Sea Scallop Resources Off the Northeastern U.S. Coast, 1975

Total Page:16

File Type:pdf, Size:1020Kb

Sea Scallop Resources Off the Northeastern U.S. Coast, 1975 MFR PAPER 1283 Sea Scallop Resources off the Northeastern U.S. Coast, 1975 CLYDE L. MacKENZIE, Jr, ARTHUR S. MERRILL, and FREDRIC M. SERCHUK INTRODUCTION tion distribution, length and age com­ scallops on Georges Bank and the Mid­ position, and growth rates have been dle Atlantic Shelf. The sea scallop, Placopecten magel­ monitored. The St. Andrews Biological MATERIALS AND METHODS lanicus (Gmelin), is one of the com­ Station, New Brunswick, Canada, has mercial mollusks off the Atlantic coast also surveyed sea scallops on Georges Two sea scallop surveys on the RV of the United States and Canada. It is Bank. (Caddy, 1975; pers. commun.). Albatross IV extended from Georges harvested over its entire range, which An early survey of sea scallops on the Bank southward to Cape Hatteras in extends from the Gulf of St. Lawrence Middle Atlantic Shelf was made by the 1975. A standard lO-foot (3.05-m) sea (Posgay, 1957) to south-southeast of U.S. fisheries schooner Grampus in scallop dredge with a bag of 2-inch Cape Hatteras, N. C. (Porter, 1974). 1913 (Anonymous, 1914); a later one (5.08-cm) rings was used. Tows were Historically, the largest harvests by by the RV Delaware in 1960 (Merrill, of 15-minute duration at 6.3 km/hour U.S. fishermen have been from 1962). (3.5 knots). Scallop numbers, condi­ Georges Bank with smaller harvests The objectives of the 1975 surveys tion of the gonads, and shell lengths from the Gulf of Maine, Cape Cod Bay, were to make observations on the dis­ were recorded. Gonadal condition was and the Middle Atlantic Shelf, but since tribution and abundance, spawning determined using criteria established by 1975, more than 60 percent of the total season, and length frequency of sea Posgay and Norman (1958). Gonads U.S. scallop harvest has been from the latter area. Canadian fishennen harvest sea scallops from Georges Bank north­ ward to the Gulf of St. Lawrence. In Figure I.-Historical landings of sea scallops by U.S. fishermen. Sources: Lyles 1976, 8,712 metric tons of sea scallop (1969); Fishery Statistics of the United States (1968-73); Fisheries of the United meats were landed by U. S. fishermen States (1974-75); ICNAF (1977). (ICNAF, 1977), a quantity more than three times larger than that landed in 12 any year between 1969 and 1974 (Fig. 11 1); the Canadian landings were a record '0 high. <f) !;< 9 The Woods Hole Laboratory of the w Northeast Fisheries Center has studied ::Ii u. sea scallop stocks on Georges Bank o ~7 regularly since the late 1950's. Popula- Mo ;; 6 Clyde L. MacKenzie, Jr. is with the Sandy Hook Laboratory, Northeast Fisheries Center, National Marine Fisheries Service, NOAA, High­ lands, NJ 07732. Arthur S. Merrill and Fredric M. Serchuk are with the Woods Hole Laboratory, Northeast Fisheries Center, National Marine Fisheries Service, NOAA, Woods 1930 34 36 42 46 50 54 5. 62 66 70 74 Hole, MA 02543. YEAR February 1978 /9 ° NO SCALLOPS UNDER% BUSHEL NORTHEAST TO < 2 BUSHELS " % "". PIAK • 2 TO < 4 BUSHELS • \/ 42° • 4 TO 8 BUSHELS • i SMAll SCALLOP 1 DISTRIBUTION ". ./ /. ./ -' . SOUTH ( CHANNEL ... ,. SOUTHEAST PART \ ( .' .,/ / o~ ..../ 41° (J/. :-. :/- /--_.j " "" SOUTHWE5f 'An..V"..'" ..1-'. .: .. ....,...•..•... _.\~ SEA SCALLOP DISTRIBUTION-GEORGES BANK R/V ALBATROSS IV CRUISE 75-11 ........... ~--- SEPTEMBER 23 - OCTOBER 3,1975 " 501", 40° 70° 69° 68° 67° 66° Figure 2.-Station pallem and sea scaJJop distribution and abundance (bushels per IS-minute tow) on selected areas of Georges Bank. 23 September to 3 October 1975. Solid lines indicate probable limits ofdistribution of small scallops, mostly the 1972 year class. were divided into those spawned and tween eastern Long Island, N. Y., and stations averaged 0.4 bushels (range not spawned. Between 42 and 130 Cape Hatteras, N.C. 0-4.0 bushels) of scallops per tow. males and 51 to 116 females were ex­ Solid lines encircling areas of dis­ amined at five stations over the sur­ RESULTS tribution of small scallops, most of veyed area. The depths of the stations which belonged to the 1972 year class, Georges Bank were near the mean depth for scallops are also shown on Figure 2. Small scal­ on Georges Bank and the Middle Atlan­ Distribution and Abundance lops were taken at about two-thirds of tic Shelf. Temperature data were col­ stations on the Northern Edge, at all the lected from bathythermographic casts. The distribution of sea scallops sur­ Northeast Peak stations, and at about A total of 144 stations, mostly veyed on Georges Bank is shown in one-third of stations in the Southwest spaced about 8 km apart, was sampled Figure 2. Scallops were taken at 118 of Part and the South Channel. on Georges Bank between 23 Sep­ the 144 stations, on bottoms consisting Scallops were collected at depths that tember and 3 October 1975. Station of various combinations of sand, gra­ ranged from 37 to 100 m (two scallops depths ranged from 22 to 183 m. Sta­ vel, rocks, boulders, and shells of dead were caught at 183 m); mean depth for tions were in three sections of known mollusks-mostly surf clam, Spisula scallops was about 68 m: scallop abundance: I) Northern Edge solidissima (Dillwyn); ocean quahog, and Northeast Peak, 2) Southwest Part, Artica islandica (Linne); and sea scal­ Depth range Scallops and 3) South Channel. A survey of the lop. (m) (percent) 37-50 13 southeast part of Georges Bank was The abundance of sea scallops on 50-75 54 planned, but hurricane threats limited Georges Bank is indicated in Figure 2. 76-100 33 sampling operations. The largest collections were made on A total of 99 stations was sampled the Northern Edge and Northeast Peak, on the Middle Atlantic Shelf between 7 where stations averaged 1.2 bushels Spawning Season and 16 August 1975. Station depths (range, 0-7.5 bushels) (I bushel = 35.2 ranged from 26 to 148 m. Stations were liters) of scallops per tow. In the The gonadal condition ofthe scallops spaced along and among eight transects Southwest Part, stations averaged 0.75 indicated that spawning was in progress that were nearly perpendicular to shore bushels (range, 0-2.0 bushels) of scal­ in late September and early October. and equidistant from each other be- lops per tow. In the South Channel, The percentages of scallops that had 20 Marine Fisheries Review (IN) GEOAGES flANK \ o \\~. \ - ° . IOOrm -- .-'40° ." \ 0 CD . \ • • \ .', . " ., /-' . '. o@ .", tew) . ., . Figure 3.-Length-frequency histograms of sea scallops from three sections of Georges !~ 38' Bank. Number of scallops measured is indi­ cated. ·.1.~-.. ~)® SEA SCALLOP DISTRIBUTION-MIDDLE ATLANTIC SHELF R/V ALBATROSS IV CRUISE 75-8 spawned and the bottom temperatures AUGUST 7 -16,1975 -. --. __ .~® by section were: ° NO SCALLOPS UNDER 1;2 BUSHEL Bonom Percent spawned TO < 2 BUSHELS Depth temper- • • 112 Section Males Females ~ ature ('C) • ° • 2 TO < 4 BUSHELS Northern edge 60.2 36.6 68 11.2 SMALL SCALLOP DISTRIBUTION Southwest part 2.8 10.4 68 10.0 South channel SO.O 41.2 60 9.0 MAJOR TRANSECTS Collectively, the samples contained 216 males and 219 females, a I: I sex ---@ ratio. Length Frequency 76° 74° 72° 70° Figure 3 shows the length-frequency histograms of sea scallops within the Figure 4.-Station pattern and sea scallop distribution and abundance (bushels per IS-minute tow) on the Middle Atlantic Shelf. 7-16 August 1975. Solid lines indicate three sampled sections of Georges probable limits of distribution of small scallops, mostly the 1972 year class. Bank. A significant number of scallops ranged between 3.0 and 7.0 cm long; most represented the 1972 year class. consisting of sand and sand-gravel. als ranging from 3.0 to 8.0 centimeters Within the surveyed sections, the ap­ Scallops were distributed closer to long. and was offshore of the Vir­ proximate percentages of scallops be­ shore at the northern end than at the ginia-North Carolina border. tween 3.0 and 7.0 cm were: Northern southern end of the shelf. The south­ Small scallops that belonged mostly Edge and Northeast Peak, 28 percent; ernmost collection of scallops was to the 1972 year class were taken at half Southwest Part, 2 percent; and South taken off Oregon Inlet, N.C. (lat. the stations; their distribution is shown Channel, 50 percent. 35°53'N, long. 74°55'W). by solid lines in Figure 4. Small scal­ The abundance of sea scallops on the lops were distributed over nearly the Middle Atlantic Shelf Middle Atlantic Shelf is indicated in full width of the sampling area from Distribution and Abundance Figure 4. The largest collections were mid-Long Island to the mouth of Ches­ made south of Long Island and east of apeake Bay. In addition, they were also The distribution of sea scallops sur­ New Jersey where six stations had be­ found in two other discrete areas; one veyed on the Middle Atlantic Shelf is tween 1.0 and 2.0 bushels of scallops off the southeastern tip of Long Island shown in Figure 4. Scallops were taken per tow. The largest collection, 2.5 and another off Albemarle Sound, N. C. at 57 of the 99 stations, on bottoms bushels, consisted mostly of individu- Scallops were collected at depths that February /978 2/ {ItII ranged from 31 to 80 m (one scallop city ofolder year classes may lead to the 1 2 .. 5 e -~ was collected at 110m), mean depth for 1972 year class being overfished. ..r- --+---I.-,,,,,-,,-,,::=l scallops was about 55 m: Spawning Season i ,nc '"''' I Depth range Scallops 12 J N=t> '~7 I (m) (percent) The time of sea scallop spawning has 31·50 248 been infrequently documented.
Recommended publications
  • THE NAUTILUS [Vol
    2 2 THE NAUTILUS [Vol. 69 (1) separated from each other by five centimeters. The snail was expanded with its head oriented away from the clam. When placed on the sand, the clam showed no activity during the next 30 minutes after which observations were discontinued. All but the lower (anterior) end of the body of the clam was covered by an envelope of slime secreted by the foot of the snail. It seems clear that P. duplicatus capturesEnsis directus by approaching it below the surface of the substratum and by ir­ ritating the lower portion so that it retreats upward. The snail then coats the razor clam with an envelope of slime which ap­ pears to have anesthetic properties. Successful capture proba­ bly depends on the ability of the snail to maintain contact with its prey until anesthesia takes place. ON THE OCCURRENCE OF THE NUDIBRANCH ALDERIA MODESTA (LOVÉN, 1844) ON THE CENTRAL CALIFORNIAN COAST By CADET HAND and JOAN STEINBERG Department of Zoology, University of California, Berkeley Alderia modesta (Loven, 1844) has long been known from the coasts of northern Europe. It has been recorded from as far north as the Trondheim Fjord in Norway (Norman, 1893), south to Skibbereen in Ireland (Allman, 1845) and on the French coast (Gollien, 1929). Therefore, it has been of con­ siderable interest to us to find well-established populations of an Alderia in two localities on the central Californian coast. Through the kindness of Monsieur G. Van Put of the Royal Institute of Natural Sciences of Belgium in Brussels and Dr.
    [Show full text]
  • Exploring Options for an Olympic Coast Ocean Acidification Sentinel Site (Oases)
    Exploring Options for an Olympic Coast Ocean Acidification Sentinel Site (OASeS) Workshop Proceedings September 2016 Contents Background ..................................................................................................................................... 1 Olympic Coast ............................................................................................................................ 1 Ocean Acidification .................................................................................................................... 1 Ocean Acidification Sentinel Site (OASeS) Workshop Background ......................................... 2 Workshop Goals.......................................................................................................................... 3 Panel Discussion Summaries .......................................................................................................... 3 Science in National Marine Sanctuaries and OCNMS ............................................................... 3 i. i.Panelists: Steve Giddings, Liam Atrim, Scott Noakes, Lee Whitford Partners and Activities ................................................................................................................ 5 i. Panelists: Libby Jewett, Jan Newton, Richard Feely, Steve Fradkin, Paul McElhany, Joe Shumacker Education and Communication ................................................................................................... 7 i. Panelists: Laura Francis, Christopher Krembs, Jacqueline Laverdure, Angie
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Spisula Solidissima) Using a Spatially Northeastern Continental Shelf of the United States
    300 Abstract—The commercially valu- able Atlantic surfclam (Spisula so- Management strategy evaluation for the Atlantic lidissima) is harvested along the surfclam (Spisula solidissima) using a spatially northeastern continental shelf of the United States. Its range has con- explicit, vessel-based fisheries model tracted and shifted north, driven by warmer bottom water temperatures. 1 Declining landings per unit of effort Kelsey M. Kuykendall (contact author) (LPUE) in the Mid-Atlantic Bight Eric N. Powell1 (MAB) is one result. Declining stock John M. Klinck2 abundance and LPUE suggest that 1 overfishing may be occurring off Paula T. Moreno New Jersey. A management strategy Robert T. Leaf1 evaluation (MSE) for the Atlantic surfclam is implemented to evalu- Email address for contact author: [email protected] ate rotating closures to enhance At- lantic surfclam productivity and in- 1 Gulf Coast Research Laboratory crease fishery viability in the MAB. The University of Southern Mississippi Active agents of the MSE model 703 East Beach Drive are individual fishing vessels with Ocean Springs, Mississippi 39564 performance and quota constraints 2 Center for Coastal Physical Oceanography influenced by captains’ behavior Department of Ocean, Earth, and Atmospheric Sciences over a spatially varying population. 4111 Monarch Way, 3rd Floor Management alternatives include Old Dominion University 2 rules regarding closure locations Norfolk, Virginia 23529 and 3 rules regarding closure du- rations. Simulations showed that stock biomass increased, up to 17%, under most alternative strategies in relation to estimated stock biomass under present-day management, and The Atlantic surfclam (Spisula solid- ally not found where average bottom LPUE increased under most alterna- issima) is an economically valuable temperatures exceed 25°C (Cargnelli tive strategies, by up to 21%.
    [Show full text]
  • 8 Armed Bandits; a Closer Look at Cephalopods an Educator’S Guide to the Program
    8 Armed Bandits; A Closer Look at Cephalopods An Educator’s Guide to the Program Grades K-5 Program Description: This program explores the class of mollusk known as cephalopods. Cephalopods are the most intelligent group of mollusk and most of them lack a shell. The name cephalopod means “head-foot” and contains: octopus, squid, cuttlefish and nautilus. The goal of 8-armed bandits is to teach students the characteristics, defense mechanisms, and extreme intelligence of cephalopods. *Before your class visits the Oklahoma Aquarium* This guide contains information and activities for you to use both before and after your visit to the Oklahoma Aquarium. You may want to read stories about cephalopods and their abilities to the students, present information in class, or utilize some of the activities from this booklet. 1 Table of Contents 8 armed bandits abstract 3 Educator Information 4 Vocabulary 5 Internet resources and books 6 PASS/OK Science standards 7-8 Accompanying Activities Build Your Own squid (K-5) 9 How do Squid Defend Themselves? (K-5) 10 Octopus Arms (K-3) 11 Octopus Math (pre-K-K) 12 Camouflage (K-3) 13 Octopus Puppet (K-3) 14 Hidden animals (K-1) 15 Cephalopod color pages (3) (K-5) 16 Cephalopod Magic (4-5) 19 Nautilus (4-5) 20 2 8 Armed Bandits; A Closer Look at Cephalopods: Abstract Cephalopods are a class of mollusk that are highly intelligent and unlike most other mollusk, they generally lack a shell. There are 85,000 different species of mollusk; however cephalopods only contain octopi, squid, cuttlefish and nautilus.
    [Show full text]
  • Growth Increment Periodicity in the Shell of the Razor Clam Ensis
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences, 10, 4741–4750, 2013 Open Access www.biogeosciences.net/10/4741/2013/ Biogeosciences doi:10.5194/bg-10-4741-2013 Biogeosciences Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Climate Climate of the Past of the Past Discussions Growth increment periodicity in the shell of the razor clam Ensis Open Access Open Access directus using stable isotopes as a method to validateEarth age System Earth System Dynamics 1,2 1 1 1 Dynamics2,3 J. F. M. F. Cardoso , G. Nieuwland , R. Witbaard , H. W. van der Veer , and J. P. Machado Discussions 1NIOZ – Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg Texel, the Netherlands 2CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Open Access Open Access Bragas 289, 4050-123 Porto, Portugal Geoscientific Geoscientific 3ICBAS – Instituto de Cienciasˆ Biomedicas´ Abel Salazar, Laboratorio de Fisiologia Aplicada,Instrumentation Universidade do Porto, Instrumentation Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal Methods and Methods and Correspondence to: J. F. M. F. Cardoso ([email protected]) Data Systems Data Systems Discussions Open Access Received: 18 February 2013 – Published in Biogeosciences Discuss.: 6 March 2013 Open Access Geoscientific Revised: 31 May 2013 – Accepted: 8 June 2013 – Published: 15 July 2013 Geoscientific Model Development Model Development Discussions Abstract.
    [Show full text]
  • Rhode Island's Shellfish Heritage
    RHODE ISLAND’S SHELLFISH HERITAGE RHODE ISLAND’S SHELLFISH HERITAGE An Ecological History The shellfish in Narragansett Bay and Rhode Island’s salt ponds have pro- vided humans with sustenance for over 2,000 years. Over time, shellfi sh have gained cultural significance, with their harvest becoming a family tradition and their shells ofered as tokens of appreciation and represent- ed as works of art. This book delves into the history of Rhode Island’s iconic oysters, qua- hogs, and all the well-known and lesser-known species in between. It of ers the perspectives of those who catch, grow, and sell shellfi sh, as well as of those who produce wampum, sculpture, and books with shell- fi sh"—"particularly quahogs"—"as their medium or inspiration. Rhode Island’s Shellfish Heritage: An Ecological History, written by Sarah Schumann (herself a razor clam harvester), grew out of the 2014 R.I. Shell- fi sh Management Plan, which was the first such plan created for the state under the auspices of the R.I. Department of Environmental Management and the R.I. Coastal Resources Management Council. Special thanks go to members of the Shellfi sh Management Plan team who contributed to the development of this book: David Beutel of the Coastal Resources Manage- Wampum necklace by Allen Hazard ment Council, Dale Leavitt of Roger Williams University, and Jef Mercer PHOTO BY ACACIA JOHNSON of the Department of Environmental Management. Production of this book was sponsored by the Coastal Resources Center and Rhode Island Sea Grant at the University of Rhode Island Graduate School of Oceanography, and by the Coastal Institute at the University SCHUMANN of Rhode Island, with support from the Rhode Island Council for the Hu- manities, the Rhode Island Foundation, The Prospect Hill Foundation, BY SARAH SCHUMANN .
    [Show full text]
  • Identifikasi Gambar Hewan Moluska Dalam Media Cetak Dua Dimensi
    Jurnal Moluska Indonesia, April 2021 Vol 5(1):25 -33 ISSN : 2087-8532 Identifikasi Gambar Hewan Moluska Dalam Media Cetak Dua Dimensi (Identification of Molluscan Animal Image in Two-Dimensional Print Media) Nova Mujiono*, Alfiah, Riena Prihandini, Pramono Hery Santoso Pusat Penelitian Biologi LIPI, Cibinong, 16911, Indonesia. *Corresponding authors: [email protected], Telp: 021-8765056 Diterima: 7 Februari 2021 Revisi :16 Februari 2021 Disetujui: 14 Maret 2021 ABSTRACT Humans have known mollusks for a long time. The diverse and unique shell shapes are interesting to draw. The easiest medium to describe the shape of a mollusk is in two dimensions. This study aims to identify various images of mollusks in two-dimensional print media such as cloth, paper and plates. Based on the 10 sources of photos analyzed, 56 species of mollusks from 38 families were identified. The Gastropod class dominates with 45 species from 31 families, followed by Bivalves with 7 species from 5 families, then Cephalopods with 4 species from 2 families. Some of the problems found are the shape and proportion of images that different with specimens, some inverted or cropped images, different direction of rotation of the shells with specimens, and different colour patterns with specimens. Biological and distributional aspects of several families will be discussed briefly in this paper. Keywords : identification, mollusca, photo, species, two-dimension ABSTRAK Manusia telah mengenal hewan moluska sejak lama. Bentuk cangkangnya yang beraneka ragam dan unik membuatnya menarik untuk digambar. Media yang paling mudah untuk menggambarkan bentuk moluska ialah dalam bentuk dua dimensi. Penelitian ini bertujuan untuk mengidentifikasi bermacam gambar moluska dalam media cetak dua dimensi seperti kain, kertas, dan piring.
    [Show full text]
  • Molluscs: Bivalvia Laura A
    I Molluscs: Bivalvia Laura A. Brink The bivalves (also known as lamellibranchs or pelecypods) include such groups as the clams, mussels, scallops, and oysters. The class Bivalvia is one of the largest groups of invertebrates on the Pacific Northwest coast, with well over 150 species encompassing nine orders and 42 families (Table 1).Despite the fact that this class of mollusc is well represented in the Pacific Northwest, the larvae of only a few species have been identified and described in the scientific literature. The larvae of only 15 of the more common bivalves are described in this chapter. Six of these are introductions from the East Coast. There has been quite a bit of work aimed at rearing West Coast bivalve larvae in the lab, but this has lead to few larval descriptions. Reproduction and Development Most marine bivalves, like many marine invertebrates, are broadcast spawners (e.g., Crassostrea gigas, Macoma balthica, and Mya arenaria,); the males expel sperm into the seawater while females expel their eggs (Fig. 1).Fertilization of an egg by a sperm occurs within the water column. In some species, fertilization occurs within the female, with the zygotes then text continues on page 134 Fig. I. Generalized life cycle of marine bivalves (not to scale). 130 Identification Guide to Larval Marine Invertebrates ofthe Pacific Northwest Table 1. Species in the class Bivalvia from the Pacific Northwest (local species list from Kozloff, 1996). Species in bold indicate larvae described in this chapter. Order, Family Species Life References for Larval Descriptions History1 Nuculoida Nuculidae Nucula tenuis Acila castrensis FSP Strathmann, 1987; Zardus and Morse, 1998 Nuculanidae Nuculana harnata Nuculana rninuta Nuculana cellutita Yoldiidae Yoldia arnygdalea Yoldia scissurata Yoldia thraciaeforrnis Hutchings and Haedrich, 1984 Yoldia rnyalis Solemyoida Solemyidae Solemya reidi FSP Gustafson and Reid.
    [Show full text]
  • Growth of the Giant Pacific Octopus Dofleini Martini on the West Coast Of
    THESE A~IENNES'SUR MICROFICHE 1+ National L~braryof Canada B~bl~othQuenatlonale du ~a"nada Collecttons Development Branch D~rect~ondu developpement des collections Canadian Theses on Service des theses canadiennes , Microfiche Service sur microfiche Ottawa, Canada KIA ON4 NOTICE , AVlS The quality of this microfiche is heavily dependent La qualite de cette microfiche depend grandement de upon the quality of the original thesis submitted.for la qualite de la these soumise au microfilmage. Nous microfilming. Every effort has been made to ensure avons tout fait pour assurer une qualit6 superieure . the highest quality of reproduction possible." de reproduction. If pages are missing, contact the university which S'il 'manque des pages, veuillez communiquer granted the degree. avec I'universite qui a confere Is grade. Some pages may have indistinct print especially La qualite dlir;npression de =certaines pages ' peut .if the original pages were typed with* a poor typewriter laisser a desirer, surtout sj les pages originales ont et6 ribbon or if the university sent us a poor photocopy. dactylographi6es a I'aide d'un ruban use ou.si I'univer- site nous a fait parvenir une photocopie de mauvaise qualite. , > Previously copyrighted materials (journal articles, Les documents qui font deja I'objet d'un droit published tests, etc.) are not filmed. d'auteur (articles de revue, examens publies, etc.) ne sont pas microfilmes. c- Reproduction in full or in part of this film is gov- La reproduction, meme partielle, de ce microfilm erned by the Canadian Copyright Act, R.S.C. 1970, est soumise a la Loi canadienne sur le droit d'auteur, c.
    [Show full text]
  • Resuspension of Postlarval Soft-Shell Clams Mya Arenaria Through Disturbance by the Mud Snail Ilyanassa Obsoleta
    ----- ----------------------------------------------------------------------------------------- MARINE ECOLOGY PROGRESS SERIES Vol. 180: 223-232, 1999 Published May 3 Mar Ecol Prog Ser Resuspension of postlarval soft-shell clams Mya arenaria through disturbance by the mud snail Ilyanassa obsoleta Robert Dunn •, Lauren S. Mullineaux• *, Susan W. Mills Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA ABSTRACT: Transport and mortality of newly settled post larvae potentially have a large influence on the population dynamics and adult distributions of coastal benthic species, including the soft-shell clam Mya arenaria. Post-settlement transport typically occurs when boundary shear stresses are high enough to resuspend the surface sediments in which the small clams reside. The objective of the pre­ sent study was to examine the effect of disturbance by the mud snail Ilyanassa obsoleta on the hydro­ dynamic transport of recently settled NI. arenaria. Laboratory flume experiments showed that distur­ ·',, bance by activities of I. obsoleta caused suspension of small clams (1.8 and 2.3 mm) at boundary shear velocities (1.0 and 1.3 em s· 1) that were too slow to suspend undisturbed clams. In shear velocities high 1 enough to cause bulk sediment transport (1.4 and 2.0 ern s· ), more clams were suspended in the pres­ ence of snails than in their absence. Manipulative field experiments using cages to exclude snails demonstrated that abundances of juvenile lvl. arenaria (year-1 recruits) were lower in sediments where snails were present than where snails were absent. These results suggest that biological disturbance, such as that imposed by activities of mobile, benthic deposit feeders," may play an important role in postlarval transport and, eventually, in the adult distributions of infaunal bivalves.
    [Show full text]
  • (Crassostrea Ariakensis, Fugita 1913) and Pacific (C-Gigas, Thunberg 1793) Oysters from Laizhou Bay, China
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2006 Age And Growth Of Wild Suminoe (Crassostrea Ariakensis, Fugita 1913) And Pacific (C-Gigas, Thunberg 1793) Oysters From Laizhou Bay, China JM Harding Roger L. Mann Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Harding, JM and Mann, Roger L., "Age And Growth Of Wild Suminoe (Crassostrea Ariakensis, Fugita 1913) And Pacific (C-Gigas, Thunberg 1793) Oysters From Laizhou Bay, China" (2006). VIMS Articles. 451. https://scholarworks.wm.edu/vimsarticles/451 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 25, No. 1, 73–82, 2006. AGE AND GROWTH OF WILD SUMINOE (CRASSOSTREA ARIAKENSIS, FUGITA 1913) AND PACIFIC (C. GIGAS, THUNBERG 1793) OYSTERS FROM LAIZHOU BAY, CHINA JULIANA M. HARDING* AND ROGER MANN Department of Fisheries Science, Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Gloucester Point, Virginia 23062 ABSTRACT Shell height at age estimates from Suminoe (Crassostrea ariakensis) and Pacific (C. gigas) oysters from a natural oyster reef in Laizhou Bay, China were compared with shell height at age estimates from triploid C. ariakensis of known age from the Rappahannock River, Virginia. C. ariakensis and C. gigas reach shell heights in excess of 76 mm (3 inches) within 2 years after settlement regardless of the source location.
    [Show full text]