: + 31 (0)24 365 32 81). Reports Environmental Science 558 Title: Management approaches for the alien Chinese mystery snail (Bellamya chinensis) Authors: J. Matthews, F.P.L. Collas, L. de Hoop, G. van der Velde & R.S.E.W. Leuven Cover photo: Chinese mystery snails (Bellamya chinensis) collected from Eijsder Beemden, the Netherlands. © Photo: Frank Collas, 2016 Project management: Prof. dr. R.S.E.W. Leuven, Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands, e-mail: [email protected] Quality assurance: Prof. dr. A.Y. Karatayev, Buffalo State University, Great Lakes Center, New York, USA and Ir. D.M. Soes, Bureau Waardenburg BV, Culemborg, The Netherlands Project number: 626460RL2017-2 Client: Netherlands Food and Consumer Product Safety Authority (NVWA), Invasive Alien Species Team, Office for Risk Assessment and Research, P.O. -
Chapter 21 Freshwater Gastropoda
C. F. Sturm, T. A. Pearce, and A. Valdés. (Eds.) 2006. The Mollusks: A Guide to Their Study, Collection, and Preservation. American Malacological Society. CHAPTER 21 FRESHWATER GASTROPODA ROBERT T. DILLON, Jr. 21.1 INTRODUCTION The largest-bodied freshwater gastropods (adults usually much greater than 2 cm in shell length) be- Gastropods are a common and conspicuous element long to the related families Viviparidae and Ampul- of the freshwater biota throughout most of North lariidae. The former family, including the common America. They are the dominant grazers of algae genera Viviparus and Campeloma, among others, and aquatic plants in many lakes and streams, and is distinguished by bearing live young, sometimes can play a vital role in the processing of detritus and parthenogenically. (Eggs are actually held until decaying organic matter. They are themselves con- they hatch internally, so the term “ovoviviparous” sumed by a host of invertebrate predators, parasites, is more descriptive.) Viviparids have the ability to fish, waterfowl, and other creatures great and small. filter feed, in addition to the more usual grazing An appreciation of freshwater gastropods cannot and scavenging habit. The Ampullariidae, tropical help but lead to an appreciation of freshwater eco- or sub-tropical in distribution, includes Pomacea, systems as a whole (Russell-Hunter 1978, Aldridge which lays its large pink egg mass above the water, 1983, McMahon 1983, Dillon 2000). and Marisa, which attaches large gelatinous egg masses to subsurface vegetation. Ampullariids have 21.2 BIOLOGY AND ECOLOGY famous appetites for aquatic vegetation. The only ampullariid native to the U.S.A. is the Florida apple The most striking attribute of the North Ameri- snail, Pomacea paludosa (Say, 1829), although can freshwater gastropod fauna is its biological other ampullariids have been introduced through diversity. -
Enigmatic Incongruence Between Mtdna and Ndna Revealed by Multi
www.nature.com/scientificreports OPEN Enigmatic incongruence between mtDNA and nDNA revealed by multi-locus phylogenomic analyses Received: 28 August 2018 Accepted: 5 April 2019 in freshwater snails Published: xx xx xxxx Takahiro Hirano1, Takumi Saito 2, Yoshihiro Tsunamoto3, Joichiro Koseki2, Bin Ye2,4, Van Tu Do5, Osamu Miura6, Yoshihisa Suyama3 & Satoshi Chiba2,7 Phylogenetic incongruence has frequently been encountered among diferent molecular markers. Recent progress in molecular phylogenomics has provided detailed and important information for evolutionary biology and taxonomy. Here we focused on the freshwater viviparid snails (Cipangopaludina chinensis chinensis and C. c. laeta) of East Asia. We conducted phylogenetic analyses and divergence time estimation using two mitochondrial markers. We also performed population genetic analyses using genome-wide SNPs. We investigated how and which phylogenetic patterns refect shell morphology. The results showed these two species could be separated into four major mitochondrial clades, whereas the nuclear clusters supported two groups. The phylogenetic patterns of both mtDNA and nDNA largely refected the geographical distribution. Shell morphology refected the phylogenetic clusters based on nDNA. The fndings also showed these two species diversifed in the Pliocene to early Pleistocene era, and occurred introgressive hybridisation. The results also raise the taxonomic issue of the two species. Molecular phylogeny provides a robust framework for investigations in the felds of taxonomy and conservation biology, such as on species diversity and the patterns of geographical distribution1. For example, molecular phy- logenetic studies have clarifed the taxonomic issues of whether species are endemic or alien2 and the existence of cryptic species3. However, by comparing the phylogenetic patterns determined using diferent molecular markers, it has become clear that there is incongruence between the molecular markers even in a lineage determined using the same sample4,5. -
The Invasive Chinese Mystery Snail Bellamya Chinensis (Gastropoda: Viviparidae) Expands Its European Range to Belgium
Knowl. Manag. Aquat. Ecosyst. 2017, 418, 8 Knowledge & © T. Van den Neucker et al., Published by EDP Sciences 2017 Management of Aquatic DOI: 10.1051/kmae/2016040 Ecosystems www.kmae-journal.org Journal fully supported by Onema SHORT COMMUNICATION The invasive Chinese mystery snail Bellamya chinensis (Gastropoda: Viviparidae) expands its European range to Belgium Tom Van den Neucker1,*, Tom Schildermans2 and Kevin Scheers3 1 University of Antwerp, Department of Biology, Ecosystem Management Research Group, Universiteitsplein 1C, 2160 Wilrijk, Belgium 2 Weidestraat 11, 2490 Balen, Belgium 3 Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium Abstract – In this paper we report the first Belgian records of the invasive Chinese mystery snail Bellamya chinensis. A walkover-survey along the Laak, a small lowland river, yielded a total of 20 live B. chinensis. The presence of both juvenile and adult individuals, with a shell height ranging from 16.6 to 47.5 mm, indicates that the species is firmly established. The most probable source of introduction is a nearby garden center that specializes in ornamental fish and plants for garden ponds. Keywords: Bellamya chinensis / invasive species / Belgium Résumé – L'escargot vivipare envahissant Bellamya chinensis (Gastropoda : Viviparidae) étend sa répartition européenne à la Belgique. Dans cet article, nous rapportons les premiers enregistrements belges de l'escargot vivipare invasif Bellamya chinensis. Une prospection le long du Laak, une petite rivière de plaine, a récolté un total de 20 B. chinensis vivants. La présence d'individus juvéniles et adultes, avec une hauteur de coquille allant de 16,6 à 47,5 mm, indique que l'espèce est solidement établie. -
A National Strategy for the Conservation of Native Freshwater Mollusks*
Freshwater Mollusk Biology and Conservation 19:1–21, 2016 Ó Freshwater Mollusk Conservation Society 2016 ARTICLE A NATIONAL STRATEGY FOR THE CONSERVATION OF NATIVE FRESHWATER MOLLUSKS* Freshwater Mollusk Conservation Society**,1 1417 Hoff Industrial Dr., O’Fallon, MO 63366 USA ABSTRACT In 1998, a strategy document outlining the most pressing issues facing the conservation of freshwater mussels was published (NNMCC 1998). Beginning in 2011, the Freshwater Mollusk Conservation Society began updating that strategy, including broadening the scope to include freshwater snails. Although both strategy documents contained 10 issues that were deemed priorities for mollusk conservation, the identity of these issues has changed. For example, some issues (e.g., controlling dreissenid mussels, technology to propagate and reintroduce mussels, techniques to translocate adult mussels) were identified in the 1998 strategy, but are less prominent in the revised strategy, due to changing priorities and progress that has been made on these issues. In contrast, some issues (e.g., biology, ecology, habitat, funding) remain prominent concerns facing mollusk conservation in both strategies. In addition, the revised strategy contains a few issues (e.g., newly emerging stressors, education and training of the next generation of resource managers) that were not explicitly present in the 1998 strategy. The revised strategy states that to effectively conserve freshwater mollusks, we need to (1) increase knowledge of their distribution and taxonomy at multiple scales; -
Experimental Primates and Non-Human Primate
ZOOLOGICAL RESEARCH Volume 35, Issue 6 18 November 2014 CONTENTS Special Topic for Primates and Animal Models of Human Diseases Review Experimental primates and non-human primate (NHP) models of human diseases in China: current status and progress ····················································································································································· ·················Xiao-Liang ZHANG, Wei PANG, Xin-Tian HU, Jia-Li LI, Yong-Gang YAO, Yong-Tang ZHENG (447) Articles Flow cytometric characterizations of leukocyte subpopulations in the peripheral blood of northern pig-tailed macaques (Macaca leonina)·······························································Hong-Yi ZHENG, Ming-Xu ZHANG, Lin-Tao ZHANG, Xiao-Liang ZHANG, Wei PANG, Long-Bao LYU, Yong-Tang ZHENG (465) Birth seasonality and pattern in black-and-white snub-nosed monkeys (Rhinopithecus bieti) at Mt. Lasha, Yunnan ··················································································· Jin-Fa LI, Yu-Chao HE, Zhi-Pang HUANG, Shuang-Jin WANG, Zuo-Fu XIANG, Juan-Jun ZHAO, Wen XIAO, Liang-Wei CUI (474) Experimental infection of tree shrews (Tupaia belangeri) with Coxsackie virus A16 ··············· Jian-Ping LI, Yun LIAO, Ying ZHANG, Jing-Jing WANG, Li-Chun WANG, Kai FENG, Qi-Han LI, Long-Ding LIU (485) Isolation and identification of symbiotic bacteria from the skin, mouth, and rectum of wild and captive tree shrews··············Gui LI, Ren LAI, Gang DUAN, Long-Bao LYU, Zhi-Ye ZHANG, Huang LIU, Xun XIANG (492) Articles Acoustic