Glutathione and Glutaredoxins, Major Regulators of Root System Architecture Jose Abraham Trujillo Hernandez

Total Page:16

File Type:pdf, Size:1020Kb

Glutathione and Glutaredoxins, Major Regulators of Root System Architecture Jose Abraham Trujillo Hernandez Glutathione and glutaredoxins, major regulators of root system architecture Jose Abraham Trujillo Hernandez To cite this version: Jose Abraham Trujillo Hernandez. Glutathione and glutaredoxins, major regulators of root system architecture. Agricultural sciences. Université de Perpignan, 2019. English. NNT : 2019PERP0017. tel-02336714 HAL Id: tel-02336714 https://tel.archives-ouvertes.fr/tel-02336714 Submitted on 29 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l’école doctorale Et de l’unité de recherche “ Énergie et Environment ” ED305 Spécialité : Biologie Présentée par José Abraham Trujillo-Hernández Le glutathion et les glutaredoxines, des régulateurs majeurs de l'architecture du système racinaire Soutenue le 18 Juin devant le jury composé de Mme Christine FOYER, Professeur, University of Rapporteur Leeds M. Benjamin PÉRET, Directeur de Recherche, Rapporteur CNRS M. Julio SAEZ, Directeur de Recherche, Examinateur Université de Perpignan Via Domitia Mme Sandra BENSMIHEN, Chargé de Recherche, Examinateur CNRS M. Pierre FRENDO , Professeur, Institut Sophia Examinateur Agrobiotech M. Jean-Philippe REICHHELD, Directeur de CoDirecteur Recherche, Université de Perpignan Via Domitia de these M. Christophe BELIN, Maître de Conférences, CoDirecteur Université de Perpignan Via Domitia de these This thesis is dedicated to my lovely wife Dulce, whose wisdom and kindness give me the energy of a thousand suns... Acknowledgements I would like to say thank you to my parents Jose and Luz Maria that even if they were not physically present during my Ph.D., their moral support was critical to reaching my goals. Studying a Ph.D. is a difficult task because it requires discipline, intelligence, and talent, but is easier when you have good professors to show you the way. For this reason, I want to say thanks to Jean-Philippe and Christophe Belin for not giving up on me and show me instead of how to do science. To all the people that I had the opportunity to meet in Perpignan, especially Myriam, Sandrine, Ben, Beren, Anaid, Meli, Aleix, Caro, el Grec, Victor, Alejandra, Jean-Baptiste, Annia, Hadjer, Saionara, Zac, and Rafa, for taking the time to know me better, and share with me so many moments. Eventhough some of them were not as happy ones as we could wish, it made stronger our friendship... I wish you all the best. To all my current and former colleagues from the LGDP which are very nice people and excellent scientists, I wish you success in their professional and personal projects to come. I would also like to say an especially thank you to my friends Salvatore, Alheli, Charlotte, Hernandez, Celso, Panpan, Ariadna, Moaine, and Olka that made my daily work more pleasant with their occurrences and good talks. I want to say also thank you to the all people of the University of Perpignan for allowing me to perform my studies in this institution, in which the people from the LGDP have an especially mention, particularly Claire, Veronique, and Laëtitia. Without their assistance, experience and knowledge, I could not have made the same advances in my work. I would like to say thanks as well to the members of the Ph.D. committee, Lucia STRADER, Cécile BOUSQUET-ANTONELLI, and Laurent LAPLAZE, who were actively involved in my formation through interesting discussion and advice during these three years of my Ph.D. I would like to say a special thanks to Lucia Strader and Jerry Cohen for hosting me in their laboratories in the United States for almost three weeks, they are incredible as people as well as scientists. Moreover, I want to say thanks for having been key elements of my formation. Finally I want to thank the Mexican government and CONACYT who gave me all the economic support that I needed to obtain a doctoral degree. LIST OF ABBREVIATIONS GSH Reduced glutathione GSSG Oxidized glutathione IBA Indole-3-butyric acid IAA Indole-3-acetic acid ABA Abscisic acid GRXS17 Glutaredoxin S17 ROXY19 Glutaredoxin cc-type BSO Buthionine sulphoximine NPA 1-N-Naphthylphthalamic acid NOA 1-naphthoxyacetic acid cad2 Cadmium-sensitive 2, a weak allele of GSH1 pad2 Phytoalexin-deficient 2, a Weak Allele of GSH1 zir1 Zinc tolerance induced by iron 1 , a weak allele of GSH1 rml1 Root meristemless1, a weak allele of GSH1 rax1 Regulator of apx2 1-1, a weak allele of GSH1 cat2 Mutant of the catalase 2 gene LR Lateral root LRP Lateral root primordia ARFs Auxin response factors PHT1.4 Phosphate transporter 1;4 SPX1 SPX domain-containing protein 1 RNS1 Ribonuclease 1 PIN PIN-FORMED proteins ABC ATP Binding Cassette proteins AUX Auxin resistant LAX Auxin resistant like AUX1 PILS Pin like transporters TIR1/AFB Transport inhibitor response1/Auxin-related F-Box proteins PDR8 Pleiotropic drug resistance8/ABCG36 PDR9 Pleiotropic drug resistance9/ABCG37 IBR1 Indole-3-butyric acid response 1 IBR3 Indole-3-butyric acid response 3 IBR10 Indole-3-butyric acid response 10 ECH2 Enoyl-CoA hydratase 2 AIM1 Abnormal inflorescence meristem PED1 Peroxisomal 3-ketoacyl-CoA thiolase 3 UGT74D1 UDP-glucosyl transferase 74D1 UGT74E2 UDP-glucosyl transferase 74E2 NTRA NADPH-dependent thioredoxin reductase A NTRB NADPH-dependent thioredoxin reductase B DR5 Synthetic auxin response element AuxRE Auxin response element ROS Reactive oxygen species PTS1 Peroxisomal targeting signal 1 PTS2 Peroxisomal targeting signal 2 NADPH Nicotinamide adenine dinucleotide phosphate GST Glutathione s-transferase GUS β-glucuronidase gene GFP Green fluorescent protein PGPR Plant growth promoting rhizobacteria RH Root hair PR Primary root PXA1 Peroxisomal ABC-transporter1 GSH1 γ-glutamylcysteine synthetase GSH2 Glutathione synthase PEX5 Peroxin 5 PEX7 Peroxin XPP Xylem pools pericycle TRX Thioredoxin NTS NADPH-dependent thioredoxin reductase system NGS NADPH-dependent glutathione/glutaredoxin system EMS Ethyl methanesulfonate NGM Next Generation Mapping GATK Genome Analysis Toolkit NGS Next-Generation Sequencing technologies EIL-1 Ethylene-insensitive3-like 1 HAM1 Hairy meristem 1 CRK8 Cysteine-rich RECEPTOR-like kinase 8 Table of Contents I GENERAL INTRODUCTION..........................................................................................1 General Introduction...............................................................................................................3 I.1 ROOT SYSTEM........................................................................................................3 I.1.1 Origin of the root................................................................................................3 I.1.1.1 A brief history of land plants......................................................................3 I.1.1.2 Root evolution.............................................................................................5 I.1.1.3 Root system variation in Angiosperms.......................................................9 I.1.2 Root system architecture in Arabidopsis as a model of study..........................11 I.1.2.1 The primary root anatomy........................................................................11 I.1.2.2 Root hair development..............................................................................12 I.1.2.3 Lateral root formation...............................................................................15 I.1.3 Root system responses to environmental conditions........................................18 I.1.3.1 Effect of abiotic stress conditions in the root architecture........................18 I.1.3.2 Root architecture responses to biotic stress..............................................20 I.2 AUXIN CONTROL OF ROOT DEVELOPMENT.................................................21 I.2.1 General considerations.....................................................................................21 I.2.2 Auxin synthesis.................................................................................................23 I.2.3 Auxin transport.................................................................................................27 I.2.4 Auxin signaling pathways................................................................................31 I.2.5 Roles of auxin in root development and plasticity...........................................33 I.2.6 Tools for study auxin in Arabidopsis...............................................................35 I.3 INDOLE-3-BUTYRIC ACID..................................................................................37 I.3.1 Generalities.......................................................................................................37 I.3.2 Peroxisomal conversion of IBA to IAA...........................................................38 I.3.2.1 Peroxisome functions in plant development.............................................38 I.3.2.2 IBA derived IAA......................................................................................41 I.3.3 Indole butyric acid conjugation and transport..................................................43 I.3.4
Recommended publications
  • Corynebacterium Glutamicum Mycoredoxin 3 Protects Against Multiple Oxidative Stresses
    Advance Publication J. Gen. Appl. Microbiol. doi 10.2323/jgam.2019.10.003 ©2020 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Full Paper 1 Corynebacterium glutamicum Mycoredoxin 3 protects against multiple oxidative stresses 2 and displays thioredoxin-like activity 3 (Received September 24, 2019; Accepted October 28, 2019; J-STAGE Advance publication date: October 30, 2020) 4 Tao Su#, Chengchuan Che#, Ping Sun, Xiaona Li, Zhijin Gong, Jinfeng Liu, Ge Yang * 5 6 College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China; 7 8 Running title: Feature of C. glutamicum mycoredoxin 3 9 10 11 # These authors contributed equally to this work. 12 13 * Corresponding authors: 14 Ge Yang 15 16 E-mail [email protected] 17 Tel: 86-13953760056 18 19 20 21 22 23 24 25 26 27 Abstract 28 Glutaredoxins (Grxs) and thioredoxins (Trxs) play a critical role in resistance to oxidative 29 conditions. However, physiological and biochemical roles of Mycoredoxin 3 (Mrx3) that shared a 30 high amino acid sequence similarity to Grxs remain unknown in Corynebacterium glutamicum. 31 Here we showed that mrx3 deletion strains of C. glutamicum was involved in the protection 32 against oxidative stress. Recombinant Mrx3 not only catalytically reduced the disulfide bonds in 33 ribonucleotide reductase (RNR), insulin and 5, 5’-dithiobis-(2-nitro-benzoicacid) (DTNB), but 34 also reduced the mixed disulphides between mycothiol (MSH) and substrate, which was 35 exclusively linked to the thioredoxin reductase (TrxR) electron transfer pathway by a dithiol 36 mechanism. Site-directed mutagenesis confirmed that the conserved Cys17 and Cys20 in Mrx3 37 were necessary to maintain its activity.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Peter D. Karp Suzanne Paley Julio Collado-Vides John L Ingraham Ingrid Keseler Markus Krummenacker Cesar Bonavides-Martinez Robert Gunsalus An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Carol Fulcher Ian Paulsen Socorro Gama-Castro Robert LaRossa Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. EcoCyc: Escherichia coli K-12 substr. MG1655 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari Amanda Mackie Alberto Santos-Zavaleta succinate phosphate succinate N-acetyl-DL-methionine + L-ornithine glutathione + L-methionine S-oxide D-fructofuranose γ Ag+ molybdate ferroheme b L,L-homocystine asp lys cys L-alanyl- -D- D-mannopyranose 6-phosphate 2+ 2+ H D-methionine 2-deoxy-D-glucose succinate formate formate succinate D-tartrate putrescine agmatine cadaverine L-tartrate D-fructofuranose 6-phosphate + nitrate nitrate Cu thiosulfate deoxycholate L,L-homocystine D-cystine D-cycloserine methyl β-D-glucoside putrescine asp spermidine (S)-2-hydroxybutanoate (S)-2-hydroxybutanoate arg L-homoserine lactone magnesium hydrogenphosphate magnesium hydrogenphosphate antimonous acid glutamyl-meso- Co2+ Cd2+ lactulose poly-β-1,6- met cob(I)inamide 2,3-dioxo-
    [Show full text]
  • The Role of Intermembrane Space Redox Factors in Glutathione Metabolism and Intracellular Redox Equilibrium Hatice Kubra Ozer University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2015 The Role of Intermembrane Space Redox Factors In Glutathione Metabolism And Intracellular Redox Equilibrium Hatice Kubra Ozer University of South carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemistry Commons Recommended Citation Ozer, H. K.(2015). The Role of Intermembrane Space Redox Factors In Glutathione Metabolism And Intracellular Redox Equilibrium. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/3702 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. THE ROLE OF INTERMEMBRANE SPACE REDOX FACTORS IN GLUTATHIONE METABOLISM AND INTRACELLULAR REDOX EQUILIBRIUM by Hatice Kubra Ozer Bachelor of Science Uludag University, 2004 Master of Food Science and Nutrition Clemson University, 2010 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemistry College of Arts and Sciences University of South Carolina 2015 Accepted by: Caryn E. Outten, Major Professor F. Wayne Outten, Committee Chair Erin Connolly, Committee Member Andrew B. Greytak, Committee Member Lacy K. Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by Hatice Kubra Ozer, 2015 All Rights Reserved. ii ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Caryn E. Outten for her patience, guidance, expertise, and confidence in me to complete the work contained herein. She has been an excellent mentor during my graduate program. She is also the only person beside myself who is guaranteed to have read every word of this manuscript and to review every presentations in the past and her insight was irreplaceable.
    [Show full text]
  • The Value of Our ASPB Community by JUDY CALLIS UPDATE ASPB President, University of California, Davis
    March/April 2020 • Volume 47, Number 2 p. 7 p. 8 p. 12 Journal Flexibility Zachary Lippman NEW COLUMN in the Troubling Wins 2020 National Times of COVID-19 Academy of Unsung Heroes: Sciences Prize Samantha Link THE NEWSLETTER OF THE AMERICAN SOCIETY OF PLANT BIOLOGISTS President’s Letter The Value of Our ASPB Community BY JUDY CALLIS UPDATE ASPB President, University of California, Davis As the impacts of the coronavirus his is an unprecedented resources on Plantae pandemic become ever more serious, and extraordinary support profession- ASPB’s Plant Biology 2020 contin- Ttime. The fabric of our als and students gency planning efforts have gathered personal and professional worldwide without pace. Among other possibilities, as lives is changing daily, and charge and provide of early April we are exploring the it will be different as you communities with feasibility of options for online access read this message than it was a forum for discus- to meeting content—including the when I wrote it a few weeks sion and resource networking and other peer-to-peer ago. Now more than ever, we sharing. Join Twitter connections that are such a vital should value our ASPB com- if you haven’t component of Plant Biology confer- munity. Indeed, none of us is already and follow ences. Decisions are still pending; alone. ASBP (@ASPB); we will share more detailed informa- The goals of this letter are post ideas, ask for tion as soon as we are able to do so. to point you toward resourc- suggestions, and In the meantime, we thank you for es that might be particularly list resource URLs.
    [Show full text]
  • Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review
    molecules Review Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review 1, 1, 1 1 Trnka Daniel y , Hossain Md Faruq y , Jordt Laura Magdalena , Gellert Manuela and Lillig Christopher Horst 2,* 1 Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; [email protected] (T.D.); [email protected] (H.M.F.); [email protected] (J.L.M.); [email protected] (G.M.) 2 Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany * Correspondence: [email protected]; Tel.: +49-3834-865407; Fax: +49-3834-865402 These authors contributed equally to this work. y Academic Editor: Pál Perjési Received: 29 July 2020; Accepted: 22 August 2020; Published: 25 August 2020 Abstract: Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
    [Show full text]
  • Biochemical and Biophysical Characterization of a Mycoredoxin
    International Journal of Biological Macromolecules 107 (2018) 1999–2007 Contents lists available at ScienceDirect International Journal of Biological Macromolecules j ournal homepage: www.elsevier.com/locate/ijbiomac Biochemical and biophysical characterization of a mycoredoxin protein glutaredoxin A1 from Corynebacterium pseudotuberculosis a a a b a Raphael J. Eberle , Liege A. Kawai , Fabio R. de Moraes , Ljubica Tasic , Raghuvir K. Arni , a,∗ Monika A. Coronado a Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP, 15054-000, Brazil b Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil a r t i c l e i n f o a b s t r a c t Article history: Glutaredoxin A1 from Corynebacterium pseudotuberculosis was shown to be a mycoredoxin protein. In Received 25 July 2017 this study, we established a process to overexpress and purify glutaredoxin A1. The aim of this study Received in revised form 6 October 2017 was the investigation of the Glutaredoxin A1 from C. pseudotuberculosis behavior under different redox Accepted 11 October 2017 environments and the identification of lead molecules, which can be used for specific inhibitor develop- Available online 16 October 2017 ment for this protein family. A quantitative assay was performed measuring the rate of insulin reduction spectrophotometrically at 640 nm through turbidity formation from the precipitation of the free insulin. Keywords: Glutaredoxin A1, at 5 ␮M concentration, accelerated the reduction process of 0.2 mM insulin and 1 mM Corynebacterium pseudotuberculosis Glutaredoxin DTT.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • TRACE: Tennessee Research and Creative Exchange
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2009 Structure-Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae James Wesley Fairman University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Fairman, James Wesley, "Structure-Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae. " PhD diss., University of Tennessee, 2009. https://trace.tennessee.edu/utk_graddiss/49 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by James Wesley Fairman entitled "Structure- Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Biochemistry and Cellular and Molecular Biology. Chris G. Dealwis,
    [Show full text]
  • Glutaredoxin Function for the Carboxyl-Terminal Domain of the Plant-Type 5؅-Adenylylsulfate Reductase
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8404–8409, July 1998 Plant Biology Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5*-adenylylsulfate reductase JULIE-ANN BICK*, FREDRIK ÅSLUND†,YICHANG CHEN*, AND THOMAS LEUSTEK*‡ *Biotech Center and Plant Science Department, Rutgers University, New Brunswick, NJ 08901-8250; and †Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115 Edited by Bob B. Buchanan, University of California, Berkeley, CA, and approved May 14, 1998 (received for review November 21, 1997) ABSTRACT 5*-Adenylylsulfate (APS) reductase (EC the basis of their similar catalytic requirements and molecular 1.8.99.-) catalyzes the reduction of activated sulfate to sulfite weights (4, 6). The major difference is that the product of the in plants. The evidence presented here shows that a domain of sulfotransferase is believed to be an organic thiosulfate (1), the enzyme is a glutathione (GSH)-dependent reductase that whereas the reductase may produce sulfite (4), although the functions similarly to the redox cofactor glutaredoxin. The actual reaction product has not been determined for either APR1 cDNA encoding APS reductase from Arabidopsis thali- enzyme. APS reductase is distinguished from the cysH product ana is able to complement the cysteine auxotrophy of an by its preference for APS over PAPS and by its ability to Escherichia coli cysH [3*-phosphoadenosine-5*-phosphosul- function in an E. coli thioredoxinyglutaredoxin double mutant fate (PAPS) reductase] mutant, only if the E. coli strain (4). These properties may be due to its unusual two-domain produces glutathione. The purified recombinant enzyme structure, consisting of a reductase domain (R domain) at the (APR1p) can use GSH efficiently as a hydrogen donor in vitro, amino terminus, showing homology with the cysH product; and ' showing a Km[GSH] of 0.6 mM.
    [Show full text]
  • A Strategy to Address Dissociation-Induced Compositional and Transcriptional Bias for Single-Cell Analysis of the Human Mammary Gland
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430721; this version posted February 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A strategy to address dissociation-induced compositional and transcriptional bias for single-cell analysis of the human mammary gland Lisa K. Engelbrecht1,9,*,‡, Alecia-Jane Twigger1,2,*, Hilary M. Ganz1, Christian J. Gabka4, Andreas R. Bausch5,8, Heiko Lickert6,7,8, Michael Sterr6, Ines Kunze6, Walid T. Khaled2,3 & Christina H. Scheel1,10,‡ Affiliations 1 Institute of Stem Cell Research, Helmholtz Center for Health and Environmental Research Munich, Neuherberg 85764, Germany 2 Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK 3 Cancer Research UK Cambridge Cancer Center, Cambridge CB2 0RE, UK 4 Nymphenburg Clinic for Plastic and Aesthetic Surgery, Munich 80637, Germany 5 Chair of Biophysics E27, Technical University Munich, 85747 Garching, Germany 6 Institute of Diabetes and Regeneration Research, Helmholtz Center for Health and Environmental Research Munich, Neuherberg 85764, Germany 7 German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany 8 Technical University of Munich, 80333 Munich, Germany. 9 Present address: Chair of Biophysics E27, Technical University Munich, 85747 Garching, Germany 10 Present address: Department of Dermatology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany * These authors contributed equally to this work. ‡ Corresponding author. Correspondence to: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430721; this version posted February 11, 2021.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000301935Cyc: Acinetobacter baumannii AB_2008-15-52 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • American Society of Plant Biologists
    2017 Election American Society of Plant Biologists Elected Member, Council (to serve 2017–2020) Christine Foyer of agriculture. She also recognizes the need to focus greater research attention on grain legumes to increase the contri- Christine Foyer is Professor of Plant Sciences at the Univer- bution of pulses to global food production and sustainable sity of Leeds in the U.K. Christine obtained her BSc at the University of Portsmouth, and her PhD at Kings College, agriculture and so eradicate hunger and malnutrition. London. She joined the Photosynthesis Research Group at Christine is the General Secretary of the Federation of the University of Sheffield for her postdoctoral research. European Societies of Plant Biologists and a member of the Christine was appointed as Research Director with her French Academy of Agriculture. She is an Associate Editor own group at the French National Institute for Agricultural for Plant, Cell and Environment and the Biochemical Journal. Research (INRA) in Versailles, France in 1998. Christine She received the inaugural Founders Award from Plant then became Head of Department, first at the Institute of Physiology in 2011. She has worked alongside colleagues Grassland and Environmental Research in Wales and then from ASPB in the Global Plant Council and the Society of at the Institute of Arable Crops Research (Rothamsted Re- search) in Harpenden, U.K. She joined Africa College at the Experimental Biology. University of Leeds in April, 2009. Christine is enthusiastic about this opportunity to contrib- Christine has always been fascinated by plant metabolism, ute to ASPB. She believes strongly that ASPB is a flagship particularly reduction/oxidation (redox) biology and asso- organization that promotes excellence in all areas of plant ciated signaling.
    [Show full text]