L Hydrogène, Un Gaz Respirable

Total Page:16

File Type:pdf, Size:1020Kb

L Hydrogène, Un Gaz Respirable V OCABULAIRE L’hydrogène, un gaz respirable ? Hydrogen, a breathing gas? ● B. Gardette* Résumé : Au-delà de 50 mètres, les interventions sous-marines par plongeur sont pratiquées en saturation au mélange hélium/oxy- gène (héliox). Quand ce mélange est utilisé au-delà de 200 mètres, plusieurs facteurs limitent l’efficacité du plongeur et peu- vent induire fatigue et insécurité : – effets neurologiques : syndrome nerveux des hautes pressions (SNHP) ; – problèmes dus à la densité du gaz : syndrome respiratoire des hautes pressions (SRHP) ; – douleurs articulaires : syndrome articulaire des hautes pressions (SAHP). Ces symptômes sont inclus dans le syndrome des hautes pressions (SHP). COMEX, de 1963 à 2000, a réalisé un programme de recherche très important sur la plongée à l’héliox et aux mélanges hydro- gène/oxygène (hydrox) et hydrogène/hélium/oxygène (hydréliox). Ces plongées expérimentales montrent une non-toxicité de l’hydro- gène pour des pressions inférieures à 2 MPa. Mais pour PH2 > 2 MPa, une “narcose hydrogène” peut survenir chez les plongeurs. Le mélange hydréliox diminue le SHP et la fatigue des plongeurs et augmente leurs performances et leur sécurité. Mots-clés : Hydrogène - Gaz respiratoire - Plongée - Pression. Summary: Below 50 msw most diver interventions have been carried out in saturation using helium/oxygen mixture (heliox). When heliox breathing mixture is used down to 200 msw, many factors limit the diver’s efficiency and may induce fatigue and insecurity: – neurological effects of the pressure: High Pressure Nervous Syndrome (HPNS); – ventilatory problems due to the density of the gas: High Pressure Respiratory Syndrome (HPRS); – articular pains: High Pressure Articular Syndrome (HPAS). These symptoms are included in the general term of High Pressure Syndrome (HPS). COMEX, from 1963 to 2000, undertook a major research program, the most extensive in the world, on deep experimental diving with heliox and hydrogen/oxygen (hydrox) or hydrogen/helium/oxygen (hydreliox) breathing gas mixtures. These deep experimental dives showed a no toxicity effect of hydrogen for hydrogen pressure lower than 2 MPa. But for PH2 >2MPa, “hydrogen narcosis” was able to appear on divers. Hydreliox gas mixture decreases HPS and fatigue of divers and increases per- formance and safety. Keywords: Hydrogen - Breathing gas - Diving - Pressure. a plongée à l’air comprimé comporte des limites. et à la pression absolue (Pabs) à laquelle il est respiré (2-3). L’essoufflement, la toxicité de l’oxygène (1) et les Dans les années 1930, des expériences ont été entreprises par L effets de la narcose à l’azote imposent au plongeur de la marine américaine pour alimenter le plongeur non plus en air ne pas dépasser les 50/60 mètres de profondeur (2-5) (décret du comprimé, mais en mélange respiratoire synthétique dans lequel ministère du Travail 90.277 du 28 mars 1990). Les effets bio- l’azote est remplacé par un autre gaz inerte, diluant de l’oxy- chimiques des gaz sur l’organisme sont directement corrélés à gène, l’hélium. Ce dernier, très inerte sur le plan biochimique, leur pression partielle (loi de Dalton : PP = Pabs x %). Ainsi, en d’une densité sept fois inférieure à celle de l’azote, permet de plongée, la toxicité d’un gaz comme l’oxygène ou l’azote meilleures performances en supprimant les effets de la narcose est proportionnelle à sa concentration (%) dans le mélange et la gêne respiratoire. La ventilation du plongeur à grande profondeur dépend essen- * Direction scientifique de la COMEX, Marseille. tiellement de l’augmentation des résistances respiratoires due à 160 La Lettre du Pneumologue - Volume VI - no 4 - juillet-août 2003 l’accroissement de la densité du mélange gazeux, qui est pro- 200 mètres de profondeur, mais deux facteurs limitent l’effica- portionnelle à la profondeur atteinte. En effet, suivant la loi de cité du plongeur : le SNHP et les limitations ventilatoires dues à Poiseuille, les résistances respiratoires augmentent avec la vis- la densité du mélange gazeux. cosité du gaz (écoulement laminaire) et sa densité (écoulement turbulent). En hyperbarie, c’est l’écoulement turbulent qui est L’HYDROGÈNE prépondérant, donc la densité du mélange gazeux (3). L’hydro- gène aura ainsi un avantage certain par rapport à l’hélium (deux L’idée, initiée par Lavoisier, d’utiliser l’hydrogène comme un gaz fois moins dense). respiratoire à faible densité remonte au XVIIIe siècle. Dès la fin du Sur le plan thermique, en plongée profonde, les pertes se font sur- XIXe siècle, l’hydrogène a été utilisé comme gaz traceur pour la tout par convection respiratoire, donc en relation avec la densité mesure du volume résiduel pulmonaire, puis abandonné pour des du mélange gazeux respiré. raisons de sécurité (6). Le premier homme qui a eu le courage Cet effet, exercé par la pression sur la déperdition calorique ven- d’expérimenter l’hydrogène sur lui-même est l’ingénieur Arne Zet- tilatoire, est accentué par le fait que la chaleur spécifique de terström lors de tests réalisés entre 1943 et 1945 par la marine l’hélium et sa conductibilité thermique sont cinq à six fois plus royale suédoise. En dehors de quelques expériences sur des ani- grandes que celles de l’azote. Cette différence est encore plus maux en laboratoire, aucun programme substantiel ne sera entre- marquée avec l’hydrogène (3). pris avant 1967. En 1968, lors de la mission HYDRA 1, la COMEX Moyennant la mise au point de tables de décompression spéciale- essaye de placer sous hydrogène l’un de ses plongeurs d’élite, René ment adaptées à ce nouveau mélange appelé héliox (hélium/oxy- Veyrunes, en pleine eau à la profondeur de 250 mètres. L’équipe- gène), les limites de profondeur imposées par l’air ont été considé- ment du plongeur est alors insuffisant pour le protéger du froid et, rablement repoussées et les plongeurs sous-marins ont pu se retrouver à peine sorti, il doit retourner à sa tourelle. Il faudra attendre 1982 aussi à l’aise à 150 mètres de profondeur qu’ils l’étaient auparavant pour que le programme de recherche sur l’hydrogène soit relancé, à 30 mètres avec de l’air comprimé. Mais, à partir de 150 mètres sur- profitant de l’évolution du matériel et des technologies de la plon- git très progressivement un nouvel obstacle. Le plongeur, fort heu- gée profonde mises au point sur les chantiers pétroliers. reusement, ne retrouve pas cette altération de la conscience propre à L’objectif est alors de définir les méthodes industrielles néces- l’ivresse des profondeurs entraînée par l’azote, mais éprouve sim- saires à l’emploi pratique des mélanges hydrogénés et d’en étu- plement quelques vertiges, un léger tremblement et une certaine mal- dier les limites chez l’homme. En 1983 (HYDRA 3), seize plon- adresse des gestes. Tout cela correspond à la phase initiale du syn- geurs, avec à leur tête Henri Delauze, président de la COMEX, drome d’excitabilité du système nerveux central décrit en 1968 par effectuent une série de plongées en mer, entre 70 et 91 mètres, X. Fructus, R. Naquet et R. Brauer, sous le nom de “syndrome ner- au large de Marseille. La même année, lors de HYDRA 4, six veux des hautes pressions” (SNHP) (tableau I) (2-5). plongeurs respirent pour la première fois de l’hydrogène en cais- son sous une pression de 31 bars, équivalente à une pression de Tableau I. Les limites de la plongée. 300 mètres. Deux années plus tard, en 1985, six plongeurs réali- sent la première saturation au mélange hydréliox (hydrogène/ Profondeur (m) Mélanges gazeux Facteurs limitants hélium/oxygène) à 450 mètres de profondeur (HYDRA 5). 0-6 O2 Toxicité oxygène Pour démontrer la faisabilité industrielle de la plongée à l’hydro- 0-60 Air (N2 – O2) Narcose azote Gênes respiratoires gène, la suite du programme de recherche chez l’homme devait comprendre une démonstration, en conditions réelles de travail 60-150 Héliox (He – O2)– 60-200 Hydrox (H – O ) Narcose hydrogène en mer, des capacités de travail de l’homme à une profondeur 2 2 encore jamais atteinte : plus de 500 mètres. Pour réaliser ce pro- 150-450 Héliox (He – O ) SNHP – SRHP – SAHP 2 jet ambitieux, deux plongées d’entraînement et de sélection ont Hydréliox (H2 – He – O2)– 450-700 Hydréliox (H – He – O ) SNHP – SRHP été réalisées dans les caissons de la COMEX à Marseille : HYDRA 2 2 6 (1986) à 520 mètres avec de l’hydréliox et HYDRA 7 (1987) à SNHP : Syndrome nerveux des hautes pressions. SRHP : Syndrome respiratoire des hautes pressions. 260 mètres avec de l’hydrox (hydrogène/oxygène). La confirma- SAHP : Syndrome articulaire des hautes pressions. tion “en réel” (HYDRA 8) s’est déroulée en Méditerranée en février-mars 1988 à partir du navire Orelia. Elle a démontré la remarquable efficacité des plongeurs à 520 et 534 mètres de pro- Cet obstacle présente des caractéristiques spécifiques, et des fondeur, semblable à celle qui est habituellement observée sur un études ont été menées dès 1963 au Centre d’essais hyperbares chantier à 200-250 mètres de profondeur au mélange héliox (7). (CEH) de la COMEX en vue de repousser les limites de l’inter- Puis ce fut HYDRA 9, en 1989, qui permit de préciser la plage vention humaine à grande profondeur avec une maîtrise calculée d’utilisation de l’hydrox et les effets chez l’homme d’une expo- du SNHP. Jusqu’en 1982, six grandes séries de plongées d’essai sition de longue durée. Dix ans après le début du programme au mélange héliox ou trimix (hélium/azote/oxygène) ont ainsi été HYDRA, tous les éléments étaient enfin réunis pour dépasser les réalisées dans les caissons du CEH à Marseille. frontières de l’intervention humaine, ce qui fut réalisé lors de la Aujourd’hui, plusieurs sociétés internationales de travaux sous- plongée d’essai HYDRA 10, qui se déroula d’octobre à décembre marins réalisent couramment des saturations héliox à 150- 1992 dans les caissons du CEH de la COMEX à Marseille.
Recommended publications
  • DEEP STOPS and DEEP HELIUM RGBM Technical Series 9 Bruce R
    DEEP STOPS AND DEEP HELIUM RGBM Technical Series 9 Bruce R. Wienke and Timothy R. O’Leary NAUI Technical Diving Operations Tampa, Florida 33619 BASICS Deep stops – what are they? Actually, just what the name suggests. Deep stops are decompression stops made at deeper depths than those traditionally dictated by classical (Haldane) dive tables or algorithms. They are fairly recent (last 15 years) protocols, suggested by modern decompression theory, but backed up by extensive diver practicum with success in the mixed gas and decompression arenas - so called technical diving. Tech diving encompasses scientific, military, commercial, and exploration underwater activities. The impact of deep stops has been a revolution in diving circles. So have slower ascent rates across recreational and technical diving. In quantifiable terms, slower ascent rates are very much akin to deep stops, though not as pronounced as decompression stops. Deep stops plus slow ascent rates work together. And they work together safely and efficiently. Many regard deep stops as a most significant development in modern diving. Here’s why. Deep stops usually reduce overall decompression time (hang time) too. And when coupled to the use of helium in the breathing mixture (trimix) to reduce narcotic effects of nitrogen, technical divers report feeling much better physically today when they leave the water. The reduction in hang time ranges from 10% to as high as 50%, depending on diver, mix, depth, and exposure time. Feeling better while decompressing for shorter periods of time is certainly a win-win situation that would have been thought an impossibility not too long ago.
    [Show full text]
  • Model of Thermal Comfort in the Hyperbaric Facility
    POLISH MARITIME RESEARCH 1(68) 2011 Vol 18; pp. 37-44 10.2478/v10012-011-0006-y Model of thermal comfort in the hyperbaric facility Anna Majchrzycka, Ph. D. West Pomeranian University of Technology, Szczecin ABSTRACT The paper discusses the mathematical model of thermal comfort in the hyperbaric facility. Based on human thermal balance and thermal comfort conditions the comfort equation for the hyperbaric environment was derived. The comfort equation enables to calculate all those combinations of the diver’s activity, clothing (thermal insulation, moisture permeation factor) and environmental variables (temperature, pressure, composition, relative humidity and velocity of the breathing gas and mean radiant temperature), which would create thermal comfort in the hyperbaric environment. The paper presents also the solution of thermal comfort equation for dives up to the depth of g = 590 m, with helium-oxygen and hydrogen-oxygen breathing mixture, as well as the comfort diagrams. Keywords: comfort temperature; human balance; hyperbaric environment INTRODUCTION with experimental breathing mixtures containing the other inert gases: neon, argon [5]. Saturation diving is the diving operation that enables man Helium and hydrogen causes certain thermal problems to live and work in the sea-going deep dive systems or to be related to dangerous cooling of the divers. This is due to the trained in the land-based hyperbaric complexes for a long time. high thermal conductivity and specific heat of helium and Advanced diving technique requires an optimal breathing gas hydrogen. Therefore, comfort temperature in the hyperbaric to be selected. The use of air as the breathing gas is limited environment increases with the total pressure of gas and should because of oxygen toxicity and narcotic effect of nitrogen be maintained at a level higher than that in atmospheric air [5, 14, 15].
    [Show full text]
  • Ambient Air, Oxygen and Nitrox Effects on Cognitive Performance at Altitude
    APPLIED HUMAN SCIENCE Journal of Physiological Anthropology Ambient Air, Oxygen and Nitrox Effects on Cognitive Performance at Altitude John Leach and Sharon Almond Department of Psychology, Faculty of Applied Sciences, University of Lancaster Abstract. The effects on cognitive performance of this decrement can occur at altitudes above 3048 m breathing air, oxygen and nitrox gas mixtures at surface (Sharma and Malhotra, 1976; Luft, 1961). For acclimatized ambient pressures were investigated during an expedition subjects impairment in performance does not appear to to the Everest region of Nepal. A slight improvement occur until around 4706 m (McFarland, 1937) with most in grammatical reasoning at altitude was found under effects becoming noticeable between 3048–6096 m nitrox (p<0.05) and mathematical reasoning showed (Kramer et al., 1993; Tune, 1964) and are especially improvement at altitude on air (p<0.05), oxygen (p<0.01) marked above 5000 m (Nelson, 1982). and nitrox (p<0.01). There were non-significant trends To overcome severe decrement in cognition and towards decreasing mathematical ability, coupled with performance at extreme altitudes supplemental oxygen is an increase in variance on both grammatical and usually provided to the mountaineer. Other gases are mathematical test performance, with increasing pO2 available to reduce dysbaric impairment although they are (all p>0.05). The results suggest that there is a subtle used most noticeably in diving, for example, the use of interaction on cognition as indicated by a significant heliox, hydrox or trimix for deep water operations (>50 three-way interaction between subject x altitude x gas metres of sea water) (Shi, 1998; Shilling et al., 1976).
    [Show full text]
  • Extreme Recreational Diving Pushing the Limits Assoc
    1 | 65 National Center for Hyperbaric Medicine in Gdynia Medical University of Gdansk, Poland Extreme recreational diving Pushing the limits Assoc. Prof. Jacek Kot, MD, PhD Bühlmann Symposium Zürich Switzerland 2019 2 | 65 Disclaimer • I declare no real or potential conflict of interest. • Any views or opinions presented in this presentation are solely those of the author and do not necessarily represent those of any organization that author belongs to, including EUBS and ECHM. • All pictures are presented here either by the courtesy of their authors or taken from public websites for non-commercial use. Assoc. Prof. Jacek Kot, MD, PhD Head of National Center for Hyperbaric Medicine of Poland President of the EUBS General Secretary of the ECHM Medical Consultant of DAN Europe Extreme recreational diving Bühlmann Symposium Jacek Kot, 2018 Zürich Switzerland 2019 3 | 65 Professor A A Bühlmann → and Hans Keller → Hans Keller planted the Swiss flag at 1000 feet off California From - TAUCH MEDIZIN Springer-Verlag 1983 ▬▬▬▬ Extreme recreational diving Bühlmann Symposium Jacek Kot, 2018 Zürich Switzerland 2019 4 | 65 Deepest underwater cave in the world Krzysztof Starnawski _ National Geographic _ 2017 Courtesy of Krzysztof Starnawski (Poland) Extreme recreational diving Bühlmann Symposium Jacek Kot, 2018 Zürich Switzerland 2019 5 | 65 Types of recreational diving Safe Increased risk High risk (“technical”) • Up to 30 m • Between 30 and 50 m • Compressed air in open • With basic breathing Over 50 m (down to 300 circuit • mixtures (nitrox and
    [Show full text]
  • De L'helium a L'hydrogene, L'intervention Humaine a Grande
    DE L’HELIUM A L’HYDROGENE, L’INTERVENTION HUMAINE A GRANDE PROFONDEUR (EXPERIENCE COMEX) B. Gardette, C. Gortan, H.-G. Delauze GARDETTE Bernard, Docteur es Sciences, Directeur Scientifique COMEX SA, Marseille, FRANCE GORTAN Claude, Directeur du Centre d’Essais Hyperbares COMEX, Marseille, FRANCE DELAUZE Henri Germain, Président du groupe COMEX, Marseille, FRANCE THE DEEP HUMAN UNDERWATER INTERVENTION : COMEX EXPERIENCE Since 40 years, 43 experimental dives (deeper than 200 msw) were performed with heliox (oxygen/helium), trimix (oxygen/nitrogen/helium), hydrox (oxygen/hydrogen) or hydreliox (oxygen/hydrogen/helium) breathing gas mixtures. In 1988, six Comex and French Navy divers worked at a record depth of 534 msw with hydreliox and in 1992, a world record onshore dive at 701 msw was performed by Comex in Marseilles. These dives showed the efficiency of hydrogen diving at very deep depth (150 – 650 msw). -3 - 1. L’HELIUM La plongée à l’air comprimé comporte des limites. L’essoufflement, la toxicité de l’oxygène (2) et les effets de la narcose à l’azote, imposent au plongeur de ne pas dépasser les 50/60 mètres de profondeur (1-3-4). Dans les années 1930, des expériences ont été entreprises par la Marine américaine pour alimenter le plongeur non plus en air comprimé, mais en mélange respiratoire synthétique dans lequel l'azote est remplacé par un autre gaz inerte, diluant de l'oxygène, l'hélium. Ce dernier, très inerte sur le plan biochimique, d'une densité sept fois inférieure à celle de l'azote, permet de meilleures performances en supprimant les effets de la narcose et de l'essoufflement.
    [Show full text]
  • Calorimetry and Respirometry in Guinea Pigs in Hydrox and Heliox at 10–60 Atm
    Pflügers Arch - Eur J Physiol (2000) 440:843–851 DOI 10.1007/s004240000385 ORIGINAL ARTICLE Andreas Fahlman · Jaya A. Kaveeshwar Peter Tikuisis · Susan R. Kayar Calorimetry and respirometry in guinea pigs in hydrox and heliox at 10–60 atm Received: 7 April 2000 / Received after revision: 2 June 2000 / Accepted: 14 June 2000 / Published online: 19 July 2000 © Springer-Verlag 2000 Abstract We used direct calorimetry and respirometry Introduction to measure the total rate of heat loss (QΣ) and of oxygen ˙ consumption (VO2) in guinea pigs in 1-atm (0.1 MPa) air Body heat loss is a serious problem in diving. For and at 10–60 atm in either heliox (98% He, 2% O2) or simulated human dives in a dry hyperbaric chamber, the hydrox (98% H2, 2% O2). Our objective was to major avenues for heat loss are convection and radiation, determine if the physiological responses to these two gas and the heat loss due to the former increases with the mixtures were different and, if so, whether the increased density of the gases. differences were attributable to the thermal character- While helium (He) has been used extensively as a istics of the gases alone or were confounded by major component of a breathing gas for human diving, ˙ additional mechanisms. At 10–40 atm, QΣ and VO2 were there is only a limited amount of data on the not significantly different in the two gas mixtures, physiological and thermal effects of using hydrogen (H2) ˙ whereas at 60 atm, QΣ and VO2 were significantly higher during hyperbaria [3]. We wanted to determine if the ˙ in heliox than in hydrox.
    [Show full text]
  • 10.2 Decompression Practice 10
    S25712-10.02.qxd 5/2/02 2:34 PM Page 453 10 10.2 Decompression Practice Robert W Hamilton and Ed Thalmann DECOMPRESSION CONCEPTS AND TERMS TERMS Decompression practice is simply developing and im- Although many are covered elsewhere in this book and plementing decompression procedures for operational later in this chapter, some of the more important terms diving with the goal of avoiding decompression sickness and concepts used in this chapter are referenced here (DCS). Operationally useful procedures take into as the are used in this community. All the changes in account not only the decompression procedure required pressure or depth and breathing gas as a function of time to avoid DCS but also factors such as the time required during a dive and its decompression is the dive profile. for decompression, the number of different breathing Ascent from a dive is a reduction of pressure, and the gases required, the complexity of the ascent profile, profile to be followed is contained in a decompression and other factors which may make the procedure too table or schedule. A set of decompression schedules complicated for routine use. In addition to diving some organized in some systematic way, such as by increasing other situations require decompression; several of these depth and time, is called a decompression table. Proper are covered also. decompression is carried out by ascending slowly, with the ascent pattern or constraints on ascent carried out CONCEPT OF DECOMPRESSION by following such a decompression table. This table may have been based only on past experience, or may Because some jargon is involved, it is first necessary to have been prepared mathematically by a decompression clarify the meaning of the word ‘decompression’ as computational algorithm or model.
    [Show full text]
  • Hydra V Hydrogen Experimental Dive to 450 Meters by C
    OTC 5261 Hydra V Hydrogen Experimental Dive to 450 Meters by C. Gortanand H.G.Delauze,Cornex Copyright 1986 Offshore Technology Conference This pager was gresented at the 18th Annual OTC in Houston, Texas, May 5-6, 1986. The material ia subject to correction by the author Permission to copy” is restricted to an abstract of not more than 300 words. -cl! HeliumhasWowed theprofessior!aldivertoworkon the continentsllshelfarea down to depthsof 300 HYDRAV wasprforrnedin03m MarseilleF@perteric meters.In thisrange,equipmentsndmethcdssrenow ResearchCenterin May and June 1985.Duringthis relativelywellestabliskl.Rbwever,in spiteof its experiment,6 diverslivedat a simulateddepthof450 remarkablequalities,heliumalonecannotb thevector meters in a hyperbaricatmosphere “composedof of oxygeninbreathiwgmixturesbeyonda certaindepth iT@wger],heliumandoxygen(I&dreliox). Indeed,deep diversmust cope with 2 limiting ‘lYsditionaldeepdivingwithheiiumis Iimitsdby 2 factors: factors: - ‘TheH@ PressureNervousSyndrome(Hpl@,linked - HighPreesureN&vous E@drome (HENS)thatcmEe3 to theeffectsof hydrostaticpressureon the motrici~disorderskeyond~ metere. centralnervoussystem.5ese WP inthe250 - Gasdensitythatiqairspihqary ventilation. / ~ meter rangeand increasewith depth, Hj@rogensimildextendtheselimitsthsnketo its causingmotordisturbancesthatmsy wsriously narcotic@ency thaths9sn sntagonkticeffectcn the imgs.irworkefficie~. HPNSsyndromesndthanksto itslightmolecularmass. The densityof breathingmixtures,which increasesprop%ionaUy to pressure,demandsa HYDRAV, firsthydrogenexperimentalsaturation
    [Show full text]
  • Dogs Which Have Been Exposed to Hydrox, We Have Lost Only Two Dur
    Results and Discussion This laboratory now has accumulated over 6 $50 hours of actual hydroxexposure to manand animals Table 4!. A total of 16 dogshave been involved in hydroxdives Table 5! while 12dogs have been involved in heliox dives Table 6!. Most of these dives with dogswere saturation dives to a depth of 1000FSW. There- sults of these efforts now will be presented and discussed: The earlier findings of Michaud, et al 6, 24! are puzzling. Theseworkers have reported the appearanceof brain abcesses,ab- normalEEG changes, EKG abnormalities and sometimesdeath within less than six hours after the beginning of hydrox exposureat 7 ata pressure. Wehave so far failed to observe these symptomsin our ani- mals or in ourselves. As has been reported elsewhere, of the dogswhich have been exposed to hydrox,we have lost only two dur- ing or after hydroxexposure Table 5!. Our studies of these two deathssubsequently revealed that they weredue to the presenceof toxic hydrocarbonsin the breathinggas. Therewere no indications that hydrogencontributed to these deaths. Except for these two deaths, the only medical problemsin the hydrox dogs have been related to bends during decompressionor to what may have been cerebral hypoxiawhile at depth. It wouldappear that our animals received a sufficient hydrogen exposure to produce these symptoms since they wereexposed to this gas continuously for as long as 97 hours. Brain biopsies for electron microscopic studies were car- ried out on two animals, and four brains were removedand sectioned. IV-2 No lesions or other gross abnormalities were noted which resembled the earlier findings of Michaud. BRAIN: Only four animals have developed alarming nerological symp- toms while at a simulated depth of 1000 FSWon hydrox.
    [Show full text]
  • Modern Decompression Algorithms: Models, Comparisons, and Statistics B.R
    MODERN DECOMPRESSION ALGORITHMS: MODELS, COMPARISONS, AND STATISTICS B.R. Wienke Los Alamos National Laboratory Applied Physics Division Los Alamos, N.M. 87545 INTRODUCTION Overview The subject of decompression theory in general is the study of pressure changes in blood and tissues. And today, we still do not know all the answers, maybe even less, the questions. But for diving applications, we need regimens and protocols to stage diver ascents on any given breathing mixture, and that is the focus of this short paper. Deterministic models are broadly catergorized as dissolved gas (Haldane) or dual phase (dissolved plus free gas), and both are de- scribed and contrasted. Probabilistic models fold risk parameters over statistical data in maxinum likelihood,employing metrics and variables computed directly in deterministic models. The statistics associated with decompression illness (DCI) are also discussed. Pressure And Decompression Modeling The physics, biology, engineering, physiology, medicine, and chemistry of diving center on pressure, and pressure changes. The average individual is subjected to atmospheric pressure swings of 3% at sea level, as much as 20% a mile in elevation, more at higher altitudes, and all usually over time spans of hours to days. Divers and their equipment can experience compressions and decompressions orders of magnitude greater, and within considerably shorter time scales. While the effects of pressure change are readily quantified in physics, chemistry, and engineering applications, the physiology, medicine, and biology of pressure changes in living systems are much more complicated. Increases in pressure with increasing depth impose many of the limitations in diving, applying equally well to the design of equipment.
    [Show full text]
  • The GUE Fundamentals of Technical Diving
    Getting Clear on the Basics: The Fundamentals of Technical Diving Jarrod Jablonski Global Underwater Explorers 2 Copyright (c) 2000, 2001 by Global Underwater Explorers ALL RIGHTS RESERVED. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means -electronic, mechanical, photocopying, microfilming, recording, or otherwise -without written permission from the publisher, except by a reviewer who may quote brief passages in a review with appropriate credit. All inquiries should be directed to Global Underwater Explorers, 15 S. Main St., High Springs, Florida, USA 32643 ISBN no. (pending) Library of Congress: Jablonski, Jarrod Getting Clear on the Basics: The Fundamentals of Technical Diving Here’s a couple of quick tips to help you navigate your way around this electronic version of the GUE Technical Diving Manual Use the bookmarks at the left hand edge of the page to jump to specific chapters or sub sections of the manual as shown above You can search for either keywords or word strings within the manual by clicking the binocular icon Or by using CTR+F Repeated CTRL+F will find again on that word You can cycle through the standard page zooms by clicking on each of the page view icons The bookmarks are set to display the pages in a readable size for on screen viewing Where you see blue hyperlinked text as shown above you can click for immediate connection to that web page or email address For a full description of how to use the Acrobat Reader you can simply choose Help>Acrobat Guide from the File menu as shown at right 4 Contents Acknowledgements ..........................................................................................
    [Show full text]
  • 2016 Will an Underwater Robot Ever Replace
    POLISH HYPERBARIC RESEARCH 1(54)2016 Journal of Polish Hyperbaric Medicine and Technology Society WILL AN UNDERWATER ROBOT EVER REPLACE THE DIVER? A RATHER POOR PROGRESS OR A GREAT SUCCESS? Adam Olejnik 1), Piotr Siermontowski 2) 1) Polish Naval Academy, Department of Underwater Work Technology 2) Military Institute of Medicine, Department Maritime and Hyperbaric Medicine, Gdynia, Poland ABSTRACT The article deals with the subject matter related to the development of underwater works technologies. Nearly 15 years ago one of the authors of this study published a material in the monthly magazine of "Podwodny Świat" (The Underwater World) entitled "The Future of Underwater Technologies – the diver or the robot?" where he noted that the time of great changes in technologies aimed at researching the depths and conducting works under water has arrived. This new era mainly consists in the fact that on an increasing number of occasions the diver is replaced by an underwater robot. The presented material constitutes an attempt to provide an answer to the question whether the then posed thesis is still valid. In the article the authors discuss issues concerned with the development of techniques and technologies applied in the conquest of depths that leads them to the conclusion that the previously observed tendency of a double-tracked development of underwater technologies is gaining in strength, which causes that the works and exploration of bodies of water at great depths will be possible only with the use of unmanned techniques. Key words: underwater works technology, marine engineering. ARTICLE INFO PolHypRes 2016 Vol. 54 Issue 1 pp. 7-18 ISSN: 1734-7009 eISSN: 2084-0535 Review article DOI: 10.1515/phr-2016-0001 Delivery date: 29.10.2015r.
    [Show full text]