A New Genus of Rodent from Wallacea (Rodentia: Muridae: Murinae: Rattini), and Its Implication for Biogeography and Indo-Pacific

Total Page:16

File Type:pdf, Size:1020Kb

A New Genus of Rodent from Wallacea (Rodentia: Muridae: Murinae: Rattini), and Its Implication for Biogeography and Indo-Pacific bs_bs_banner Zoological Journal of the Linnean Society, 2013, 169, 408–447. With 10 figures A new genus of rodent from Wallacea (Rodentia: Muridae: Murinae: Rattini), and its implication for biogeography and Indo-Pacific Rattini systematics PIERRE-HENRI FABRE1*, MARIE PAGÈS2,3, GUY G. MUSSER4†, YULI S. FITRIANA5, JON FJELDSÅ1, ANDY JENNINGS6, KNUD A. JØNSSON1, JONATHAN KENNEDY1, JOHAN MICHAUX3, GONO SEMIADI5, NANANG SUPRIATNA5 and KRISTOFER M. HELGEN7 1Center for Macroecology, Evolution and Climate (CMEC, Department of Biology), Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark 2Laboratoire de génétique des microorganismes, Université de Liège, 4000 Liège, Belgique 3INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez Cedex, France 4Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, New York, NY 10024, USA 5Museum Zoologicum Bogoriense, Research Center For Biology, Indonesian Institute of Sciences (LIPI), Jl.Raya Jakarta-Bogor Km.46 Cibinong 16911 Indonesia 6Muséum National d’Histoire Naturelle, Département Systématique et Evolution CP 51, 57 Rue Cuvier, 75231 Paris, France 7National Museum of Natural History, Smithsonian. Institution, P.O. Box 37012, MRC 108, Washington, DC 20013-7012, USA Received 31 January 2013; revised 4 June 2013; accepted for publication 6 June 2013 We describe Halmaheramys bokimekot Fabre, Pagès, Musser, Fitriana, Semiadi & Helgen gen. et sp. nov.,a new genus and species of murine rodent from the North Moluccas, and study its phylogenetic placement using both molecular and morphological data. We generated a densely sampled mitochondrial and nuclear DNA data set that included most genera of Indo-Pacific Murinae, and used probabilistic methodologies to infer their phylogenetic relationships. To reconstruct their biogeographical history, we first dated the topology and then used a Lagrange analysis to infer ancestral geographic areas. Finally, we combined the ancestral area reconstructions with temporal information to compare patterns of murine colonization among Indo-Pacific archipelagos. We provide a new and comprehensive molecular phylogenetic reconstruction for Indo-Pacific Murinae, with a focus on the Rattus division. Using previous results and those presented in this study, we define a new Indo-Pacific group within the Rattus division, composed of Bullimus, Bunomys, Paruromys, Halmaheramys, Sundamys, and Taeromys. Our phylogenetic reconstructions revealed a relatively recent diversification from the Middle Miocene to Plio-Pleistocene associated with several major dispersal events. We identified two independent Indo-Pacific dispersal events from both western and eastern Indo-Pacific archipelagos to the isolated island of Halmahera, which led to the speciations of H. bokimekot gen. et sp. nov. and Rattus morotaiensis Kellogg, 1945. We propose that a Middle Miocene collision between the Halmahera and Sangihe arcs may have been responsible for the arrival of the ancestor of Halmaheramys to eastern Wallacea. Halmaheramys bokimekot gen. et sp. nov. is described in detail, and its systematics and biogeography are documented and illustrated. © 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 169, 408–447. doi: 10.1111/zoj.12061 ADDITIONAL KEYWORDS: biodiversity – biogeography – Indo-Pacific – molecular systematics – morphology – Rattini – Wallacea. *Corresponding author. E-mail: [email protected] †Current address: 494 Wallace Drive, Charleston, SC 29412, USA. 408 © 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 169, 408–447 HALMAHERAMYS, A NEW WALLACEAN RODENT GENUS 409 INTRODUCTION The most diverse terrestrial group of mammals within the Indo-Pacific region are rodents of the sub- With more than 20 000 islands, ranging from small family Murinae, represented by 368 extant species atolls to large tropical islands, the Indo-Pacific con- (Musser & Carleton, 2005; Aplin & Helgen, 2010). stitutes one of the most biotically important and They mainly comprise three tribes (Lecompte et al., geologically complex regions on the planet (Lohman 2008; Rowe et al., 2008; Aplin & Helgen, 2010): the et al., 2011). Forty-five million years ago, the Phloeomyini (Philippine Old Endemics); the Rattini Australo-Papuan plate began to move northwards, (rats and allies); and the Hydromyini. Both the culminating in a collision with the Asian and Pacific Rattini and Hydromyini have colonized Australia, plates. This period of high tectonic activity (Hall, Melanesia, New Guinea, the Philippines, and Walla- 2002, 2009) led to both the emergence and submer- cea (Fig. 1). Throughout the Indo-Pacific, the complex gence of many islands (Hall, 1996; Hall, Cottam & distribution of the Murinae has been shaped by the Wilson, 2011). During the Plio-Pleistocene climate history of dispersal, involving independent coloniza- oscillations caused continuous sea level fluctuations, tions of different archipelagos (Jansa, Barker & which periodically connected islands, or reduced the Heaney, 2006; Rowe et al., 2008). For example, in the distances between them (Voris, 2000). This dynamic Philippine murine assemblage (Heaney et al., 1998, geological history has resulted in complex patterns 2009; Rickart et al., 2005) at least five independent of spatiotemporal dispersal and vicariance among colonizations from the Asian continent occurred lineages, and has generated a number of alternative during the Neogene (Jansa et al., 2006). Two addi- scenarios of island colonization (Lohman et al., 2011; tional colonizations of Sahul regions (Australia and Stelbrink et al., 2012). New Guinea) led to the respective diversification of Figure 1. Map of the Indo-Pacific Archipelago indicating contemporary islands, straits, seas, arcs, and faunal lines (modified from Lohman et al., 2011). Major islands are labelled; lineages of Murinae present on each island are also labelled; different countries in the Indo-Pacific are indicated by colours (see also Figs 2 and 3). Upper right: map of Halmahera Island, where a white star represents the trapping site of Halmaheramys bokimekot gen. et sp. nov. Maps were extracted and modified from Wikimapia (http://wikimapia.org). © 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 169, 408–447 410 P.-H. FABRE ET AL. the Australo-Papuan Hydromyini (Rowe et al., 2008; Recent molecular studies have suggested that the Bryant et al., 2011) and Rattus species (Taylor & centre of diversification for Rattini lies within South/ Horner, 1973; Taylor, Calaby & Van Deusen, 1982; Southeast Asia (Musser & Carleton, 2005; Rowe Robins et al., 2010; Rowe et al., 2011). Despite high et al., 2008), from where they colonized various Indo- murine species richness in Wallacea (more than 50 Pacific islands (Musser, 1981; Musser & Newcomb, species; Musser, 1987), few molecular systematic 1983; Musser & Heaney, 1992). Specifically, mem- analyses have addressed the biogeographic history of bers of the Rattini colonized the Philippines colonization in this region. three times during the Late Miocene (Bullimus, The Rattini is the most diverse tribe of murines Limnomys + Tarsomys + Rattus everetti group, Cru- in Wallacea (with more than 50 Sulawesian species, nomys division; Jansa et al., 2006; Heaney et al., seven Lesser Sundaic species, and five Moluccan 2009), Sulawesi at least three times, also during the species). Systematic revisions continue to reveal over- Miocene (Bunomys and Rattus group in Rattus divi- looked diversity within the Rattini: 45 genera and sion; Maxomys + Crunomys divisions; Melasmothrix 175 species are currently recognized, of which 66 are division; Jansa et al., 2006; Rowe et al., 2008), and assigned to Rattus. The diversity of phenotypes in Sahul once, during the Pliocene (Australo-Papuan the Rattini (Ellerman, 1941, 1949; Misonne, 1969; Rattus; Rowe et al., 2011). Musser & Newcomb, 1983; Musser & Carleton, Using the murine DNA sequences available, we aim 2005), particularly within Rattus (Taylor et al., 1982; to update the current understanding of the systematic Musser & Holden, 1991; Musser & Carleton, 2005), relationships and colonization history of the Rattini represents a major challenge for Indo-Pacific rodent within Wallacea, with a specific focus on the north systematists (Medway & Yong, 1976; Musser, 1987). Moluccas (Fig. 1). To achieve this, we sequenced four Most Rattini species exhibit morphological features Rattini endemic to Sulawesi, one from Halmahera reflecting mosaic convergences and plesiomorphies, (Rattus morotaiensis Kellogg, 1945), and the newly generating considerable uncertainty in morphology- discovered genus and species Halmaheramys bokime- based classifications (Medway & Yong 1976; Musser kot gen. et sp. nov., described here. Using mitochon- & Newcomb, 1983; Musser & Holden, 1991). The drial and nuclear DNA sequences and dense taxon systematic and taxonomic status of several genera sampling, we infer a highly resolved molecular within Rattini has been a topic of much debate, with phylogeny. We subsequently use this phylogeny to many lineages traditionally regarded as part of compute ancestral area reconstructions of the Indo- Rattus now classified as separate genera (for reviews, Pacific Murinae in order to infer both the colonization see Musser & Newcomb 1983; Musser & Carleton, history and patterns of speciation in this group. We 2005). Based on recent molecular phylogenetic aim to address
Recommended publications
  • NHBSS 054 2G Wattanaratcha
    NAT. NAT. HIST. BUL L. SIAM Soc. 54(2): 195-207 ,2006 SMALL MAMMALS AROUND A KAREN VILLAGE IN NORTHERN MAE HONG SON PROVINCE ,THAILAND: ABUNDANCE ,DISTRIBUTION AND HUMAN CONSUMPTION Nattha Nattha Wattanaratchaki t' and Sompoad Srikosamatarcl ABSTRACT The aim of 出is study was to understand the ecology of small mammals around a Karen village village and the relationships between small mammals and the lifestyle of the Karen people. Th e abundance ,distribution and species diversity of small mammals were studied around a Ka 民 n village ,Muang Pham , Pang Ma Pa District , in Mae Hong Son Province. Ten species were captured. captured. Menetes berdmorei , Rattus rattus ,如 d Niviventer bukit were the most common species around around the village. R. rattus w ぉ abundant in paddy fields , whereas M. berdmorei was captu 問 d more often in com fields. N. bukit was most common in multiple-use forest area. 明le highest abundance abundance of small mammals was found in 恥 agricultural area ,whereas 曲eir gl 四回 tspecies diversity diversity was in the community fores t. Most species that occur 四 d in the agricultural 蹴 a were pest pest species. Maxomys su ゆ r had low density around the village but was a valuable source of of protein for Karen villagers. About 3,000 raωweighing a to 飽1 of more 血an 300 kg we 問 ∞nsumed in Muang Pham village during November 20 04- January 2005. Disturbance from agriculture , and harvest of timber and non-timber forest products around the village have caused caused a high abundance of pest species around 白is Karen village.
    [Show full text]
  • BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
    CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry.
    [Show full text]
  • Evolutionary Biology of the Genus Rattus: Profile of an Archetypal Rodent Pest
    Bromadiolone resistance does not respond to absence of anticoagulants in experimental populations of Norway rats. Heiberg, A.C.; Leirs, H.; Siegismund, Hans Redlef Published in: <em>Rats, Mice and People: Rodent Biology and Management</em> Publication date: 2003 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Heiberg, A. C., Leirs, H., & Siegismund, H. R. (2003). Bromadiolone resistance does not respond to absence of anticoagulants in experimental populations of Norway rats. In G. R. Singleton, L. A. Hinds, C. J. Krebs, & D. M. Spratt (Eds.), Rats, Mice and People: Rodent Biology and Management (Vol. 96, pp. 461-464). Download date: 27. Sep. 2021 SYMPOSIUM 7: MANAGEMENT—URBAN RODENTS AND RODENTICIDE RESISTANCE This file forms part of ACIAR Monograph 96, Rats, mice and people: rodent biology and management. The other parts of Monograph 96 can be downloaded from <www.aciar.gov.au>. © Australian Centre for International Agricultural Research 2003 Grant R. Singleton, Lyn A. Hinds, Charles J. Krebs and Dave M. Spratt, 2003. Rats, mice and people: rodent biology and management. ACIAR Monograph No. 96, 564p. ISBN 1 86320 357 5 [electronic version] ISSN 1447-090X [electronic version] Technical editing and production by Clarus Design, Canberra 431 Ecological perspectives on the management of commensal rodents David P. Cowan, Roger J. Quy* and Mark S. Lambert Central Science Laboratory, Sand Hutton, York YO41 1LZ, UNITED KINGDOM *Corresponding author, email: [email protected] Abstract. The need to control Norway rats in the United Kingdom has led to heavy reliance on rodenticides, particu- larly because alternative methods do not reduce rat numbers as quickly or as efficiently.
    [Show full text]
  • Biogeography of Mammals in SE Asia: Estimates of Rates of Colonization, Extinction and Speciation
    Biological Journal oflhe Linnean Sociely (1986), 28, 127-165. With 8 figures Biogeography of mammals in SE Asia: estimates of rates of colonization, extinction and speciation LAWRENCE R. HEANEY Museum of <oology and Division of Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. Accepted for publication I4 February 1986 Four categories of islands in SE Asia may be identified on the basis of their histories of landbridge connections. Those islands on the shallow, continental Sunda Shelf were joined to the Asian mainland by a broad landbridge during the late Pleistocene; other islands were connected to the Sunda Shelf by a middle Pleistocene landbridge; some were parts of larger oceanic islands; and others remained as isolated oceanic islands. The limits of late Pleistocene islands, defined by the 120 ni bathymetric line, are highly concordant with the limits of faunal regions. Faunal variation among non-volant mammals is high between faunal regions and low within the faunal regions; endcmism of faunal regions characteristically exceeds 70%. Small and geologically young oceanic islands are depauperate; larger and older islands are more species-rich. The number of endemic species is correlated with island area; however, continental shelf islands less than 125000 km2 do not have endemic species, whereas isolated oceanic islands as small as 47 km2 often have endemic species. Geologirally old oceanic islands have many endemic species, whereas young oceanic islands have few endemic species. Colonization across sea channels that were 5-25 km wide during the Pleistocene has been low, with a rate of about 1-2/500000 years.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3052, 19 pp., 9 figures, 1 table December 14, 1992 Sucking Lice (Insecta, Anoplura) from Indigenous Sulawesi Rodents: a New Species of Polyplax from a Montane Shrew Rat, and New Information About Polyplax wallacei and P. eropepli LANCE A. DURDEN' AND GUY G. MUSSER2 ABSTRACT Polyplax melasmothrixi, a new species of po- from Eropeplus canus from tropical upper mon- lyplacid sucking louse, is described from Melas- tane rain forest also in Central Sulawesi. Host and mothrix naso, a small-bodied shrew rat known habitat associations for these three species ofsuck- only from tropical upper montane rain forest in ing lice are discussed. Polyplax melasmothrixi and Central Sulawesi, Indonesia. The male ofPolyplax P. eropepli are both known only from montane wallacei is described from specimens collected from habitats in Central Sulawesi and both appear to Bunomys chrysocomus trapped in tropical lowland be host specific (to M. naso and E. canus, respec- evergreen rain forest in Central Sulawesi. A further tively). Contrastingly, P. wallacei parasitizes two specimen ofPolyplax eropepli, a taxon previously species ofBunomys in lowland forests and is known known only from the type series, is documented from North and Central Sulawesi. INTRODUCTION Melasmothrix naso, Bunomys chrysoco- Musser and Holden, 1991). The shrew rat, mus, and Eropeplus canus are three murine M. naso, and the large-bodied E. canus have rodents found only in forests on the Indo- been recorded only from montane rainforest nesian island of Sulawesi (Musser, 1987; formations in the mountainous central part I Assistant Professor and Assistant Curator, Institute of Arthropodology and Parasitology, Georgia Southern Uni- versity, Landrum Box 8056, Statesboro, Georgia 30460.
    [Show full text]
  • Retrotransposons
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11284–11289, September 1998 Evolution Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons OLIVIER VERNEAU*†,FRANC¸OIS CATZEFLIS‡, AND ANTHONY V. FURANO*§ *Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830; and ‡Institut des Sciences de l’Evolution, Case Courrier 064, Universite´Montpellier 2, 34095 Montpellier, France Communicated by Herbert Tabor, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, July 24, 1998 (received for review May 22, 1998) ABSTRACT Phylogenies based on the inheritance of This difference stems from the distinct biological properties shared derived characters will be ambiguous when the shared of these elements. L1 elements are prolific, self-replicating characters are not the result of common ancestry. Such mammalian retrotransposons that rapidly generate distinct characters are called homoplasies. Phylogenetic analysis also novel subfamilies consisting mostly of defective (pseudo) can be problematic if the characters have not changed suffi- copies (see legend to Fig. 1). The defective subfamily members ciently, as might be the case for rapid or recent speciations. are retained in the genome and diverge from each other with The latter are of particular interest because evolutionary time at the pseudogene (neutral) rate. The rapid generation of processes may be more accessible the more recent the specia- novel L1 characters keeps pace with speciation, and the tion. The repeated DNA subfamilies generated by the mam- sequence divergence of the various defective subfamily mem- malian L1 (LINE-1) retrotransposon are apparently ho- bers theoretically permits the dating of the speciations (4).
    [Show full text]
  • TAXONOMIC STUDIES from RODENT OUTBREAK AREAS in the CHITTAGONG HILL TRACTS Nikhil
    Bangladesh J. Zool. 46(2): 217-230, 2018 ISSN: 0304-9027 (print) 2408-8455 (online) NEW RECORDS OF RODENT SPECIES IN BANGLADESH: TAXONOMIC STUDIES FROM RODENT OUTBREAK AREAS IN THE CHITTAGONG HILL TRACTS Nikhil Chakma*, Noor Jahan Sarker, Steven Belmain1, Sohrab Uddin Sarker, Ken Aplin2 and Sontosh Kumar Sarker3 Department of Zoology, University of Dhaka, Dhaka-1000, Bangladesh Abstract: Rodents are regarded as crop pests, significant reservoirs and vectors for many zoonotic diseases around the world. Basic taxonomic information of rodents present in a locality can help understand which species are responsible as crop pest in that habitat. The phenomenon of the 50-year cycle of gregarious bamboo flowering and rodent outbreaks in the Chittagong Hill Tracts (CHT) of Bangladesh, rodents trapping were carried out in four habitats from March, 2009 to December, 2011 in Ruma upazila of Bandarban hill district. Variety of traps were used to capture small mammals. The captured species were measured and identified using taxonomical dichotomous keys and DNA bar-coding performed in Australia. A total of 14 different small mammalian species were captured of which nine belonging to the Muridae family, and one species each of Spalacidae, Sciuridae, Tupaiidae and Soricidae families. The dominant small mammal species captured were Rattus rattus (54.06%) followed by Mus musculus (26.39%), Rattus nitidus (10.98%), Suncus murinus (5.45%), Mus terricolor (1.09%), Mus cookii nagarum (0.97%), Cannomys badius (0.16%), Leopoldamys edwardsi (0.12%), Berylmys bowersi (0.12%), Vernaya fulva (0.08%), Rattus andamanensis (0.08%), Tupaia glis (0.04%) and Callosciurus pygerythrus (0.04%).
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Ecological Assessments in the B+WISER Sites
    Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March
    [Show full text]
  • Two New Species of Shrew-Rats (Rhynchomys: Muridae: Rodentia) from Luzon Island, Philippines
    Journal of Mammalogy, 100(4):1112–1129, 2019 DOI:10.1093/jmammal/gyz066 Version of Record, first published online 6 June 2019, with fixed content and layout in compliance with Art. 8.1.3.2 ICZN. Two new species of shrew-rats (Rhynchomys: Muridae: Rodentia) from Luzon Island, Philippines Downloaded from https://academic.oup.com/jmammal/article-abstract/100/4/1112/5506757 by Louisiana State University user on 05 November 2019 Eric A. Rickart,* Danilo S. Balete,† Robert M. Timm, Phillip A. Alviola, Jacob A. Esselstyn, and Lawrence R. Heaney Natural History Museum of Utah, University of Utah, Salt Lake City, UT 84108, USA (EAR) Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA (DSB, LRH) Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA (RMT) Institute of Biological Sciences, University of the Philippines, Los Baños, Laguna 4031, Philippines (PAA) Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA (JAE) * Correspondent: [email protected] † Deceased 1 July 2017. The murine genus Rhynchomys includes the large-bodied Philippine “shrew-rats,” highly specialized members of the vermivorous clade of Philippine murids. Four species are recognized, all of which are endemic to Luzon Island: R. soricoides from mountains within the Central Cordillera, R. isarogensis from Mt. Isarog on the Bicol Peninsula, R. banahao from Mt. Banahaw in south-central Luzon, and R. tapulao from Mt. Tapulao in the Zambales Mountains. Field surveys in 2006 and 2008 revealed two additional populations of Rhynchomys, one from Mt.
    [Show full text]
  • Novltates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novltates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3064, 34 pp., 8 figures, 2 tables June 10, 1993 Philippine Rodents: Chromosomal Characteristics and Their Significance for Phylogenetic Inference Among 13 Species (Rodentia: Muridae: Murinae) ERIC A. RICKART1 AND GUY G. MUSSER2 ABSTRACT Karyotypes are reported for 13 murines be- bers of 50 and 88, respectively, indicating longing to the endemic Philippine genera Apomys, substantial chromosomal variability within that Archboldomys, Batomys, Bullimus, Chrotomys, genus. Archboldomys (2N = 26, FN = 43) has an Phloeomys, and Rhynchomys, and the widespread aberrant sex chromosome system and a karyotype genus Rattus. The karyotype of Phloeomys cum- that is substantially different from other taxa stud- ingi (2N = 44, FN = 66) differs from that of P. ied. The karyotype ofBullimus bagobus (2N = 42, pallidus (2N = 40, FN = 60), and both are chro- FN = ca. 58) is numerically similar to that of the mosomally distinct from other taxa examined. Two native Rattus everetti and the two non-native spe- species of Batomys (2N = 52), Chrotomys gon- cies ofRattus, R. tanezumi and R. exulans. Chro- zalesi (2N = 44), Rhynchomys isarogensis (2N = mosomal data corroborate some phylogenetic re- 44), and Apomys musculus (2N = 42) have FN = lationships inferred from morphology, and support 52-53 and a predominance of telocentric chro- the hypothesis that the Philippine murid fauna is mosomes. Two other species ofApomys have dip- composed of separate clades representing inde- loid numbers of30 and 44, and fundamental num- pendent ancestral invasions of the archipelago. INTRODUCTION The Philippine Islands support a remark- Heaney and Rickart, 1990; Musser and Hea- ably diverse murine rodent fauna, including ney, 1992).
    [Show full text]