A National Strategy for the Conservation of Native Freshwater Mollusks*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SDG Indicator Metadata (Harmonized Metadata Template - Format Version 1.0)
Last updated: 4 January 2021 SDG indicator metadata (Harmonized metadata template - format version 1.0) 0. Indicator information 0.a. Goal Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss 0.b. Target Target 15.5: Take urgent and significant action to reduce the degradation of natural habitats, halt the loss of biodiversity and, by 2020, protect and prevent the extinction of threatened species 0.c. Indicator Indicator 15.5.1: Red List Index 0.d. Series 0.e. Metadata update 4 January 2021 0.f. Related indicators Disaggregations of the Red List Index are also of particular relevance as indicators towards the following SDG targets (Brooks et al. 2015): SDG 2.4 Red List Index (species used for food and medicine); SDG 2.5 Red List Index (wild relatives and local breeds); SDG 12.2 Red List Index (impacts of utilisation) (Butchart 2008); SDG 12.4 Red List Index (impacts of pollution); SDG 13.1 Red List Index (impacts of climate change); SDG 14.1 Red List Index (impacts of pollution on marine species); SDG 14.2 Red List Index (marine species); SDG 14.3 Red List Index (reef-building coral species) (Carpenter et al. 2008); SDG 14.4 Red List Index (impacts of utilisation on marine species); SDG 15.1 Red List Index (terrestrial & freshwater species); SDG 15.2 Red List Index (forest-specialist species); SDG 15.4 Red List Index (mountain species); SDG 15.7 Red List Index (impacts of utilisation) (Butchart 2008); and SDG 15.8 Red List Index (impacts of invasive alien species) (Butchart 2008, McGeoch et al. -
Molecular Phylogenetic Evidence That the Chinese Viviparid Genus Margarya (Gastropoda: Viviparidae) Is Polyphyletic
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Article SPECIAL ISSUE June 2013 Vol.58 No.18: 21542162 Adaptive Evolution and Conservation Ecology of Wild Animals doi: 10.1007/s11434-012-5632-y Molecular phylogenetic evidence that the Chinese viviparid genus Margarya (Gastropoda: Viviparidae) is polyphyletic DU LiNa1, YANG JunXing1*, RINTELEN Thomas von2*, CHEN XiaoYong1 & 3 ALDRIDGE David 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin 10115, Germany; 3 Aquatic Ecology Group, Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK Received February 28, 2012; accepted May 25, 2012; published online February 1, 2013 We investigated the phylogeny of the viviparid genus Margarya, endemic to Yunnan, China, using two mitochondrial gene frag- ments (COI and 16S rRNA). The molecular phylogeny based on the combined dataset indicates that Margarya is polyphyletic, as two of the three well-supported clades containing species of Margarya also comprise species from other viviparid genera. In one clade, sequences of four species of Margarya even cluster indiscriminately with those of two species of Cipangopaludina, indi- cating that the current state of Asian viviparid taxonomy needs to be revised. Additionally, these data suggest that shell evolution in viviparids is complex, as even the large and strongly sculptured shells of Margarya, which are outstanding among Asian viviparids, can apparently be easily converted to simple smooth shells. -
(Gastropoda: Batillariidae) from Elkhorn Slough, California, USA
Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: https://www.tandfonline.com/loi/tmdn20 The complete mitogenome of the invasive Japanese mud snail Batillaria attramentaria (Gastropoda: Batillariidae) from Elkhorn Slough, California, USA Hartnell College Genomics Group, Paulina Andrade, Lisbeth Arreola, Melissa Belnas, Estefania Bland, Araceli Castillo, Omar Cisneros, Valentin Contreras, Celeste Diaz, Kevin T. Do, Carlos Donate, Estevan Espinoza, Nathan Frater, Garry G. Gabriel, Eric A. Gomez, Gino F. Gonzalez, Myrka Gonzalez, Paola Guido, Dylan Guidotti, Mishell Guzman Espinoza, Ivan Haro, Javier Hernandez Lopez, Caden E. Hernandez, Karina Hernandez, Jazmin A. Hernandez-Salazar, Jeffery R. Hughey, Héctor Jácome-Sáenz, Luis A. Jimenez, Eli R. Kallison, Mylisa S. King, Luis J. Lazaro, Feifei Zhai Lorenzo, Isaac Madrigal, Savannah Madruga, Adrian J. Maldonado, Alexander M. Medina, Marcela Mendez-Molina, Ali Mendez, David Murillo Martinez, David Orozco, Juan Orozco, Ulises Ortiz, Jennifer M. Pantoja, Alejandra N. Ponce, Angel R. Ramirez, Israel Rangel, Eliza Rojas, Adriana Roque, Beatriz Rosas, Colt Rubbo, Justin A. Saldana, Elian Sanchez, Alicia Steinhardt, Maria O. Taveras Dina, Judith Torres, Silvestre Valdez-Mata, Valeria Vargas, Paola Vazquez, Michelle M. Vazquez, Irene Vidales, Frances L. Wong, Christian S. Zagal, Santiago Zamora & Jesus Zepeda Amador To cite this article: Hartnell College Genomics Group, Paulina Andrade, Lisbeth Arreola, Melissa Belnas, Estefania Bland, Araceli Castillo, Omar Cisneros, Valentin Contreras, Celeste Diaz, Kevin T. Do, Carlos Donate, Estevan Espinoza, Nathan Frater, Garry G. Gabriel, Eric A. Gomez, Gino F. Gonzalez, Myrka Gonzalez, Paola Guido, Dylan Guidotti, Mishell Guzman Espinoza, Ivan Haro, Javier Hernandez Lopez, Caden E. Hernandez, Karina Hernandez, Jazmin A. -
Global State of Biodiversity and Loss
19 Sep 2003 20:45 AR AR198-EG28-05.tex AR198-EG28-05.sgm LaTeX2e(2002/01/18) P1: GJB 10.1146/annurev.energy.28.050302.105532 Annu. Rev. Environ. Resour. 2003. 28:137–67 doi: 10.1146/annurev.energy.28.050302.105532 Copyright c 2003 by Annual Reviews. All rights reserved First published online as a Review in Advance on July 8, 2003 GLOBAL STATE OF BIODIVERSITY AND LOSS Rodolfo Dirzo1 andPeterH.Raven2 1Instituto de Ecolog´ıa, Departamento Ecolog´ıa Evolutiva, Universidad Nacional Autonoma´ de Mexico,´ Mexico DF 04510; email: [email protected] 2Missouri Botanical Garden, St. Louis, Missouri 63166-0299; email: [email protected] Key Words biodiversity hotspots, endemism, extinction, species diversity, species threatening ■ Abstract Biodiversity, a central component of Earth’s life support systems, is directly relevant to human societies. We examine the dimensions and nature of the Earth’s terrestrial biodiversity and review the scientific facts concerning the rate of loss of biodiversity and the drivers of this loss. The estimate for the total number of species of eukaryotic organisms possible lies in the 5–15 million range, with a best guess of 7 million. Species diversity is unevenly distributed; the highest concentrations are in tropical ecosystems. Endemisms are concentrated in a few hotspots, which are in turn seriously threatened by habitat destruction—the most prominent driver of biodiversity loss. For the past 300 years, recorded extinctions for a few groups of organisms reveal rates of extinction at least several hundred times the rate expected on the basis of the geological record. The loss of biodiversity is the only truly irreversible global environmental change the Earth faces today. -
New Freshwater Snails of the Genus Pyrgulopsis (Rissooidea: Hydrobiidae) from California
THE VELIGER CMS, Inc., 1995 The Veliger 38(4):343-373 (October 2, 1995) New Freshwater Snails of the Genus Pyrgulopsis (Rissooidea: Hydrobiidae) from California by ROBERT HERSHLER Department of Invertebrate Zoology (Mollusks), National Museum of Natural History, Smithsonian Institution, Washington, DC. 20560, USA Abstract. Seven new species of Recent springsnails belonging to the large genus Pyrgulopsis are described from California. Pyrgulopsis diablensis sp. nov., known from a single site in the San Joaquin Valley, P. longae sp. nov., known from a single site in the Great Basin (Lahontan system), and P. taylori sp. nov., narrowly endemic in one south-central coastal drainage, are related to a group of previously known western species also having terminal and penial glands on the penis. Pyrgulopsis eremica sp. nov., from the Great Basin and other interior drainages in northeast California, and P. greggi sp. nov., narrowly endemic in the Upper Kern River basin, differ from all other described congeners in lacking penial glands, and are considered to be derived from a group of western species having a small distal lobe and weakly developed terminal gland. Pyrgulopsis gibba sp. nov., known from a few sites in extreme northeastern California (Great Basin), has a unique complement of penial ornament consisting of terminal gland, Dg3, and ventral gland. Pyrgulopsis ventricosa sp. nov., narrowly endemic in the Clear Lake basin, is related to two previously described California species also having a full complement of glands on the penis (Pg, Tg, Dgl-3) and an enlarged bursa copulatrix. INTRODUCTION in the literature (Hershler & Sada, 1987; Hershler, 1989; Hershler & Pratt, 1990). -
Number of Living Species in Australia and the World
Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure. -
The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates. -
Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar. -
Early Ontogeny and Palaeoecology of the Mid−Miocene Rissoid Gastropods of the Central Paratethys
Early ontogeny and palaeoecology of the Mid−Miocene rissoid gastropods of the Central Paratethys THORSTEN KOWALKE and MATHIAS HARZHAUSER Kowalke, T. and Harzhauser, M. 2004. Early ontogeny and palaeoecology of the Mid−Miocene rissoid gastropods of the Central Paratethys. Acta Palaeontologica Polonica 49 (1): 111–134. Twenty−six species of Rissoidae (Caenogastropoda: Littorinimorpha: Rissooidea) are described from the Badenian and Early Sarmatian of 14 localities in Austria and the Czech Republic (Molasse Basin, Styrian Basin, Vienna Basin) and from the Badenian of Coştei (Romania). For the first time, the early ontogenetic skeletal characters of these gastropods are de− scribed. Based on these features an indirect larval development with a planktotrophic veliger could be reconstructed for all investigated Mid−Miocene species. The status of Mohrensterniinae as a subfamily of the Rissoidae is confirmed by the mor− phology of the low conical protoconch, consisting of a fine spirally sculptured embryonic shell and a larval shell which is smooth except for growth lines. Transitions from embryonic shells to larval shells and from larval shells to teleoconchs are slightly thickened and indistinct. Whilst representatives of the subfamily Rissoinae characterise the marine Badenian assem− blages, Mohrensterniinae predominate the Early Sarmatian faunas. We hypothesize that this take−over by the Mohren− sterniinae was triggered by changes in the water chemistry towards polyhaline conditions. Consequently, the shift towards hypersaline conditions in the Late Sarmatian is mirrored by the abrupt decline of the subfamily. Four new species Rissoa costeiensis (Rissoinae) from the Badenian and Mohrensternia hollabrunnensis, Mohrensternia pfaffstaettensis,and Mohrensternia waldhofensis (Mohrensterniinae) from the Early Sarmatian are introduced. -
Revised January 19, 2018 Updated June 19, 2018
BIOLOGICAL EVALUATION / BIOLOGICAL ASSESSMENT FOR TERRESTRIAL AND AQUATIC WILDLIFE YUBA PROJECT YUBA RIVER RANGER DISTRICT TAHOE NATIONAL FOREST REVISED JANUARY 19, 2018 UPDATED JUNE 19, 2018 PREPARED BY: MARILYN TIERNEY DISTRICT WILDLIFE BIOLOGIST 1 TABLE OF CONTENTS I. EXECUTIVE SUMMARY ........................................................................................................... 3 II. INTRODUCTION.......................................................................................................................... 4 III. CONSULTATION TO DATE ...................................................................................................... 4 IV. CURRENT MANAGEMENT DIRECTION ............................................................................... 5 V. DESCRIPTION OF THE PROPOSED PROJECT AND ALTERNATIVES ......................... 6 VI. EXISTING ENVIRONMENT, EFFECTS OF THE PROPOSED ACTION AND ALTERNATIVES, AND DETERMINATION ......................................................................... 41 SPECIES-SPECIFIC ANALYSIS AND DETERMINATION ........................................................... 54 TERRESTRIAL SPECIES ........................................................................................................................ 55 WESTERN BUMBLE BEE ............................................................................................................. 55 BALD EAGLE ............................................................................................................................... -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Zootaxa, (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae
ZOOTAXA 1074 A radiation of hydrobiid snails in the caves and streams at Precipitous Bluff, southwest Tasmania, Australia (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae s.l.) W. F. PONDER, S. A. CLARK, S. EBERHARD & J. B. STUDDERT Magnolia Press Auckland, New Zealand W. F. PONDER, S. A. CLARK, S. EBERHARD & J. B. STUDDERT A radiation of hydrobiid snails in the caves and streams at Precipitous Bluff, southwest Tasmania, Australia (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae s.l.) (Zootaxa 1074) 66 pp.; 30 cm. 1 Nov. 2005 ISBN 1-877407-32-1 (paperback) ISBN 1-877407-33-X (Online edition) FIRST PUBLISHED IN 2005 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2005 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1074: 1–66 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1074 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) A radiation of hydrobiid snails in the caves and streams at Precipitous Bluff, southwest Tasmania, Australia (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae s.l.) W. F. PONDER1, S. A. CLARK2, S. EBERHARD3 & J. B. STUDDERT1 1 Australian Museum, 6 College Street, Sydney, NSW, 2010, Australia.