Haliotis Kamtschatkana) and Flat (Haliotis Walallensis) Abalones?

Total Page:16

File Type:pdf, Size:1020Kb

Haliotis Kamtschatkana) and Flat (Haliotis Walallensis) Abalones? BULLETIN OF MARINE SCIENCE, 81(2): 283–296, 2007 IS CLIMATE CHANGE CONTRIBUTING TO RANGE REDUCTIONS AND LOCALIZED EXTINCTIONS IN NORTHERN (HALIOTIS KAMTSCHATKANA) AND FLAT (HALIOTIS WALALLENSIS) ABALONES? Laura Rogers-Bennett ABSTRACT Abalone abundance surveys from the 1970s were repeated 30 yrs later follow- ing a period of increased sea surface temperatures along the Pacific coast of the United States. Northern abalone, Haliotis kamtschatkana (Jonas, 1845) once abun- dant enough to support commercial fishing in Washington and Canada, are now extremely rare in the southern portion of their range in southern and central Cali- fornia. They have also declined 10 fold in northern California in the absence of hu- man fishing pressure. In Washington, northern abalone are in decline and exhibit recruitment failure despite closure of the fishery. Flat abalone, Haliotis walallensis (Stearns, 1899) no longer occur in southern California, and in central California have declined from 32% to 8% of the total number of abalones, Haliotis spp., inside a marine reserve. The distribution of flat abalone appears to have contracted over time such that they are now only common in southern Oregon where they are sub- ject to a new commercial fishery. Given these range reductions, the long-term per- sistence of flat abalone and northern abalone (locally) is a concern in light of threats from ocean warming, sea otter predation, and the flat abalone fishery in Oregon. The likelihood of future ocean warming poses challenges for abalone restoration, suggesting that improved monitoring and protection will be critical, especially in the northern portions of their distributions. Range shifts towards the poles have been documented for a number of species in meta-analyses and these shifts are consistent with predictions of global warming (Walther et al., 2002; Parmesan and Yohe, 2003; Root et al., 2003). A growing num- ber of range shifts and contractions are documented from marine systems in which southern species replace northern species (Barry et al., 1995; Southward et al., 1995; Field et al., 2006). Northward shifts in species ranges (Zacherl et al., 2003) may not necessarily have negative impacts on abundance unless population shifts are unsuc- cessful due to biotic or abiotic factors limiting expansion. For example, black aba- lone, Haliotis cracherodii (Leach, 1814), populations could expand into the central California coast in response to oceanic warming, however, disease, sea otters, and poaching are acting synergistically to limit abundances in this region, north of Point Conception (Haaker et al., 1992; Raimondi et al., 2002; Harley and Rogers-Bennett, 2004). Concern is rising over the fate of abalone populations on the Pacific coast of the United States (see Transboundary Abalone Recovery Group, Vancouver, March 2007), sparking interest in the potential impacts of oceanic warming for restoration planning (Hobday and Tegner, 2002; Vilchis et al., 2005). Abalone populations have declined dramatically precipitating the closure of multiple abalone fisheries (Karpov et al., 2000; Rogers-Bennett et al., 2002), as well as the listing of pink, Haliotis corru- gata (Wood, 1828), green, Haliotis fulgens (Philippi, 1845), black, and northern, Hali- otis kamtschatkana (Jonas, 1845) abalone as species of concern <www.nmfs.noaa. Bulletin of Marine Science 283 © 2007 Rosenstiel School of Marine and Atmospheric Science of the University of Miami 284 BULLETIN OF MARINE SCIENCE, VOL. 81, NO. 2, 2007 gov/pr/species/concern/>, and white abalone, Haliotis sorenseni (Bartsch, 1940), as endangered (Federal Register 66: 103, June 2001). Recent work has focused on the po- tential impact of ocean warming on abalone populations (Tegner et al., 2001; Hobday and Tegner, 2002; Vilchis et al., 2005) and its implications for successful restoration. Determining the impacts of ocean warming is complicated by confounding factors such as fishing. One way to discern the impacts of ocean warming, as distinct from fishery influences, is to examine population trends in unfished species (Moser et al., 2000), such as flat abalone Haliotis walallensis (Stearns, 1898), and populations in- side marine reserves (Roberts and Hawkins, 1999). The distribution of the northern subspecies, Haliotis kamtschatkana kamtschat- kana (Jonas 1845), extends from southeast Alaska to Point Conception where the subspecies morphology converges with the southern threaded subspecies, Haliotis kamtschatkana assimilis, (Dall, 1878) which extends from Point Conception south into northern Baja California, Mexico (Geiger, 1999). Northern abalone and the for- mer threaded abalone were determined to be subspecies of H. kamtschatkana be- cause of little divergence between the two with respect to sperm lysin (Geiger, 1998). The threaded subspecies was taken in the commercial fishery (> 21,000 abalone) in southern California from 1971 to 1980 (Rogers-Bennett et al., 2002), but since then has remained scarce. All northern abalone fisheries are now closed along the Pacific coast including southeast Alaska (closed in 1995), British Columbia (closed in 1990), and Washington State (closed in 1994). Workshops have been convened to exam- ine prospects for rebuilding northern abalone stocks in British Columbia (Campbell, 2000) and Washington, (J. Gaydos and B. Peabody, SeaDoc Society, pers. comm.). Flat abalone, H. walallensis, have never been considered an abundant species (Mc- Millen and Phillips, 1974; Owen, 2006). The traditional range of this species is quite narrow, extending from Newport, Oregon to Baja California, Mexico, with the type specimen from Gualala, California (Geiger, 1999; Owen, 2006). Flat abalone were never targeted by fisheries until 2001 when a commercial fishery was opened in Or- egon [there is also a small recreational red abalone fishery in the state (S. Groth, Oregon Department of Fish and Wildlife, pers. comm.)]. Here, I examine northern and flat abalone along the Pacific coast of the United States, comparing recent data with historic records from 30 yrs ago to test whether there has been a shift in the southern range as would be predicted with ocean warm- ing. I focus on northern abalone which is a species of concern, has a broad geograph- ic distribution, and was once the basis of important commercial and recreational fisheries. Flat abalone has a narrow geographic distribution and has been unfished throughout its range (except recently in Oregon). The modern distribution of north- ern and flat abalone is assessed in relation to historic accounts of their distribution, abundances in marine reserves, and changes in water temperatures. Potential causes for reductions in range are discussed as are the implications of these range shifts for restoration. Methods Southern California.—In southern California, abalone populations are surveyed by the Kelp Forest Monitoring Program (KFMP), part of the Channel Islands National Parks Service. This program quantifies abalone density along transects once per year at multiple sites around the northern Channel Islands. Two band transects each 10 × 3 m are placed on ROGERS-BENNETT: ABALONE AND CLIMATE CHANGE 285 either side of a fixed 100 m line for a total search area of 60 m2. Detailed descriptions of their methods can be found elsewhere <www. nature.nps.gov>. Abalone numbers are also monitored annually within artificial habitats called Abalone Re- cruitment Modules (ARMs). Each module is composed of twenty ½ cinder blocks enclosed in a wire mesh cage stacked to leave an open core. The ½ cinder blocks are stacked in five layers of four bricks with a surface area of 5 m2 (see Davis, 1995). Once a year these “habitats” are disassembled and the numbers of juvenile and adult abalone inside are recorded. Between 80–100 of these habitats are sampled each year at three islands: Anacapa, Santa Cruz, and Santa Rosa Island. Central California.—In central California, we conducted abalone density estimates at the Hopkins State Marine Reserve (no fishing) in central California using the same methods as surveys in the 1970–1980s (Lowry and Pearse, 1973; Hines and Pearse, 1982). A fixed cable (270 m long) with meter demarcations still exists in the subtidal having remained since the earlier surveys. This cable allowed us to examine the same subtidal area (approximately 90 × 90 m) inside this small reserve as in the past. Dive teams started at positions 10 m apart start- ing at the 60 m cable mark and ending at the 150 m cable mark. Abalone were marked with yellow lumber crayon to prevent double counting. We estimate that our dive team searched approximately 800 m2 of crevice habitat during 15 hrs and 13 min of search time over two consecutive days each year. Density is often difficult to quantify within the range of sea otters, Enhydra lutris (Lin- naeus, 1758), in which abalone occupy cryptic habitats. In this study, abalone density was determined within crevice habitat (about 10% of the total area) as had been done previously (Hines and Pearse, 1982). Earlier surveys of flat abalone recorded their numbers as a propor- tion of the total number of abalone (flat and red abalone) rather then as density (m–2). Thus, we report our results using a similar metric to compare with historic records. Northern California.—California Department of Fish and Game divers conducted timed swim surveys searching for northern, flat, and red abalone in 1975 at popular abalone fishing sites in northern California. Included in this survey were sites at two State Parks: Van Damme in Mendocino County and Fort Ross in Sonoma County. During each survey, two-person dive teams conducted 20 min swims enumerating the species and size of the abalone they observed. Similarly, California Department of Fish and Game assessed subtidal benthic communities dur- ing a series of surveys funded by the Pacific Gas and Electric Company in preparation for a pro- posed nuclear power plant at Point Arena, Mendocino County (Gotshall et al., 1974). Subtidal surveys of abalone populations were included in the ecological surveys from 1971 and 1972. This survey used a combination of 30 × 2 m2 transects along with 30 m2 arcs.
Recommended publications
  • Petition to Protect the Pinto Abalone
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST THE PINTO ABALONE (HALIOTIS KAMTSCHATKANA) UNDER THE ENDANGERED SPECIES ACT Center for Biological Diversity August 1, 2013 NOTICE OF PETITION Penny Pritzker Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave, NW Washington, D.C. 20230 Email: [email protected] Samuel Rauch Assistant Administrator for Fisheries National Marine Fisheries Service 1315 East West Highway Silver Spring, MD 20910 Ph: (301) 427-8000 Email: [email protected] PETITIONER The Center for Biological Diversity PO Box 100599 Anchorage, AK 99510-0599 Ph: (907) 793-8691 Date: August 1, 2013 Kiersten Lippmann Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 533(e), and 50 C.F.R. § 424.14(a), the Center for Biological Diversity (“Petitioner”) hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list the pinto abalone (Haliotis kamtschatkana) as a threatened or endangered species and to designate critical habitat to ensure its survival and recovery. The Center for Biological Diversity (Center) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has nearly 475,000 members and online activists in Alaska, throughout the United States and internationally. The Center and its members are concerned with the conservation of endangered species and the effective implementation of the ESA.
    [Show full text]
  • Status of the Fisheries Report an Update Through 2008
    STATUS OF THE FISHERIES REPORT AN UPDATE THROUGH 2008 Photo credit: Edgar Roberts. Report to the California Fish and Game Commission as directed by the Marine Life Management Act of 1998 Prepared by California Department of Fish and Game Marine Region August 2010 Acknowledgements Many of the fishery reviews in this report are updates of the reviews contained in California’s Living Marine Resources: A Status Report published in 2001. California’s Living Marine Resources provides a complete review of California’s three major marine ecosystems (nearshore, offshore, and bays and estuaries) and all the important plants and marine animals that dwell there. This report, along with the Updates for 2003 and 2006, is available on the Department’s website. All the reviews in this report were contributed by California Department of Fish and Game biologists unless another affiliation is indicated. Author’s names and email addresses are provided with each review. The Editor would like to thank the contributors for their efforts. All the contributors endeavored to make their reviews as accurate and up-to-date as possible. Additionally, thanks go to the photographers whose photos are included in this report. Editor Traci Larinto Senior Marine Biologist Specialist California Department of Fish and Game [email protected] Status of the Fisheries Report 2008 ii Table of Contents 1 Coonstripe Shrimp, Pandalus danae .................................................................1-1 2 Kellet’s Whelk, Kelletia kelletii ...........................................................................2-1
    [Show full text]
  • Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
    Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone.
    [Show full text]
  • THE NAUTILUS [Vol
    2 2 THE NAUTILUS [Vol. 69 (1) separated from each other by five centimeters. The snail was expanded with its head oriented away from the clam. When placed on the sand, the clam showed no activity during the next 30 minutes after which observations were discontinued. All but the lower (anterior) end of the body of the clam was covered by an envelope of slime secreted by the foot of the snail. It seems clear that P. duplicatus capturesEnsis directus by approaching it below the surface of the substratum and by ir­ ritating the lower portion so that it retreats upward. The snail then coats the razor clam with an envelope of slime which ap­ pears to have anesthetic properties. Successful capture proba­ bly depends on the ability of the snail to maintain contact with its prey until anesthesia takes place. ON THE OCCURRENCE OF THE NUDIBRANCH ALDERIA MODESTA (LOVÉN, 1844) ON THE CENTRAL CALIFORNIAN COAST By CADET HAND and JOAN STEINBERG Department of Zoology, University of California, Berkeley Alderia modesta (Loven, 1844) has long been known from the coasts of northern Europe. It has been recorded from as far north as the Trondheim Fjord in Norway (Norman, 1893), south to Skibbereen in Ireland (Allman, 1845) and on the French coast (Gollien, 1929). Therefore, it has been of con­ siderable interest to us to find well-established populations of an Alderia in two localities on the central Californian coast. Through the kindness of Monsieur G. Van Put of the Royal Institute of Natural Sciences of Belgium in Brussels and Dr.
    [Show full text]
  • Exploring Options for an Olympic Coast Ocean Acidification Sentinel Site (Oases)
    Exploring Options for an Olympic Coast Ocean Acidification Sentinel Site (OASeS) Workshop Proceedings September 2016 Contents Background ..................................................................................................................................... 1 Olympic Coast ............................................................................................................................ 1 Ocean Acidification .................................................................................................................... 1 Ocean Acidification Sentinel Site (OASeS) Workshop Background ......................................... 2 Workshop Goals.......................................................................................................................... 3 Panel Discussion Summaries .......................................................................................................... 3 Science in National Marine Sanctuaries and OCNMS ............................................................... 3 i. i.Panelists: Steve Giddings, Liam Atrim, Scott Noakes, Lee Whitford Partners and Activities ................................................................................................................ 5 i. Panelists: Libby Jewett, Jan Newton, Richard Feely, Steve Fradkin, Paul McElhany, Joe Shumacker Education and Communication ................................................................................................... 7 i. Panelists: Laura Francis, Christopher Krembs, Jacqueline Laverdure, Angie
    [Show full text]
  • Sea Ranching Trials for Commercial Production of Greenlip (Haliotis Laevigata) Abalone in Western Australia
    1 Sea ranching trials for commercial production of greenlip (Haliotis laevigata) abalone in Western Australia An outline of results from trials conducted by Ocean Grown Abalone Pty Ltd April 2013 Roy Melville-Smith1, Brad Adams2, Nicola J. Wilson3 & Louis Caccetta3 1Curtin University Department of Environment and Agriculture GPO Box U1987, Perth WA6845 2Ocean Grown Abalone Pty Ltd PO Box 231, Augusta WA6290 3Curtin University Department of Mathematics and Statistics GPO Box U1987, Perth WA6845 2 Table of Contents Abstract ............................................................................................................................................... 4 Acknowledgements ............................................................................................................................. 5 1 Introduction .................................................................................................................................... 6 2 Methods .......................................................................................................................................... 7 2.1 Seed stock production ................................................................................................................. 7 2.2 Transport of seed stock ................................................................................................................ 7 2.3 The study site ............................................................................................................................... 8 2.4 Habitat
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Status Review of the Pinto Abalone - Decision
    Status Review of the Pinto Abalone - Decision TABLE OF CONTENTS Page Summary Sheet ............................................................................................................. 1 of 42 CR-102 ......................................................................................................................... 3 of 42 WAC 220-330-090 Crawfish, ((abalone,)) sea urchins, sea cucumbers, goose barnacles—Areas and seasons, personal-use fishery ........................................ 6 of 42 WAC 220-320-010 Shellfish—Classification .................................................................. 7 of 42 WAC 220-610-010 Wildlife classified as endangered species ....................................... 9 of 42 Status Report for the Pinto Abalone in Washington .................................................... 10 of 42 Summary Sheet Meeting dates: May 31, 2019 Agenda item: Status Review of the Pinto Abalone (Decision) Presenter(s): Chris Eardley, Puget Sound Shellfish Policy Coordinator Henry Carson, Fish & Wildlife Research Scientist Background summary: Pinto abalone are iconic marine snails prized as food and for their beautiful shells. Initially a state recreational fishery started in 1959; the pinto abalone fishery closed in 1994 due to signs of overharvest. Populations have continued to decline since the closure, most likely due to illegal harvest and densities too low for reproduction to occur. Populations at monitoring sites declined 97% from 1992 – 2017. These ten sites originally held 359 individuals and now hold 12. The average size of the remnant individuals continues to increase and wild juveniles have not been sighted in ten years, indicating an aging population with little reproduction in the wild. The species is under active restoration by the department and its partners to prevent local extinction. Since 2009 we have placed over 15,000 hatchery-raised juvenile abalone on sites in the San Juan Islands. Federal listing under the Endangered Species Act (ESA) was evaluated in 2014 but retained the “species of concern” designation only.
    [Show full text]
  • Growth-Related Gene Expression in Haliotis Midae
    GROWTH‐RELATED GENE EXPRESSION IN HALIOTIS MIDAE Mathilde van der Merwe Dissertation presented for the degree of Doctor of Philosophy (Genetics) at Stellenbosch University Promoter: Dr Rouvay Roodt‐Wilding Co‐promoters: Dr Stéphanie Auzoux‐Bordenave and Dr Carola Niesler December 2010 Declaration By submitting this dissertation, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 09/11/2010 Copyright © 2010 Stellenbosch University All rights reserved I Acknowledgements I would like to express my sincere gratitude and appreciation to the following persons for their contribution towards the successful completion of this study: Dr Rouvay Roodt‐Wilding for her continued encouragement, careful attention to detail and excellent facilitation throughout the past years; Dr Stéphanie Auzoux‐Bordenave for valuable lessons in abalone cell culture and suggestions during completion of the manuscript; Dr Carola Niesler for setting an example and providing guidance that already started preparing me for a PhD several years ago; Dr Paolo Franchini for his patience and greatly valued assistance with bioinformatics; Dr Aletta van der Merwe and my fellow lab‐colleagues for their technical and moral support; My dear husband Willem for his love, support and enthusiasm, for sitting with me during late nights in the lab and for making me hundreds of cups of tea; My parents for their love and encouragement and for instilling the determination in me to complete my studies; All my family and friends for their sincere interest.
    [Show full text]
  • The South African Commercial Abalone Haliotis Midae Fishery Began
    S. Afr. J. mar. Sci. 22: 33– 42 2000 33 TOWARDS ADAPTIVE APPROACHES TO MANAGEMENT OF THE SOUTH AFRICAN ABALONE HALIOTIS MIDAE FISHERY C. M. DICHMONT*, D. S. BUTTERWORTH† and K. L. COCHRANE‡ The South African abalone Haliotis midae resource is widely perceived as being under threat of over- exploitation as a result of increased poaching. In this paper, reservations are expressed about using catch per unit effort as the sole index of abundance when assessing this fishery, particularly because of the highly aggregatory behaviour of the species. A fishery-independent survey has been initiated and is designed to provide relative indices of abundance with CVs of about 25% in most of the zones for which Total Allowable Catchs (TACs) are set annually for this fishery. However, it will take several years before this relative index matures to a time-series long enough to provide a usable basis for management. Through a series of simple simulation models, it is shown that calibration of the survey to provide values of biomass in absolute terms would greatly enhance the value of the dataset. The models show that, if sufficient precision (CV 50% or less) could be achieved in such a calibration exercise, the potential for management benefit is improved substantially, even when using a relatively simple management procedure to set TACs. This improvement results from an enhanced ability to detect resource declines or increases at an early stage, as well as from decreasing the time period until the survey index becomes useful. Furthermore, the paper demonstrates that basic modelling techniques could usefully indicate which forms of adaptive management experiments would improve ability to manage the resource, mainly through estimation of the level of precision that would be required from those experiments.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Sea Scallop Resources Off the Northeastern U.S. Coast, 1975
    MFR PAPER 1283 Sea Scallop Resources off the Northeastern U.S. Coast, 1975 CLYDE L. MacKENZIE, Jr, ARTHUR S. MERRILL, and FREDRIC M. SERCHUK INTRODUCTION tion distribution, length and age com­ scallops on Georges Bank and the Mid­ position, and growth rates have been dle Atlantic Shelf. The sea scallop, Placopecten magel­ monitored. The St. Andrews Biological MATERIALS AND METHODS lanicus (Gmelin), is one of the com­ Station, New Brunswick, Canada, has mercial mollusks off the Atlantic coast also surveyed sea scallops on Georges Two sea scallop surveys on the RV of the United States and Canada. It is Bank. (Caddy, 1975; pers. commun.). Albatross IV extended from Georges harvested over its entire range, which An early survey of sea scallops on the Bank southward to Cape Hatteras in extends from the Gulf of St. Lawrence Middle Atlantic Shelf was made by the 1975. A standard lO-foot (3.05-m) sea (Posgay, 1957) to south-southeast of U.S. fisheries schooner Grampus in scallop dredge with a bag of 2-inch Cape Hatteras, N. C. (Porter, 1974). 1913 (Anonymous, 1914); a later one (5.08-cm) rings was used. Tows were Historically, the largest harvests by by the RV Delaware in 1960 (Merrill, of 15-minute duration at 6.3 km/hour U.S. fishermen have been from 1962). (3.5 knots). Scallop numbers, condi­ Georges Bank with smaller harvests The objectives of the 1975 surveys tion of the gonads, and shell lengths from the Gulf of Maine, Cape Cod Bay, were to make observations on the dis­ were recorded.
    [Show full text]