Revised January 19, 2018 Updated June 19, 2018

Total Page:16

File Type:pdf, Size:1020Kb

Revised January 19, 2018 Updated June 19, 2018 BIOLOGICAL EVALUATION / BIOLOGICAL ASSESSMENT FOR TERRESTRIAL AND AQUATIC WILDLIFE YUBA PROJECT YUBA RIVER RANGER DISTRICT TAHOE NATIONAL FOREST REVISED JANUARY 19, 2018 UPDATED JUNE 19, 2018 PREPARED BY: MARILYN TIERNEY DISTRICT WILDLIFE BIOLOGIST 1 TABLE OF CONTENTS I. EXECUTIVE SUMMARY ........................................................................................................... 3 II. INTRODUCTION.......................................................................................................................... 4 III. CONSULTATION TO DATE ...................................................................................................... 4 IV. CURRENT MANAGEMENT DIRECTION ............................................................................... 5 V. DESCRIPTION OF THE PROPOSED PROJECT AND ALTERNATIVES ......................... 6 VI. EXISTING ENVIRONMENT, EFFECTS OF THE PROPOSED ACTION AND ALTERNATIVES, AND DETERMINATION ......................................................................... 41 SPECIES-SPECIFIC ANALYSIS AND DETERMINATION ........................................................... 54 TERRESTRIAL SPECIES ........................................................................................................................ 55 WESTERN BUMBLE BEE ............................................................................................................. 55 BALD EAGLE ................................................................................................................................ 58 CALIFORNIA SPOTTED OWL ..................................................................................................... 62 GREAT GRAY OWL ....................................................................................................................... 80 NORTHERN GOSHAWK ............................................................................................................... 84 WILLOW FLYCATCHER............................................................................................................... 89 GREATER SANDHILL CRANE ..................................................................................................... 94 FOREST CARNIVORES – GENERAL DISCUSSION ................................................................... 96 PACIFIC MARTEN ........................................................................................................................ 96 WOLVERINE ............................................................................................................................... 104 PALLID BAT ................................................................................................................................ 115 TOWNSEND’S BIG-EARED BAT ............................................................................................... 119 FRINGED MYOTIS ..................................................................................................................... 124 AQUATIC SPECIES ............................................................................................................................. 128 CALIFORNIA RED-LEGGED FROG ......................................................................................... 128 LAHONTAN CUTTHROAT TROUT ............................................................................................ 134 WESTERN POND TURTLE ......................................................................................................... 138 FOOTHILL YELLOW-LEGGED FROG ..................................................................................... 143 GREAT BASIN RAMS-HORN SNAIL .......................................................................................... 147 LAHONTAN LAKE TUI CHUB ................................................................................................... 148 HARDHEAD ................................................................................................................................ 150 CALIFORNIA FLOATER............................................................................................................. 152 BLACK JUGA .............................................................................................................................. 153 VII. MANAGEMENT REQUIREMENTS...................................................................................... 155 VIII. LITERATURE CITED AND REFERENCES ...................................................................... 156 OFFICIAL SPECIES LIST ................................................................................................................... 209 ENDANGERED SPECIES ACT SPECIES LIST ............................................................................... 210 CRITICAL HABITATS THAT LIE WITHIN YOUR PROJECT AREA ....................................... 212 2 I. EXECUTIVE SUMMARY PROJECT NAME: Yuba Project The Yuba Project area is located in Sierra County approximately five miles northeast of Sierra City, CA. The Yuba Project proposes vegetation management on 6,965 acres to reduce fuels, move forest condition towards its historic range of canopy and structure, and reduce encroachment of conifers into meadows and aspens. These activities are proposed to occur within a 14,545-acre project area. See the proposed action for a more detailed description of the project area. Table 1. Executive summary of species considered for analysis in the Biological Evaluation/Biological Assessment for the Yuba Project and the effects determination. OCCURS OR HAS SPECIES SUITABLE HABITAT SPECIES EFFECTS DETERMINATION2 STATUS1 WITHIN THE PROJECT AREA Western bumblebee S Habitat May affect, no trend toward listing Bald eagle S Habitat No effect California spotted owl S Occurs May affect, no trend toward listing Great gray owl S Habitat No effect Northern goshawk S Occurs May affect, no trend toward listing Willow flycatcher S Habitat No effect Greater sandhill crane S No No effect Pacific marten S Occurs May affect, no trend toward listing North American P Habitat No effect wolverine Pallid bat S Habitat May affect, no trend toward listing Townsend’s big-eared S Habitat May affect, no trend toward listing bat Fringed myotis S Habitat May affect, no trend toward listing AQUATIC SPECIES California red-legged T No No Effect frog Lahontan cutthroat trout T No No Effect Western pond turtle S No No Effect Foothill yellow-legged S No No Effect frog Great Basin rams-horn S No No Effect snail Lahontan Lake tui chub S No No Effect Hardhead S No No Effect California floater S No No Effect Black juga S No No Effect *Sierra Nevada yellow- E Occurs May Affect, Likely to Adversely Affect legged frog * Species is addressed in a separate Biological Assessment for consultation with the U. S. Fish and Wildlife Service 1Key: E = USFWS Endangered, T = USFWS Threatened, PE = USFWS Proposed Endangered (pending final rule), PT = USFWS Proposed Threatened (pending final rule), C = USFWS Candidate (warranted but precluded), S = USFS R5 Sensitive. 3 II. INTRODUCTION The purpose of this Biological Evaluation/Biological Assesment is to document analysis of the potential effects of the Yuba Project on Forest Service Sensitive Species, and U.S. Fish and Wildlife’s designated threatened, endangerd, candidate, and proposed aquatic and terrestrial wildlife species and their habitats: The above list includes United States Department of Interior Fish and Wildlife Service (USFWS) threatened, endangered, candidate, and proposed species maintained at 50 CFR 17.11 (Last updated February 13, 2017), and United States Department of Agriculture (USDA) Forest Service Region 5 Forester's Sensitive Species, listed for the Tahoe National Forest (Updated as of September 9, 2013). This evaluation does not address the following USFWS threatened or endangered species: Coccyzus americanus (yellow-billed cuckoo (T)), Branchinecta lynchi (Vernal Pool fairy shrimp (T)), Lepidurus Packardt (Vernal Pool tadpole shrimp (E)), Chasmistes cujus (cui-ui (E)), Hypomesus transpacificus (delta smelt (T)), or Oncorhynchus mykiss (steelhead (T)) because the Tahoe National Forest is outside of the range or does not contain habitat for these species. Oncorhynchus mykiss (Central Valley steelhead, Sacramento River) do not occur in the Tahoe National Forest due to dams. If a project in the Tahoe National Forest could potentially have effects to any of these species they would be analyzed in detail. This biological evaluation was prepared in accordance with Forest Service Manual (FSM) direction 2672.42 and meets legal requirements set forth under Section 7 of the Endangered Species Act of 1973, as amended, and implementing regulations [19 U.S.C. 1536 (c), 50 CFR 402.12 (f) and 402.14 (c)]. Literature cited and references throughout this biological evaluation can be found at the end of the document, first by general resource documents then by individual species or species group. III. CONSULTATION TO DATE The Fish and Wildlife Service is contacted every 90 days to obtain a current list of threatened, endangered, proposed and candidate species that may be present in the Tahoe National Forest. The most recent list was reported February 13, 2017 and is attached as Appendix A. This project is within the range of the Sierra Nevada yellow-legged frog, and activities are proposed with Critical Habitat for this species. As such, formal consultation with the U. S. Fish and Wildlife Service for this species is completed in a separate Biological Assessment.
Recommended publications
  • THE LONG-EARED OWL INSIDE by CHRIS NERI and NOVA MACKENTLEY News from the Board and Staff
    WINTER 2014 TAKING FLIGHT NEWSLETTER OF HAWK RIDGE BIRD OBSERVATORY The elusive Long-eared Owl Photo by Chris Neri THE LONG-EARED OWL INSIDE by CHRIS NERI and NOVA MACKENTLEY News from the Board and Staff..... 2 For many birders thoughts of Long-eared Owls invoke memories of winter Education Updates .................. 4 visits to pine stands in search of this often elusive species. It really is magical Research Features................... 6 to enter a pine stand, find whitewash and pellets at the base of trees and realize that Long-eareds are using the area that you are searching. You scan Stewardship Notes ................. 12 up the trees examining any dark spot, usually finding it’s just a tangle of Volunteer Voices.................... 13 branches or a cluster of pine needles, until suddenly your gaze is met by a Hawk Ridge Membership........... 14 pair of yellow eyes staring back at you from a body cryptically colored and Snore Outdoors for HRBO ......... 15 stretched long and thin. This is often a birders first experience with Long- eared Owls. However, if you are one of those that have journeyed to Hawk Ridge at night for one of their evening owl programs, perhaps you were fortunate enough to see one of these beautiful owls up close. CONTINUED ON PAGE 3 HAWK RIDGE BIRD OBSERVATORY 1 NOTES FROM THE DIRECTOR BOARD OF DIRECTORS by JANELLE LONG, EXECUTIVE DIRECTOR As I look back to all of the accomplishments of this organization, I can’t help but feel proud CHAIR for Hawk Ridge Bird Observatory and to be a part of it.
    [Show full text]
  • (Gastropoda: Batillariidae) from Elkhorn Slough, California, USA
    Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: https://www.tandfonline.com/loi/tmdn20 The complete mitogenome of the invasive Japanese mud snail Batillaria attramentaria (Gastropoda: Batillariidae) from Elkhorn Slough, California, USA Hartnell College Genomics Group, Paulina Andrade, Lisbeth Arreola, Melissa Belnas, Estefania Bland, Araceli Castillo, Omar Cisneros, Valentin Contreras, Celeste Diaz, Kevin T. Do, Carlos Donate, Estevan Espinoza, Nathan Frater, Garry G. Gabriel, Eric A. Gomez, Gino F. Gonzalez, Myrka Gonzalez, Paola Guido, Dylan Guidotti, Mishell Guzman Espinoza, Ivan Haro, Javier Hernandez Lopez, Caden E. Hernandez, Karina Hernandez, Jazmin A. Hernandez-Salazar, Jeffery R. Hughey, Héctor Jácome-Sáenz, Luis A. Jimenez, Eli R. Kallison, Mylisa S. King, Luis J. Lazaro, Feifei Zhai Lorenzo, Isaac Madrigal, Savannah Madruga, Adrian J. Maldonado, Alexander M. Medina, Marcela Mendez-Molina, Ali Mendez, David Murillo Martinez, David Orozco, Juan Orozco, Ulises Ortiz, Jennifer M. Pantoja, Alejandra N. Ponce, Angel R. Ramirez, Israel Rangel, Eliza Rojas, Adriana Roque, Beatriz Rosas, Colt Rubbo, Justin A. Saldana, Elian Sanchez, Alicia Steinhardt, Maria O. Taveras Dina, Judith Torres, Silvestre Valdez-Mata, Valeria Vargas, Paola Vazquez, Michelle M. Vazquez, Irene Vidales, Frances L. Wong, Christian S. Zagal, Santiago Zamora & Jesus Zepeda Amador To cite this article: Hartnell College Genomics Group, Paulina Andrade, Lisbeth Arreola, Melissa Belnas, Estefania Bland, Araceli Castillo, Omar Cisneros, Valentin Contreras, Celeste Diaz, Kevin T. Do, Carlos Donate, Estevan Espinoza, Nathan Frater, Garry G. Gabriel, Eric A. Gomez, Gino F. Gonzalez, Myrka Gonzalez, Paola Guido, Dylan Guidotti, Mishell Guzman Espinoza, Ivan Haro, Javier Hernandez Lopez, Caden E. Hernandez, Karina Hernandez, Jazmin A.
    [Show full text]
  • Accipiters.Pdf
    Accipiters The northern goshawk (Accipiter gentilis) and the sharp-shinned hawk (Accipiter striatus) are the Alaskan representatives of a group of hawks known as accipiters, with short, rounded wings (short in comparison with other hawks) and long tails. The third North American accipiter, the Cooper’s hawk (Accipiter cooperii) is not found in Alaska. Both native species are abundant in the state but not commonly seen, for they spend the majority of their time in wooded habitats. When they do venture out into the open, the accipiters can be recognized easily by their “several flaps and a glide” style of flight. General Description: Adult northern goshawks are bluish- gray on the back, wings, and tail, and pearly gray on the breast and underparts. The dark gray cap is accented by a light gray stripe above the red eye. Like most birds of prey, female goshawks are larger than males. A typical female is 25 inches (65 cm) long, has a wingspread of 45 inches (115 cm) and weighs 2¼ pounds (1020 g) while the average male is 19½ inches (50 cm) in length with a wingspread of 39 inches (100 cm) and weighs 2 pounds (880 g). Adult sharp-shinned hawks have gray backs, wings and tails (males tend to be bluish-gray, while females are browner) with white underparts barred heavily with brownish-orange. They also have red eyes but, unlike goshawks, have no eyestrip. A typical female weighs 6 ounces (170 g), is 13½ inches (35 cm) long with a wingspread of 25 inches (65 cm), while the average male weighs 3½ ounces (100 g), is 10 inches (25 cm) long and has a wingspread of 21 inches (55 cm).
    [Show full text]
  • Immature Northern Goshawk Captures, Kills, and Feeds on Adult&Hyphen
    DECEMUER2003 SHO•tT COMMUNICATIONS 337 [EDs.], Proceedingsof the 4th Workshop of Bearded Vulture (Gypaetusbarbatus) in the Pyrenees:influence Vulture. Natural History Museum of Crete and Uni- on breeding success.Bird Study46:224-229. versity of Crete, Iraklio, Greece. --AND --. 2002. Pla de recuperaci6 del trenca- --AND M. RAZIN.1999. Ecologyand conservationof 16s a Catalunya: biologia i conservaci6. Documents the Bearded Vultures: the case of the Spanish and dels Quaderns de Medi Ambient, 7. Generalitat de French Pyrenees.Pages 29-45 in M. Mylonas [ED.], Catalunya, Departament de Medi Ambient, Barcelo- Proceedingsof the Bearded Vulture Workshop. Nat- na, Spain. ural History Museum of Crete and University of , ---,J. BERTP,AN, ANt) R. HERrre^. 2003. Breed- Crete, Iraklio, Greece. ing biology and successof the Bearded Vulture HIRALDO,F., M. DELIBES,ANDJ. CALDER(SN. 1979. E1 Que- (Gypaetusbarbatus) in the eastern Pyrenees.Ibis 145 brantahuesos(Gypaetus barbatus). L. Monografias 22. 244-252. ICONA, Madrid, Spain. , --, AND R. HE•Em^. 1997. Estimaci6n de la MARGAiJDA,A. ANDJ. BERTRAN.2000a. Nest-buildingbe- disponibilidad tr6fica para el Quebrantahuesosen Ca- haviour of the Bearded Vulture (Gypaetusbarbatus). talufia (NE Espafia) e implicacionessobre su conser- Ardea 88:259-264. vaci6n. Do•ana, Acta Vertetm24:227-235. --AND --. 2000b. Breeding behaviour of the NEWTON,I. 1979. Populationecology ofraptors. T. &A D Bearded Vulture (Gypaetusbarbatus): minimal sexual Poyser,Berkhamsted, UK. differencesin parental activities.Ibis 142:225-234. ß 1986. The Sparrowhawk.T. & A.D. Poyser,Cal- --AND --. 2001. Function and temporal varia- ton, UK. tion in the use of ossuaries by Bearded Vultures --^NO M. MA•QUtSS.1982. Fidelity to breeding area (Gypaetusbarbatus) during the nestling period.
    [Show full text]
  • Molecular Phylogenetic Relationship of Thiaridean Genus Tarebia Lineate
    Journal of Entomology and Zoology Studies 2017; 5(3): 1489-1492 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Molecular phylogenetic relationship of Thiaridean JEZS 2017; 5(3): 1489-1492 © 2017 JEZS genus Tarebia lineate (Gastropoda: Cerithioidea) Received: 23-03-2017 Accepted: 24-04-2017 as determined by partial COI sequences Chittaranjan Jena Department of Biotechnology, Vignan’s University (VFSTRU), Chittaranjan Jena and Krupanidhi Srirama Vadlamudi, Andhra Pradesh, India Abstract An attempt was made to investigate phylogenetic affinities of the genus Tarebia lineata sampled from Krupanidhi Srirama the Indian subcontinent using partial mitochondrial COI gene sequence. The amplified partial mt-COI Department of Biotechnology, gene sequence using universal primers, LCO1490 and HCO2198 resulted into ~700 base pair DNA Vignan’s University (VFSTRU), Vadlamudi, Andhra Pradesh, fragment. The obtained nucleotide sequence of partial COI gene of T. lineata was submitted to BLAST India analysis and 36 close relative sequences of the chosen genera, Cerithioidea were derived. Maximum likelihood (ML) algorithm in-biuilt in RAxML software tool was used to estimate phylogenetic their affinities. The present analysis revealed that a single assemblage of the family Thiaridae supported by a bootstrap value of 96% is earmarked at the base of the derived cladogram as a cluster and emerged as a sister group with another four Cerithioideans. Our dataset brought add-on value to the current taxonomy of Thiaridae of the clade Sorbeconcha by clustering them as sister and non-sister groups indicating the virtual relations. Out of seven genera, Tarebia and Melanoides formed as primary and secondary clusters within the Thiaridae. The monophyly of Thiaridae and its conspecifics were depicted in the cladogram.
    [Show full text]
  • 8. the Mollusk Fauna of the Monte Postale
    Rendiconti della Società Paleontologica Italiana, 4, 2014, pp. 89-94 Excursion guidebook CBEP 2014-EPPC 2014-EAVP 2014-Taphos 2014 Conferences The Bolca Fossil-Lagerstätten: A window into the Eocene World (editors C.A. Papazzoni, L. Giusberti, G. Carnevale, G. Roghi, D. Bassi & R. Zorzin) 8. The mollusk fauna of the Monte Postale Stefano DOMINICI S. Dominici, Museo di Storia Naturale, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy; !$`"$ Fossil marine mollusks from Monte Postale, about one mile NE of Bolca (Verona and Vicenza Provinces) and 300 m N of the “Pesciara” (see the map in Papazzoni & Trevisani, 2006), were collected and catalogued at least since the 18th`[ seen, in the second decade of the 19th century, as means to date the rocks, and the already O"~P`[` geologists. In 1823, on the footsteps of Alberto Fortis (1778), Alexandre Brongniart drew stratigraphic sections and collected fossils in the Vicenza province, assigning the Bolca and Roncà invertebrates to one and the same geological interval. In the newly introduced 5~`[` Paris Basin. This meant to Brongniart that they belonged to the older Tertiary, and were distinct from the fossil shells described by Giambattista Brocchi in 1814, typifying the younger Tertiary (Rudwick, 2005). “I can relate the calcareous-trappic terrains of Northern Italy to the lower formation, the most ancient of the upper sediment [i.e., the Tertiary]. I’m struck by the analogy between these two terrains, their utter similarity under almost any aspect. Nothing of the lower terrains of the Parisian limestone is missing in Bolca, Roncà, etc.
    [Show full text]
  • Gastropod Fauna of the Cameroonian Coasts
    Helgol Mar Res (1999) 53:129–140 © Springer-Verlag and AWI 1999 ORIGINAL ARTICLE Klaus Bandel · Thorsten Kowalke Gastropod fauna of the Cameroonian coasts Received: 15 January 1999 / Accepted: 26 July 1999 Abstract Eighteen species of gastropods were encoun- flats become exposed. During high tide, most of the tered living near and within the large coastal swamps, mangrove is flooded up to the point where the influence mangrove forests, intertidal flats and the rocky shore of of salty water ends, and the flora is that of a freshwater the Cameroonian coast of the Atlantic Ocean. These re- regime. present members of the subclasses Neritimorpha, With the influence of brackish water, the number of Caenogastropoda, and Heterostropha. Within the Neriti- individuals of gastropod fauna increases as well as the morpha, representatives of the genera Nerita, Neritina, number of species, and changes in composition occur. and Neritilia could be distinguished by their radula Upstream of Douala harbour and on the flats that lead anatomy and ecology. Within the Caenogastropoda, rep- to the mangrove forest next to Douala airport the beach resentatives of the families Potamididae with Tympano- is covered with much driftwood and rubbish that lies on tonos and Planaxidae with Angiola are characterized by the landward side of the mangrove forest. Here, Me- their early ontogeny and ecology. The Pachymelaniidae lampus liberianus and Neritina rubricata are found as are recognized as an independent group and are intro- well as the Pachymelania fusca variety with granulated duced as a new family within the Cerithioidea. Littorini- sculpture that closely resembles Melanoides tubercu- morpha with Littorina, Assiminea and Potamopyrgus lata in shell shape.
    [Show full text]
  • Federal Register/Vol. 65, No. 233/Monday, December 4, 2000
    Federal Register / Vol. 65, No. 233 / Monday, December 4, 2000 / Notices 75771 2 departures. No more than one slot DEPARTMENT OF TRANSPORTATION In notice document 00±29918 exemption time may be selected in any appearing in the issue of Wednesday, hour. In this round each carrier may Federal Aviation Administration November 22, 2000, under select one slot exemption time in each SUPPLEMENTARY INFORMATION, in the first RTCA Future Flight Data Collection hour without regard to whether a slot is column, in the fifteenth line, the date Committee available in that hour. the FAA will approve or disapprove the application, in whole or part, no later d. In the second and third rounds, Pursuant to section 10(a)(2) of the than should read ``March 15, 2001''. only carriers providing service to small Federal Advisory Committee Act (Pub. hub and nonhub airports may L. 92±463, 5 U.S.C., Appendix 2), notice FOR FURTHER INFORMATION CONTACT: participate. Each carrier may select up is hereby given for the Future Flight Patrick Vaught, Program Manager, FAA/ to 2 slot exemption times, one arrival Data Collection Committee meeting to Airports District Office, 100 West Cross and one departure in each round. No be held January 11, 2000, starting at 9 Street, Suite B, Jackson, MS 39208± carrier may select more than 4 a.m. This meeting will be held at RTCA, 2307, 601±664±9885. exemption slot times in rounds 2 and 3. 1140 Connecticut Avenue, NW., Suite Issued in Jackson, Mississippi on 1020, Washington, DC, 20036. November 24, 2000. e. Beginning with the fourth round, The agenda will include: (1) Welcome all eligible carriers may participate.
    [Show full text]
  • 1 Northern Goshawk Forest Type Preference in the Chippewa
    Northern Goshawk Forest Type Preference in the Chippewa National Forest Travis W. Ludwig Department of Resource Analysis, Saint Mary’s University of MN, Winona, MN 55987 Keywords: Goshawk, Accipiter gentilis, GIS, forest stands, Chippewa National Forest, minimal convex polygons, quaking aspen Abstract The Chippewa National Forest has large expanses of land that are densely forested and largely uninhabited providing excellent habitat for Northern Goshawk (Accipiter gentiles). The Chippewa National Forest is currently updating its forest management plan and one of the issues is the importance of goshawk habitat. The goshawk is a listed Sensitive Species in the Eastern Region for the U.S. Forest Service. This study used a geographic information system to assess which forest types are important as goshawk habitat. Since limited knowledge exists concerning goshawk habitat, three habitat estimations (minimal convex polygons, Kernel 95% and Forage Buffer) were used to determine which forest stands occur within goshawk utilization areas. While quaking aspen plays a vital role in goshawk habitat in the Chippewa National Forest, goshawks there are opportunistic and take advantage of many other forest types. Introduction The Chippewa National Forest, hereafter called Chippewa NF, encompasses 1.6 million acres. Of this, 666,325 acres are managed by the USDA Forest Service. The forest consists of aspen, birch, pine, balsam fir, and maple species. The Chippewa NF contains approximately 1300 lakes, 900 miles of rivers and streams, and 400,000 acres of wetlands. The Chippewa NF is the largest national forest east of the Mississippi (Chippewa National Forest Website, 2002). The Chippewa NF is located in northern Minnesota between the cities of Grand Rapids to the east and Bemidji to the west (Figure 1).
    [Show full text]
  • Constructional Morphology of Cerithiform Gastropods
    Paleontological Research, vol. 10, no. 3, pp. 233–259, September 30, 2006 6 by the Palaeontological Society of Japan Constructional morphology of cerithiform gastropods JENNY SA¨ LGEBACK1 AND ENRICO SAVAZZI2 1Department of Earth Sciences, Uppsala University, Norbyva¨gen 22, 75236 Uppsala, Sweden 2Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden. Present address: The Kyoto University Museum, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan (email: [email protected]) Received December 19, 2005; Revised manuscript accepted May 26, 2006 Abstract. Cerithiform gastropods possess high-spired shells with small apertures, anterior canals or si- nuses, and usually one or more spiral rows of tubercles, spines or nodes. This shell morphology occurs mostly within the superfamily Cerithioidea. Several morphologic characters of cerithiform shells are adap- tive within five broad functional areas: (1) defence from shell-peeling predators (external sculpture, pre- adult internal barriers, preadult varices, adult aperture) (2) burrowing and infaunal life (burrowing sculp- tures, bent and elongated inhalant adult siphon, plough-like adult outer lip, flattened dorsal region of last whorl), (3) clamping of the aperture onto a solid substrate (broad tangential adult aperture), (4) stabilisa- tion of the shell when epifaunal (broad adult outer lip and at least three types of swellings located on the left ventrolateral side of the last whorl in the adult stage), and (5) righting after accidental overturning (pro- jecting dorsal tubercles or varix on the last or penultimate whorl, in one instance accompanied by hollow ventral tubercles that are removed by abrasion against the substrate in the adult stage). Most of these char- acters are made feasible by determinate growth and a countdown ontogenetic programme.
    [Show full text]
  • Seasonal Reproductive Anatomy and Sperm Storage in Pleurocerid Gastropods (Cerithioidea: Pleuroceridae) Nathan V
    989 ARTICLE Seasonal reproductive anatomy and sperm storage in pleurocerid gastropods (Cerithioidea: Pleuroceridae) Nathan V. Whelan and Ellen E. Strong Abstract: Life histories, including anatomy and behavior, are a critically understudied component of gastropod biology, especially for imperiled freshwater species of Pleuroceridae. This aspect of their biology provides important insights into understanding how evolution has shaped optimal reproductive success and is critical for informing management and conser- vation strategies. One particularly understudied facet is seasonal variation in reproductive form and function. For example, some have hypothesized that females store sperm over winter or longer, but no study has explored seasonal variation in accessory reproductive anatomy. We examined the gross anatomy and fine structure of female accessory reproductive structures (pallial oviduct, ovipositor) of four species in two genera (round rocksnail, Leptoxis ampla (Anthony, 1855); smooth hornsnail, Pleurocera prasinata (Conrad, 1834); skirted hornsnail, Pleurocera pyrenella (Conrad, 1834); silty hornsnail, Pleurocera canaliculata (Say, 1821)). Histological analyses show that despite lacking a seminal receptacle, females of these species are capable of storing orientated sperm in their spermatophore bursa. Additionally, we found that they undergo conspicuous seasonal atrophy of the pallial oviduct outside the reproductive season, and there is no evidence that they overwinter sperm. The reallocation of resources primarily to somatic functions outside of the egg-laying season is likely an adaptation that increases survival chances during winter months. Key words: Pleuroceridae, Leptoxis, Pleurocera, freshwater gastropods, reproduction, sperm storage, anatomy. Résumé : Les cycles biologiques, y compris de l’anatomie et du comportement, constituent un élément gravement sous-étudié de la biologie des gastéropodes, particulièrement en ce qui concerne les espèces d’eau douce menacées de pleurocéridés.
    [Show full text]
  • Northern Goshawk (Accipiter Gentiles)
    Northern Goshawk (Accipiter gentiles) Paul Cotter The northern goshawk (goshawk) is a short-winged, highly maneuverable hawk of the accipiter group inhabiting boreal and mountain forests of North American, Europe, and northern Russia. Some goshawks migrate; some are resident; and others are probably nomadic, moving more in years of low prey. The breeding and winter ranges of the goshawk overlap extensively. In Southeastern Alaska (Southeast), the goshawk is a year-round resident and begins to occupy nesting stands in February and March (Iverson et al. 1996) (Fig 1). Relatively large size, a slate gray back, and a fine gray barring on underparts make the adult goshawk difficult to confuse with any other bird of prey in the Tongass National Forest. Under poor light and in the forest, however, the FIG 1. Male northern goshawk at nest in old-growth forest in southeastern Alaska. (Bob Armstrong) goshawk and red-tailed hawk (Buteo jamaicensis) can be confused, even by experienced birders. Short wings multiyear study to examine the ecology and habitat and a long tail make the goshawk well-suited for associations of Queen Charlotte goshawks in the navigating through its most common habitat of old- Tongass National Forest. growth forest, where it often crashes through dense brush to capture birds and small mammals. In STATUS IN SOUTHEASTERN ALASKA Southeast, the primary diet of the goshawk includes Distribution grouse, ptarmigan, red squirrels (Tamiasciurus The goshawk is found across the Tongass National hudsonicus), songbirds, jays, and crows (Lewis 2001). Forest from Dixon Entrance in southern Southeast In the mid-1990s, the conservation status of the (Iverson et al.
    [Show full text]