Soft Matter Accepted Manuscript

Total Page:16

File Type:pdf, Size:1020Kb

Soft Matter Accepted Manuscript Soft Matter Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/softmatter Page 1 of 17 Soft Matter Journal Name RSC Publishing ARTICLE Modelling of noble anesthetic gases and high hydrostatic pressure effects in lipid bilayers Cite this: DOI: 10.1039/x0xx00000x Received 00th January 2012, * Accepted 00th January 2012 Yevgeny Moskovitz and Hui Yang DOI: 10.1039/x0xx00000x Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37130, USA www.rsc.org/ Keywords: molecular dynamics; lipid bilayer; general anesthesia; pressure reversal; noble gases; high pressure nervous syndrome; transmembrane ionic current; hyperbaric breathing mixture; deep diving. Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories Manuscript (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of Accepted Matter Soft *Corresponding author: Department of Chemistry, Scientific Computing Research Unit, University of Cape Town, Rondebosch 7701, Western Cape, South Africa. e-mail : [email protected] This journal is © The Royal Society of Chemistry 2013 J. Name ., 2013, 00 , 1-3 | 1 Soft Matter Page 2 of 17 Journal Name RSC Publishing ARTICLE inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor. pressure ranges. In this regard, it would be logical to assume the Introduction existence of a dynamic narcotic threshold moving towards the lighter gases (i.e. smaller gas atoms) as the concentration of solvated gas The limits of physiological adaptation by living organisms to increases along with hydrostatic pressure, while pressure per se and hyperbaric aquatic environments is largely an unsolved mystery, gases below the threshold would have an antagonistic neutralizing despite the rapidly growing body of theoretical and experimental effect on anesthetic sedative action. knowledge about the effects of hyperbaric gases and hydrostatic Manuscript pressure per se at all meaningful scales, from biomolecular Unlike anesthesia, HPNS is characterized by increased excitability 1,2 complexes to entire organisms . Among the broad spectrum of of the central nervous system (CNS) and cognitive impairment potentially harmful factors, such as hyperbaric oxygen, and involving memory disorders. HPNS has been reported in humans at especially in hypercapnic conditions, the most intriguing aspect is pressures >10 bar and is mostly connected with the compressive the problem of the narcotic potency of noble gases and also their effect of helium in a breathing mixture; its severity additionally 3 relevance to medical applications . If one further considers the depends on the rate of compression 7. In species that breathe in a diminishing effect of anesthesia as hydrostatic pressure increases, gaseous environment, it is hard to discriminate between the effects and the development of so-called high pressure nervous syndrome of saturated gases, especially helium (cf. helium tremors – the other Accepted (HPNS), the possibility emerges that these phenomena are somehow term describing HPNS), and the effects of high hydrostatic pressure 4 interdependent and could be explored on some common basis . (HHP) per se . Little is known of the neurological effects of pressure among free-diving mammals that are well adapted to extremely high The physical conditions determining inert gas narcosis (IGN) and its pressures and are able to withstand these without visible harm 8. symptoms have been well described in many sources 3,5 . According Worth noting is that the current no-limits apnea (NLT) free diving Matter to the most common definition, gases become narcotic when their record for a human being is 214 meters of seawater (msw), a depth partial pressure exceeds 4 bar, depending on collateral circumstances of 701 msw has been achieved at dry pressurized habitat while such as body fat fraction, CO 2 retention, temperature etc. The breathing a hydrogen-helium-oxygen (hydreliox) gas mixture 9,1 . As narcotic potency of noble gases directly correlates with their atomic Soft neurological data for totally immersed dogs that breathed pressure- weight and the size of the respective gas atoms. According to these oxygenated salt solutions at 8 bar are also not available 10 , the properties, the anesthetic row would be as follows: hyperbaric effects of helium are frequently reported as a pressure Xe(54)>Kr(36)>Ar(18)>Ne(10)>He(2) (the atomic number is in effect (this might be a misleading simplification). parentheses). Xenon, the most potent anesthetic, reveals its effect even at normobaric pressure, which makes it an intriguing medical The theories of gaseous anesthetics originated at the end of the 19th 6 agent for its neuroprotective characteristics . On the other hand, century, and suggested different focuses and mechanisms for neon’s narcotic potency is questionable, while helium has no anesthetic agents; Meyer-Overton indicated the lipid phases as the reported narcotic tendency – at least in physiologically reasonable main loci, and Paulling discussed hydrate formation at the water- This journal is © The Royal Society of Chemistry 2013 J. Name ., 2013, 00 , 1-3 | 2 Page 3 of 17 Soft Matter Journal Name ARTICLE lipid boundary 11 . Transmembrane proteins, according to the current and even microseconds; continual increases in computer capacity level of knowledge, are the most important target for general promise to exceed these current, and still rarely attainable, values. anesthesia; however, simple chemical consideration of inert gases The quality of MD output is very dependent on specific potential and a considerable body of experimental evidence have shown that functions known as force fields (FF), which describe intra- and general gaseous anesthetics must have pluripotent activity, targeting intermolecular interactions of simulated molecules. The basic lipids and trans-membrane proteins, and implicitly affecting water criterion of the validation of an empirical FF is its ability to molecules at the lipid-solvent interface. Therefore, more highly reproduce ab initio data and experimental observables such as lipid ordered interfacial water is sometimes referred to as Miller’s order parameter, area per lipid, atomic and electron density profiles, ‘iceberg’ hypothesis, as an alternative to Paulling’s theory 12 . Recent headgroup orientations etc. The few major non-polarizable FFs experimental work on the biological effect of xenon demonstrated a currently available for lipids have been extensively optimized by non-competitive inhibition of the effect of glutamate receptor quantum mechanics – most commonly these FFs are applied NMDA on transmembrane potassium channels such as TREK and CHARMM27, Berger, and GROMOS 16,17 . For exploring lipid TASK 6. Crystallographic experiments have also been performed on hydration characteristics, a new polarizable FF-CHARMM charge proteins at a wide range of gas pressures, and it has been equilibration (CHEQ) was
Recommended publications
  • Extreme Recreational Diving Pushing the Limits Assoc
    1 | 65 National Center for Hyperbaric Medicine in Gdynia Medical University of Gdansk, Poland Extreme recreational diving Pushing the limits Assoc. Prof. Jacek Kot, MD, PhD Bühlmann Symposium Zürich Switzerland 2019 2 | 65 Disclaimer • I declare no real or potential conflict of interest. • Any views or opinions presented in this presentation are solely those of the author and do not necessarily represent those of any organization that author belongs to, including EUBS and ECHM. • All pictures are presented here either by the courtesy of their authors or taken from public websites for non-commercial use. Assoc. Prof. Jacek Kot, MD, PhD Head of National Center for Hyperbaric Medicine of Poland President of the EUBS General Secretary of the ECHM Medical Consultant of DAN Europe Extreme recreational diving Bühlmann Symposium Jacek Kot, 2018 Zürich Switzerland 2019 3 | 65 Professor A A Bühlmann → and Hans Keller → Hans Keller planted the Swiss flag at 1000 feet off California From - TAUCH MEDIZIN Springer-Verlag 1983 ▬▬▬▬ Extreme recreational diving Bühlmann Symposium Jacek Kot, 2018 Zürich Switzerland 2019 4 | 65 Deepest underwater cave in the world Krzysztof Starnawski _ National Geographic _ 2017 Courtesy of Krzysztof Starnawski (Poland) Extreme recreational diving Bühlmann Symposium Jacek Kot, 2018 Zürich Switzerland 2019 5 | 65 Types of recreational diving Safe Increased risk High risk (“technical”) • Up to 30 m • Between 30 and 50 m • Compressed air in open • With basic breathing Over 50 m (down to 300 circuit • mixtures (nitrox and
    [Show full text]
  • De L'helium a L'hydrogene, L'intervention Humaine a Grande
    DE L’HELIUM A L’HYDROGENE, L’INTERVENTION HUMAINE A GRANDE PROFONDEUR (EXPERIENCE COMEX) B. Gardette, C. Gortan, H.-G. Delauze GARDETTE Bernard, Docteur es Sciences, Directeur Scientifique COMEX SA, Marseille, FRANCE GORTAN Claude, Directeur du Centre d’Essais Hyperbares COMEX, Marseille, FRANCE DELAUZE Henri Germain, Président du groupe COMEX, Marseille, FRANCE THE DEEP HUMAN UNDERWATER INTERVENTION : COMEX EXPERIENCE Since 40 years, 43 experimental dives (deeper than 200 msw) were performed with heliox (oxygen/helium), trimix (oxygen/nitrogen/helium), hydrox (oxygen/hydrogen) or hydreliox (oxygen/hydrogen/helium) breathing gas mixtures. In 1988, six Comex and French Navy divers worked at a record depth of 534 msw with hydreliox and in 1992, a world record onshore dive at 701 msw was performed by Comex in Marseilles. These dives showed the efficiency of hydrogen diving at very deep depth (150 – 650 msw). -3 - 1. L’HELIUM La plongée à l’air comprimé comporte des limites. L’essoufflement, la toxicité de l’oxygène (2) et les effets de la narcose à l’azote, imposent au plongeur de ne pas dépasser les 50/60 mètres de profondeur (1-3-4). Dans les années 1930, des expériences ont été entreprises par la Marine américaine pour alimenter le plongeur non plus en air comprimé, mais en mélange respiratoire synthétique dans lequel l'azote est remplacé par un autre gaz inerte, diluant de l'oxygène, l'hélium. Ce dernier, très inerte sur le plan biochimique, d'une densité sept fois inférieure à celle de l'azote, permet de meilleures performances en supprimant les effets de la narcose et de l'essoufflement.
    [Show full text]
  • 10.2 Decompression Practice 10
    S25712-10.02.qxd 5/2/02 2:34 PM Page 453 10 10.2 Decompression Practice Robert W Hamilton and Ed Thalmann DECOMPRESSION CONCEPTS AND TERMS TERMS Decompression practice is simply developing and im- Although many are covered elsewhere in this book and plementing decompression procedures for operational later in this chapter, some of the more important terms diving with the goal of avoiding decompression sickness and concepts used in this chapter are referenced here (DCS). Operationally useful procedures take into as the are used in this community. All the changes in account not only the decompression procedure required pressure or depth and breathing gas as a function of time to avoid DCS but also factors such as the time required during a dive and its decompression is the dive profile. for decompression, the number of different breathing Ascent from a dive is a reduction of pressure, and the gases required, the complexity of the ascent profile, profile to be followed is contained in a decompression and other factors which may make the procedure too table or schedule. A set of decompression schedules complicated for routine use. In addition to diving some organized in some systematic way, such as by increasing other situations require decompression; several of these depth and time, is called a decompression table. Proper are covered also. decompression is carried out by ascending slowly, with the ascent pattern or constraints on ascent carried out CONCEPT OF DECOMPRESSION by following such a decompression table. This table may have been based only on past experience, or may Because some jargon is involved, it is first necessary to have been prepared mathematically by a decompression clarify the meaning of the word ‘decompression’ as computational algorithm or model.
    [Show full text]
  • Hydra V Hydrogen Experimental Dive to 450 Meters by C
    OTC 5261 Hydra V Hydrogen Experimental Dive to 450 Meters by C. Gortanand H.G.Delauze,Cornex Copyright 1986 Offshore Technology Conference This pager was gresented at the 18th Annual OTC in Houston, Texas, May 5-6, 1986. The material ia subject to correction by the author Permission to copy” is restricted to an abstract of not more than 300 words. -cl! HeliumhasWowed theprofessior!aldivertoworkon the continentsllshelfarea down to depthsof 300 HYDRAV wasprforrnedin03m MarseilleF@perteric meters.In thisrange,equipmentsndmethcdssrenow ResearchCenterin May and June 1985.Duringthis relativelywellestabliskl.Rbwever,in spiteof its experiment,6 diverslivedat a simulateddepthof450 remarkablequalities,heliumalonecannotb thevector meters in a hyperbaricatmosphere “composedof of oxygeninbreathiwgmixturesbeyonda certaindepth iT@wger],heliumandoxygen(I&dreliox). Indeed,deep diversmust cope with 2 limiting ‘lYsditionaldeepdivingwithheiiumis Iimitsdby 2 factors: factors: - ‘TheH@ PressureNervousSyndrome(Hpl@,linked - HighPreesureN&vous E@drome (HENS)thatcmEe3 to theeffectsof hydrostaticpressureon the motrici~disorderskeyond~ metere. centralnervoussystem.5ese WP inthe250 - Gasdensitythatiqairspihqary ventilation. / ~ meter rangeand increasewith depth, Hj@rogensimildextendtheselimitsthsnketo its causingmotordisturbancesthatmsy wsriously narcotic@ency thaths9sn sntagonkticeffectcn the imgs.irworkefficie~. HPNSsyndromesndthanksto itslightmolecularmass. The densityof breathingmixtures,which increasesprop%ionaUy to pressure,demandsa HYDRAV, firsthydrogenexperimentalsaturation
    [Show full text]
  • The GUE Fundamentals of Technical Diving
    Getting Clear on the Basics: The Fundamentals of Technical Diving Jarrod Jablonski Global Underwater Explorers 2 Copyright (c) 2000, 2001 by Global Underwater Explorers ALL RIGHTS RESERVED. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means -electronic, mechanical, photocopying, microfilming, recording, or otherwise -without written permission from the publisher, except by a reviewer who may quote brief passages in a review with appropriate credit. All inquiries should be directed to Global Underwater Explorers, 15 S. Main St., High Springs, Florida, USA 32643 ISBN no. (pending) Library of Congress: Jablonski, Jarrod Getting Clear on the Basics: The Fundamentals of Technical Diving Here’s a couple of quick tips to help you navigate your way around this electronic version of the GUE Technical Diving Manual Use the bookmarks at the left hand edge of the page to jump to specific chapters or sub sections of the manual as shown above You can search for either keywords or word strings within the manual by clicking the binocular icon Or by using CTR+F Repeated CTRL+F will find again on that word You can cycle through the standard page zooms by clicking on each of the page view icons The bookmarks are set to display the pages in a readable size for on screen viewing Where you see blue hyperlinked text as shown above you can click for immediate connection to that web page or email address For a full description of how to use the Acrobat Reader you can simply choose Help>Acrobat Guide from the File menu as shown at right 4 Contents Acknowledgements ..........................................................................................
    [Show full text]
  • 2016 Will an Underwater Robot Ever Replace
    POLISH HYPERBARIC RESEARCH 1(54)2016 Journal of Polish Hyperbaric Medicine and Technology Society WILL AN UNDERWATER ROBOT EVER REPLACE THE DIVER? A RATHER POOR PROGRESS OR A GREAT SUCCESS? Adam Olejnik 1), Piotr Siermontowski 2) 1) Polish Naval Academy, Department of Underwater Work Technology 2) Military Institute of Medicine, Department Maritime and Hyperbaric Medicine, Gdynia, Poland ABSTRACT The article deals with the subject matter related to the development of underwater works technologies. Nearly 15 years ago one of the authors of this study published a material in the monthly magazine of "Podwodny Świat" (The Underwater World) entitled "The Future of Underwater Technologies – the diver or the robot?" where he noted that the time of great changes in technologies aimed at researching the depths and conducting works under water has arrived. This new era mainly consists in the fact that on an increasing number of occasions the diver is replaced by an underwater robot. The presented material constitutes an attempt to provide an answer to the question whether the then posed thesis is still valid. In the article the authors discuss issues concerned with the development of techniques and technologies applied in the conquest of depths that leads them to the conclusion that the previously observed tendency of a double-tracked development of underwater technologies is gaining in strength, which causes that the works and exploration of bodies of water at great depths will be possible only with the use of unmanned techniques. Key words: underwater works technology, marine engineering. ARTICLE INFO PolHypRes 2016 Vol. 54 Issue 1 pp. 7-18 ISSN: 1734-7009 eISSN: 2084-0535 Review article DOI: 10.1515/phr-2016-0001 Delivery date: 29.10.2015r.
    [Show full text]
  • PLONGEE AU MELANGE TERNAIRE Bilan Des Accidents Entre 1998 Et 2008 En Région Provence-Alpes-Côte D’Azur
    FFESSM Paris- 2010 PLONGEE AU MELANGE TERNAIRE Bilan des accidents entre 1998 et 2008 en région Provence-Alpes-Côte d’Azur Docteur Jean-Michel Pontier Docteur Eric Bergman Docteur Bruno Grandjean Ecole de Plongée de la Marine Nationale [email protected] Introduction (1) Plongée à l’air: limites physiologiques * NARCOSE À L’AZOTE (Pp N2 3,5 b 3535--4040 M) 60 mètres * HYPEROXIE (Pp O22 2 b 90 M) * SATURATION EN AZOTE (PROFONDEUR / TEMPS) * MECANIQUE VENTILATOIRE (POIDS MOLÉCULAIRE N2 = 28) Introduction (2) Plongée à l’air: limites légales 60 mètres * MINISTÈRE DE LA DÉFENSE IPA Tome 1, Circulaire 280280--COMISMERCOMISMER / ADG / NP 01.01.10.9610.96 * MINISTÈRE DU TRAVAIL Décret nn°°9090--277277 DU DU 28.03.90 28.03.90 Titre Titre III, III, article article 5 * MINISTÈRE DE LA JEUNESSE ET DES SPORTS Décret nn°°9393--11011101 DU DU 03.09.93, 03.09.93, Arrêté Arrêté du du 22.06.9 22.06.988 Introduction (3) Plongée aux mélanges gazeux * NITROX : Azote / Oxygène : moindre saturation, limité * HELIOX : Hélium / Oxygène : + léger, - narcotique, + saturant * ARGOX : Argon / Oxygène : pouvoir isolant * NEOX : Néon / Oxygène : absence d’effet narcotique, onéreux * HYDROX : Hydrogène / Oxygène : dangereux * HYDRELIOX : Hydrogène / Hélium / Oxygène : dangereux * TRIMIX : Hélium / Azote / Oxygène : plongée profonde > 60 m ARRETE DU 28.08.2000 (JO N° 221 du 23.09.00) Introduction (3) Plongée aux mélanges gazeux en pratique •MÉLANGES SUROXYGÉNÉS : NITROX (AZOTE/OXYGÈNE) - Moindre saturation et risque ADD - temps de plongée et temps de palier - Profondeur
    [Show full text]
  • Classification of the Underwater Diving Equipment
    POLISH MARITIME RESEARCH 1(55) 2008 Vol 15; pp. 80-85 DOI: 10.2478/v10012-007-0056-3 Classification of the underwater diving equipment Ryszard Kłos, Polish Naval Academy ABSTRACT In this paper was presented, innovative in preparation of the diving apparatuses classification method, depend on three criteria: the kind of the breathing gas, the operational depth range of the diving apparatus, and the principle of operation. The breathing gas used is the most important criterion. The other basic classification criteria follow from the first one; therefore it should be treated as the one criterion. Such approach to the problem has never been presented before, however it seems to be correct method of the diving apparatuses division. Keywords: diving apparatus, classification, underwater diving equipment INTRODUCTION - CHARACTERISTICS of the diving equipment the traditional Siebe’s constructions OF THE DIVING EQUIPMENT are being used in actual diving operations. For these reasons sometimes it seems that the Siebe’s constructions were Traditionally the diving equipment can be divided into the not improved (Photo 1). Of course, this diving equipment heavy (classic) and light-weight equipment. [2, 3, 6, 7, 8, 9, evolved towards the helmet systems equipped with the 10, 11, 12].Classification of the diving equipment according diving regulators, however there are also the improved to this criterion is the diving technique based. diving equipment with the free flow of the breathing gas. The The similar to August Siebe’s construction, that has been improved diving systems DM 200/2 (Photo 2) and AH-3 are patented in 1836, can be recognised as the heavy diving presented below (Photo 3).
    [Show full text]
  • Classification of the Underwater Diving Equipment
    POLISH MARITIME RESEARCH 1(55) 2008 Vol 15; pp. 80-85 DOI: 10.2478/v10012-007-0056-3 Classification of the underwater diving equipment Ryszard Kłos, Polish Naval Academy ABSTRACT In this paper was presented, innovative in preparation of the diving apparatuses classification method, depend on three criteria: the kind of the breathing gas, the operational depth range of the diving apparatus, and the principle of operation. The breathing gas used is the most important criterion. The other basic classification criteria follow from the first one; therefore it should be treated as the one criterion. Such approach to the problem has never been presented before, however it seems to be correct method of the diving apparatuses division. Keywords: diving apparatus, classification, underwater diving equipment INTRODUCTION - CHARACTERISTICS of the diving equipment the traditional Siebe’s constructions OF THE DIVING EQUIPMENT are being used in actual diving operations. For these reasons sometimes it seems that the Siebe’s constructions were Traditionally the diving equipment can be divided into the not improved (Photo 1). Of course, this diving equipment heavy (classic) and light-weight equipment. [2, 3, 6, 7, 8, 9, evolved towards the helmet systems equipped with the 10, 11, 12].Classification of the diving equipment according diving regulators, however there are also the improved to this criterion is the diving technique based. diving equipment with the free flow of the breathing gas. The The similar to August Siebe’s construction, that has been improved diving systems DM 200/2 (Photo 2) and AH-3 are patented in 1836, can be recognised as the heavy diving presented below (Photo 3).
    [Show full text]
  • The Pathophysiology of Saturation Diving. What Are the Effects on The
    The Pathophysiology of Saturation Diving What are the Effects on the Human Body? Hugh William Finlayson 050007618 Degree Title: BSc Human Biology 1st May 2009 NUMBER OF WORDS: 19,536 INCLUDING TITLE PAGE, CONTENTS, DECLARATION OF AUTHORSHIP, ABSTRACT, FIGURE LEGENDS ACKNOWLEDGEMENTS AND REFERENCES The Pathophysiology of Saturation Diving P a g e | 2 Contents Chapter Page Number i: Contents of Figures 3 ii: Declaration of Authorship 4 iii: Abstract 5 1: Overall Introduction 6 2: Overview of Saturation Diving 9 2.2: The History 10 2.3: The Equipment and Methods 11 2.4: The Risks 16 3: Overview of the Physiology of Saturation Diving 18 4: The Neurological Effects of Saturation Diving 22 4.2: The Short Term Neurological Effects 23 4.3: The Long Term Neurological Effects 25 4.4: Nitrogen Narcosis 26 4.5: High Pressure Nervous Syndrome (HPNS) 28 4.6: Neurological Decompression Sickness (Type II DCS) 29 5: The Cardiovascular and Respiratory Effects of Saturation Diving 30 5.2: The Short Term Cardiovascular and Respiratory Effects 31 5.3: The Long Term Cardiovascular and Respiratory Effects 32 5.4: Barotrauma 33 5.5: Arterial Gas Embolism (AGE) 35 5.6: Decompression Sickness (Type I DCS) 36 5.7: The Skin Effects 37 6: The Musculoskeletal Effects of Saturation Diving 40 6.2: The Short Term Musculoskeletal Effects 41 6.3: The Long Term Musculoskeletal Effects 42 7: The Effects on Other Body Systems of Saturation Diving 44 7.2: The Effects on Bloodstream Factors and Heat Shock Protein Expression 44 7.3: The Effects on the Reproductive System 46
    [Show full text]
  • Improved Helium Balloon Lifting-Gas
    (19) & (11) EP 2 153 858 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 17.02.2010 Bulletin 2010/07 A61M 16/12 (2006.01) A63H 27/10 (2006.01) B64B 1/40 (2006.01) C01B 23/00 (2006.01) (2006.01) (21) Application number: 08162000.7 F17C 1/00 (22) Date of filing: 07.08.2008 (84) Designated Contracting States: • DOWNIE, Neil Alexander AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Odiham, HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT Hampshire RG29 1JN (GB) RO SE SI SK TR Designated Extension States: (74) Representative: Burford, Anthony Frederick AL BA MK RS Beck Greener Fulwood House (71) Applicant: Air Products and Chemicals, Inc. 12 Fulwood Place Allentown, PA 18195-1501 (US) London WC1V 6HR (GB) (72) Inventors: • TASSELL, Andrew Duncan Overton, Hampshire RG25 3PE (GB) (54) Improved helium balloon lifting-gas (57) The risk of asphyxiation with helium used as a lifting gas for balloons is reduced by providing the helium as a breathable mixture with oxygen and 2 to 5 volume % carbon dioxide. EP 2 153 858 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 153 858 A1 2 Description means a gas sufficiently lighter than air to cause at least a balloon of negligible weight to ascend in still air. [0001] The present invention relates to helium-con- [0006] It is known to reduce the cost of filling a balloon taining lifting gases for filling balloons and has particular, with helium by diluting the helium with air.
    [Show full text]
  • Deep Hydreliox Diving Seminar
    NUI Diving Seminar 2017 – Evolution session 2017 Deep Hydreliox Diving Seminar Gareth Kerr Diving Fathom Systems Ltd. Aberdeen, UK International Bergen The Summary of presentation • A Brief History of Hydreliox Diving2017 • Benefits to the diver – Hydreliox vs Heliox Seminar • Obstacles to commercialisation of Hydreliox Diving • Hydrogen acceptance & use in current times • Technology enhancements in commercial diving • Justification for usingInternational Hydreliox? • Safety & risk concernsBergen and mitigation • Thoughts forThe the future... Apologies & acknowledgements 2017 Dr. Jean-Yves Massimelli – UDS Seminar (ex-Comex diving doctor for HYDRA Project) Diving Théo Mavrostomos – ex Comex (deepest man in the world – HYDRA 10 Project – 701m) International Ben SharplesBergen – JFD (BusinessThe Execution Director) a brief history of hydreliox diving Comex ‘HYDRA’ Research Programme2017 Started in 1968 with HYDRA 1Seminar and continued for 28 years to HYDRA 12 Divingin 1996 International Bergen Comex founder (1961) The Henri Germain Delauze a brief history of hydreliox diving HYDRA objectives were to study alternative2017 breathing gases for deep divingSeminar – especially hydrogen Diving International Bergen Comex headquartersThe Marseille France a brief history of hydreliox diving It was hoped that hydrogen would2017 help alleviate the physiological effectsSeminar of deep diving – including: Diving • High pressure nervous syndrome (HPNS) • Respiratory comfortInternational / work of breathing • Diver cognitive & physical capabilities Bergen
    [Show full text]