Cipangopaludina Chinensis Global
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FINAL DETERMINATION Notopala Hanleyi – Hanley’S River Snail As a Critically Endangered Species
Fisheries Scientific Committee January 2016 Ref. No. FD 59 File No. FSC 00/10 FINAL DETERMINATION Notopala hanleyi – Hanley’s River Snail as a Critically Endangered Species The Fisheries Scientific Committee, established under Part 7A of the Fisheries Management Act 1994 (the Act), has made a final determination to list Notopala hanleyi – Hanley’s River Snail as a CRITICALLY ENDANGERED SPECIES in NSW in Part 1 of Schedule 4A of the Act. The listing of Critically Endangered Species is provided for by Part 7A, Division 2 of the Act. The Fisheries Scientific Committee, with reference to the criteria relevant to this species, prescribed by Part 16, Division 1 of the Fisheries Management (General) Regulation 2010 (the Regulation) has found that: Background 1) Two river snails belonging to the live-bearing freshwater genus Notopala from New South Wales were each described as distinct species, viz. N. sublineata Conrad, 1850 and N. hanleyi Frauenfeld, 1864. A third, related taxon N. alisoni Brazier, 1879 occurs outside New South Wales. In recent years these three taxa have sometimes been considered to be subspecies of a single species for which N. sublineata, the earliest available name, is the species-level name. Although N. alisoni was indeed synonymised with another species N. waterhousei (Adams and Angas, 1864) by Stoddart (1982), there has not been a formal publication synonymising N. hanleyi and N. sublineata. Consequently the species must be regarded as distinct, as listed by Iredale (1943) and Smith (1992). A fourth taxon, Notopala kingi suprafasciata (Billabong Banded Snail) is also present in the Murray-Darling Basin but is largely confined to billabongs/ponds and off-channel habitats (Jones 2011). -
Cipangopaludina Chinensis: Effects of Temperatures and Parasite Prevalence
Cipangopaludina chinensis: Effects of temperatures and parasite prevalence BIOS 35502-01: Practicum in Environmental Field Biology Jennifer Lam Advisor: Sara Benevente 2016 Lam 2 Abstract Comparison of parasite prevalence between native snail species, Lymnaea stagnalis, and invasive snail species, Cipangopaludina chinensis, was conducted by euthanizing snails one day after capture from Brown Lake. Looking at if parasitism is a main factor in intraspecific competition of C. chinensis at different temperatures, snails were captured, measured for height and width, housed under different temperature settings (20◦C, 25◦C, and 34◦C), and competed against other for a week-long trial. After the week-long trial or when the last snail died, snails were re-measured for growth and checked for parasites. Result from parasite prevalence between two snails species was significant, C. chinensis rarely had infections compared to L. stagnalis. From the result, native parasites were predicted to be highly specialized for L. stagnalis and lack mechanisms to penetrate C. chinensis. Result from the intraspecific competition suggested that parasite prevalence was not important as survival (in weeks) in the change in growth. Since parasite prevalence was low, and sample size was small, conclusion on parasite prevalence not being a factor in growth was not robust. Further studies on impact of C. chinensis on freshwater systems and native snail species are needed. Introduction Climate change is a concerning factor for freshwater ecosystems. Climate change increases the average temperature of water in some aquatic systems. With warmer water temperatures, more exotic species can establish as native species disappear (Rahel and Olden 2008). As native species disappear from the ecosystem, other species dependent on a specific native species may not be able to sustain the loss, leading to a decrease in biodiversity. -
Molecular Phylogenetic Evidence That the Chinese Viviparid Genus Margarya (Gastropoda: Viviparidae) Is Polyphyletic
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Article SPECIAL ISSUE June 2013 Vol.58 No.18: 21542162 Adaptive Evolution and Conservation Ecology of Wild Animals doi: 10.1007/s11434-012-5632-y Molecular phylogenetic evidence that the Chinese viviparid genus Margarya (Gastropoda: Viviparidae) is polyphyletic DU LiNa1, YANG JunXing1*, RINTELEN Thomas von2*, CHEN XiaoYong1 & 3 ALDRIDGE David 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin 10115, Germany; 3 Aquatic Ecology Group, Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK Received February 28, 2012; accepted May 25, 2012; published online February 1, 2013 We investigated the phylogeny of the viviparid genus Margarya, endemic to Yunnan, China, using two mitochondrial gene frag- ments (COI and 16S rRNA). The molecular phylogeny based on the combined dataset indicates that Margarya is polyphyletic, as two of the three well-supported clades containing species of Margarya also comprise species from other viviparid genera. In one clade, sequences of four species of Margarya even cluster indiscriminately with those of two species of Cipangopaludina, indi- cating that the current state of Asian viviparid taxonomy needs to be revised. Additionally, these data suggest that shell evolution in viviparids is complex, as even the large and strongly sculptured shells of Margarya, which are outstanding among Asian viviparids, can apparently be easily converted to simple smooth shells. -
First Report of the Invasive Snail Pomacea Canaliculata in Kenya Alan G
Buddie et al. CABI Agric Biosci (2021) 2:11 https://doi.org/10.1186/s43170-021-00032-z CABI Agriculture and Bioscience RESEARCH Open Access First report of the invasive snail Pomacea canaliculata in Kenya Alan G. Buddie1* , Ivan Rwomushana2 , Lisa C. Oford1 , Simeon Kibet3, Fernadis Makale2 , Djamila Djeddour1 , Giovanni Cafa1 , Koskei K. Vincent4, Alexander M. Muvea3 , Duncan Chacha2 and Roger K. Day2 Abstract Following reports of an invasive snail causing crop damage in the expansive Mwea irrigation scheme in Kenya, samples of snails and associated egg masses were collected and sent to CABI laboratories in the UK for molecular identifcation. DNA barcoding analyses using the cytochrome oxidase subunit I gene gave preliminary identifcation of the snails as Pomacea canaliculata, widely considered to have the potential to be one of the most invasive inver- tebrates of waterways and irrigation systems worldwide and which is already causing issues throughout much of south-east Asia. To the best of our knowledge, this is the frst documented record of P. canaliculata in Kenya, and the frst confrmed record of an established population in continental Africa. This timely identifcation shows the beneft of molecular identifcation and the need for robust species identifcations: even a curated sequence database such as that provided by the Barcoding of Life Data system may require additional checks on the veracity of the underlying identifcations. We found that the egg mass tested gave an identical barcode sequence to the adult snails, allowing identifcations to be made more rapidly. Part of the nuclear elongation factor 1 alpha gene was sequenced to confrm that the snail was P. -
Pomacea Canaliculata (Lamarck, 1822)
Pomacea canaliculata (Lamarck, 1822) Diagnostic features Distinguished from Pomacea diffusa by its larger sized shell (up to 75 mm in height) and deeply channelled suture. Animal with distinctive head-foot; snout uniquely with a pair of Pomacea canaliculata (adult size up to 75 mm in height) Characteristic pink egg mass, commonly laid on vegetation. distal, long, tentacle-like processes; cephalic tentacles very long. A long 'siphon' is also present. Classification Pomacea canaliculata (Lamarck, 1822) Common name: Golden apple snail Class Gastropoda I nfraclass Caenogastropoda I nformal group Architaenioglossa Order Ampullarida Superfamily Ampullarioidea Family Ampullariidae Genus Pomacea Perry, 1810 Original name: Ampullaria canaliculata Lamarck, 1822. Lamarck, J. B. P. A. de M. de (1822). Histoire naturelle des animaux sans vertèbres Tome sixième.LĘauteur, Paris. 1-232 pp. Type locality: Laguna Guadeloupe ? Santa Fe, Argentina (as ėRivierès de la Guadeloupe) Biology and ecology This species lives on sediment and on aquatic and semi-aquatic vegetation. t lays pink coloured egg masses on plants above the waterline. t has become a major pest of aquatic crops as it eats living plants including rice and taro crops. Distribution ntroduced from South America into the southern United States, East Asia, islands of the ndian Ocean and New Guinea. Notes This pest species has not as yet entered Australia, but ought to be considered a significant risk due to its presence as an invasive in the adjacent ndo-west Pacific region. Two other south Asian ampullariid species have regularly been intercepted by Australian Biosecurity ĕ they are Pila ampullacea (Linnaeus, 1758) and Pila globosa (Swainson, 1822). -
Fecundity of the Chinese Mystery Snail in a Nebraska Reservoir
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications Unit 2013 Fecundity of the Chinese mystery snail in a Nebraska reservoir Bruce J. Stephen University of Nebraska-Lincoln, [email protected] Craig R. Allen University of Nebraska-Lincoln, [email protected] Noelle M. Chaine University of Nebraska-Lincoln, [email protected] Kent A. Fricke University of Nebraska-Lincoln Danielle M. Haak University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/ncfwrustaff Part of the Aquaculture and Fisheries Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; and Wong, Alec, "Fecundity of the Chinese mystery snail in a Nebraska reservoir" (2013). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 121. https://digitalcommons.unl.edu/ncfwrustaff/121 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Bruce J. Stephen, Craig R. Allen, Noelle M. Chaine, Kent A. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Pomacea Canaliculata) Behaviors in Different Water Temperature Gradients
water Article Comparison of Invasive Apple Snail (Pomacea canaliculata) Behaviors in Different Water Temperature Gradients Mi-Jung Bae 1, Eui-Jin Kim 1 and Young-Seuk Park 2,* 1 Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea; [email protected] (M.-J.B.); [email protected] (E.-J.K.) 2 Department of Biology, Kyung Hee University, Dongdaemun, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0946 Abstract: Pomacea canaliculata (known as invasive apple snail) is a freshwater snail native to South America that was introduced into many countries (including Asia and North America) as a food source or for organic farming systems. However, it has invaded freshwater ecosystems and become a serious agricultural pest in paddy fields. Water temperature is an important factor determining behavior and successful establishment in new areas. We examined the behavioral responses of P. canaliculata with water temperature changes from 25 ◦C to 30 ◦C, 20 ◦C, and 15 ◦C by quantifying changes in nine behaviors. At the acclimated temperature (25 ◦C), the mobility of P. canaliculata was low during the day, but high at night. Clinging behavior increased as the water temperature decreased from 25 ◦C to 20 ◦C or 15 ◦C. Conversely, ventilation and food consumption increased when the water temperature increased from 25 ◦C to 30 ◦C. A self-organizing map (an unsupervised artificial neural network) was used to classify the behavioral patterns into seven clusters at different water temperatures. These results suggest that the activity levels or certain behaviors of P. canaliculata vary with the water temperature conditions. -
And Type the TITLE of YOUR WORK in All Caps
POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON (Under the Direction of Susan Bennett Wilde) ABSTRACT The Island apple snail, Pomacea insularum is a freshwater gastropod in the family Ampullaridae. It was introduced into the United States via the aquarium trade approximately 30 years ago and now has established reproducing populations in at least seven southeastern states. It is a highly invasive species with high rates of reproduction and consumption of native aquatic vegetation. A survey of reported Georgia populations confirmed that there are at least ten individual occurrences of exotic apple snails in the state, and that they have not reached their equilibrium distribution. We also investigated the ability of P. insularum to harbor a cyanotoxin that may be detrimental to its avian predator in Florida, the endangered Florida snail kite (Rostrhamus sociabilis). The invasive P. insularum transferred the undescribed cyanotoxin associated with Avian Vacuolar Myelinopathy to domestic chickens in a laboratory feeding study. INDEX WORDS: apple snail, Pomacea insularum, invasive species, Avian Vacuolar Myelinopathy, AVM, Florida snail kite, Rostrhamus sociabilis, Hydrilla verticillata POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON BS, University of Georgia, 2006 AB, University of Georgia, 2007 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2012 © 2012 Shelley Marie Robertson All Rights Reserved POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON Major Professor: Susan B. -
Occurrence of the Chinese Mystery Snail, Cipangopaludina Chinensis
BioInvasions Records (2016) Volume 5, Issue 3: 149–154 Open Access DOI: http://dx.doi.org/10.3391/bir.2016.5.3.05 © 2016 The Author(s). Journal compilation © 2016 REABIC Rapid Communication Occurrence of the Chinese mystery snail, Cipangopaludina chinensis (Gray, 1834) (Mollusca: Viviparidae) in the Saint John River system, New Brunswick, with review of status in Atlantic Canada Donald F. McAlpine1,*, Dwayne A. W. Lepitzki2, Frederick W. Schueler3, Fenning J.T. McAlpine1, Andrew Hebda4, Robert G. Forsyth1, Annegret Nicolai5, John E. Maunder6 and Ron G. Noseworthy7 1New Brunswick Museum, 277 Douglas Avenue, Saint John, New Brunswick, E2K 1E5 Canada 2Wildlife Systems Research, P.O. Box 1311, Banff, Alberta, T1L 1B3 Canada 3RR # 2, Bishops Mills, Ontario, K0G 1T0 Canada 4Nova Scotia Museum of Natural History, 1747 Summer Street, Halifax, Nova Scotia, B3H 3A6 Canada 5UMR-CNRS 6553 EcoBio, Campus Beaulieu, Université Rennes 1, 35042 Rennes cedex, France 6P.O. Box 250, Pouch Cove, Newfoundland and Labrador, A0A 3L0 Canada 7School of Marine Biomedical Science, Jeju National University, Jeju 690-756, Republic of Korea *Corresponding author E-mail: [email protected] Received: 27 February 2016 / Accepted: 1 July 2016 / Published online: 20 July 2016 Handling editor: Carles Alcaraz Abstract The Chinese mystery snail, Cipangopaludina [=Bellamya] chinensis, is documented for the first time in the Saint John River, New Brunswick, a watercourse which drains the largest watershed in Atlantic Canada. This is the first non-native mollusc known to be established in the Saint John River system. Although significant ecosystem effects of the species seem unlikely, possible introduction of C. -
Pomacea Perry, 1810
Pomacea Perry, 1810 Diagnostic features Large to very large globose smooth shells, sutures channelled (Pomacea canaliculata) or with the top of the whorl shouldered and flat at the suture (Pomacea diffusa). Shells umbilicate with unthickened lip. Uniform yellow to olive green with darker spiral bands. nterior of aperture orange to yellow. Operculate, with concentric operculum. Animal with distinctive head-foot; snout uniquely with a pair of distal, long, tentacle-like processes; cephalic tentacles very long. A long 'siphon' is also present. Classification Class Gastropoda Infraclass Caenogastropoda Informal group Architaenioglossa Order Ampullarida Superfamily Ampullarioidea Family Ampullariidae Genus Pomacea Perry, 1810 Type species: Pomacea maculata Perry, 1810 Original reference: Perry, G. 1810-1811. Arcana; or the Museum of Natural History, 84 pls., unnumbered with associated text. ssued in monthly parts, pls.[1-48] in 1810, [49-84] in 1811. Stratford, London. Type locality: Rio Parana, Argentina. Biology and ecology Amphibious, on sediment, weeds and other available substrates. Lays pink coloured egg masses on plants above the waterline. Distribution Native to North and South America but some species have been introduced around the world through the aquarium trade (Pomacea diffusa) and as a food source (Pomacea canaliculata). Pomacea diffusa has been reported from the Ross River in Townsville in NE Queensland, and from freshwater waterbodies in the greater Brisbane area, pswich and Urangan near Maryborough in SE Queensland. Notes This genus is widely known in the aquarium trade through the so-called mystery snail, Pomacea diffusa. n countries such as the Philippines, Hawaii and parts of SE Asia, the species Pomacea canaliculata (Lamarck) is a serious pest of rice crops. -
Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5
Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5 Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5 Prepared by: Amy J. Benson, Colette C. Jacono, Pam L. Fuller, Elizabeth R. McKercher, U.S. Geological Survey 7920 NW 71st Street Gainesville, Florida 32653 and Myriah M. Richerson Johnson Controls World Services, Inc. 7315 North Atlantic Avenue Cape Canaveral, FL 32920 Prepared for: U.S. Fish and Wildlife Service 4401 North Fairfax Drive Arlington, VA 22203 29 February 2004 Table of Contents Introduction ……………………………………………………………………………... ...1 Aquatic Macrophytes ………………………………………………………………….. ... 2 Submersed Plants ………...………………………………………………........... 7 Emergent Plants ………………………………………………………….......... 13 Floating Plants ………………………………………………………………..... 24 Fishes ...…………….…………………………………………………………………..... 29 Invertebrates…………………………………………………………………………...... 56 Mollusks …………………………………………………………………………. 57 Bivalves …………….………………………………………………........ 57 Gastropods ……………………………………………………………... 63 Nudibranchs ………………………………………………………......... 68 Crustaceans …………………………………………………………………..... 69 Amphipods …………………………………………………………….... 69 Cladocerans …………………………………………………………..... 70 Copepods ……………………………………………………………….. 71 Crabs …………………………………………………………………...... 72 Crayfish ………………………………………………………………….. 73 Isopods ………………………………………………………………...... 75 Shrimp ………………………………………………………………….... 75 Amphibians and Reptiles …………………………………………………………….. 76 Amphibians ……………………………………………………………….......... 81 Toads and Frogs