Der Mathematiker Emanuel Lasker

Total Page:16

File Type:pdf, Size:1020Kb

Der Mathematiker Emanuel Lasker joachim rosenthal der mathematiker emanuel lasker (Buchauszug) Kapitel 9 aus „Emanuel Lasker: Denker, Weltenbürger, Schachweltmeister“, hrsg. von Richard Forster, Stefan Hansen und Michael Negele. Exzelsior Verlag, Berlin 2009. Copyright © 2009 Autoren, Herausgeber und Verlag Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Emanuel Lasker: Denker, Weltenbürger, Schachweltmeister Herausgegeben von Richard Forster, Stefan Hansen und Michael Negele im Exzelsior Verlag, Berlin, im Auftrag der Emanuel Lasker Gesellschaft. 2009. XVI + 1079 S., mit über 500 Abb., 1600 Diagrammen und 700 Partien. Gedruckt auf säurefreiem und alterungs- beständigem Papier. Großformat, in Leinen gebunden mit Prägedruck. Mit Beiträgen von Wolfgang Angerstein, Jesús Bayolo Gonzalez, Ralf Binnewirtz, John Donaldson, Jürgen Fleck, Tony Gillam, Bernd Gräfrath, John Hilbert, Robert Hübner, Peter de Jong, Karl Kadletz, Wolfgang Kamm, Viktor Kortschnoi, Thomas Lemanczyk, Isaak Linder, Wladimir Linder, Tomasz Lissowski, Roberto Mayor Gutiérrez, Egbert Meissenburg, Michael Negele, Susanna Poldauf, Toni Preziuso, Joachim Rosenthal, Raj Tischbierek, Robert van de Velde, Hans-Christian Wohlfarth und einer Einleitung von Paul Werner Wagner. Verlag und Vertrieb: Exzelsior Verlag, Leuschnerdamm 31, D-10999 Berlin Telefon (0 30) 61 07 62 85, Telefax (0 30) 61 07 62 87 Email: [email protected] Internet: www.zeitschriftschach.de ISBN 978-3-935800-05-1 Konzeption und Satz: Art & Satz · Ulrich Dirr, München Internet: www.art-satz.de Satzherstellung · Web-Design · Grafik & Bildbearbeitung · Schrift & Veröffentlichungen m m joachim rosenthal der mathematiker emanuel lasker einleitung Karten- und zum Brettspiel behandeln schließlich mathema- tische Fragestellungen in der Spieltheorie3 –rund15Jahrevor Unter den Schachspielern von Weltruhm war Emanuel Las- dem klassischen Werk von Morgenstern und von Neumann,4 ker ohne Zweifel der bedeutendste Mathematiker. Er hat et- das allgemein als Ausgangspunkt der mathematischen Spiel- wa ein Dutzend wissenschaftliche Artikel publiziert, und ein theorie gilt. wichtiger Satz der höheren Algebra trägt heute seinen Na- Lasker, Mitglied der American Mathematical Society (ab men. 1906) und der Kant-Gesellschaft (ab 1913),5 stand über die Laskers mathematische Begabung hatte sich schon in sei- Jahre in brieflichem Kontakt mit verschiedenen führenden ner Kindheit gezeigt,1 undimGymnasiuminLandsbergan Mathematikern seiner Zeit. Mit der Familie des jung verstor- der Warthe wählte er Mathematik als ein Schwerpunktfach. benen Holländers Pierre Joseph Henry Baudet (1891–1921) Die Aufgaben seiner Abiturprüfung im März 1888 machen verband ihn eine enge Freundschaft.6 Und Edmund Landau deutlich, dass Lasker sich schon als Gymnasiast gute mathe- (1877–1938), Mathematikprofessor in Göttingen, teilte mit matische Kenntnisse erworben haben musste: Lasker und Baudet nicht nur das Interesse für Schach, son- 1. In eine Kugel den größten, um sie den kleinsten Kegel zu dern auch für Go und Laska;7 ein Gratulationsschreiben zu legen. Laskers 60. Geburtstag zeugt vom freundschaftlichen Kon- 2. Zu einer Ellipse und einer konzentrischen Hyperbel von takt der beiden. derselben Achsenlänge die gemeinsamen Tangenten fin- David Hilbert (1862–1943), Adolf Hurwitz (1859–1919) und den. Otto Toeplitz (1881–1940) waren weitere bekannte Mathema- 3. Ein Dreieck zu konstruieren und trigonometrisch zu be- tiker, die Lasker offenbar zu seinem Bekanntenkreis zählte.8 rechnen aus der Grundseite c = 273, der zugehörigen Hö- he h = 156, und der Differenz der beiden anderen Seiten a − b = d = 91. 4. Die zwei Brüche 7x2 + 7x − 176 5x3 − 11x2 + 5x + 4 1. Vgl. Hannak, Lasker,S.15 und 3 − 2 + + ( − )4 2. WSZ, September/Oktober 1908, S. 278. Zu Laskers Abitur vgl. ferner x 9x 6x 56 x 1 S. 11–14 in diesem Band. 3. Lasker, Kartenspiel, S. 23–32, und Lasker, Brettspiele, S. 170–203 in Partialbrüche zu zerlegen. 4. von Neumann/Morgenstern, TheoryofGames(1944); vgl. aber auch von Neumann, Theorie der Gesellschaftsspiele (1928), ein Beitrag, den Lasker mit Sicherheit zur Kenntnis genommen hatte. Offensichtlich sind dies keine leichten Abituraufgaben. Las- 5. Science, Bd. 24, 1906, S. 654 und Dreyer/Sieg, Lasker,S.30 ker benötigte nur zwei der zur Verfügung gestellten fünf 6. Vgl. S. 107–109 in diesem Band. Zum Mathematiker Baudet siehe auch Stunden und löste die Prüfung mit Bravour. Sein Mathema- Soifer, The Mathematical Coloring Book, S. 320–346 (speziell S. 338–340 und 345 mit Bezug auf Lasker). tiklehrer zeigte sich ebenso verblüfft über Laskers Schnellig- 7. In einem Brief an seine Frau Martha vom März 1912 berichtet Lasker keit wie seine Mitschüler.2 von seinem Besuch bei Landau in Göttingen, von ihrem Go-Spiel und Noch im selben Frühling 1888 nahm Lasker in Berlin das seiner Vorführung des Laska-Spieles. Laskers Meinung zu Landau als Studium der Mathematik auf. Extensive Reisen und eine aus- Mathematiker ist bemerkenswert: »(…) und wir haben eine große Menge Mathematik gesprochen. Es war mir sehr interessant, seine Ansichten zu giebige Schachtätigkeit führten immer wieder zu Unterbre- hören. Nur ist er ein Spezialist, weiß fast gar nichts als Theorie der Prim- chungen. Nach Stationen in Göttingen und Heidelberg ge- zahlen. Trotz der Riesen-Bibliothek. Dabei arbeitet er viel und intelligent, lang ihm schließlich in Erlangen 1900 mit der Promotion ein aber jedenfalls beschränkt sich sein Interesse auf die eine Sache und er ist berufsqualifizierender Abschluss. nun schon zu einseitig geworden.« (Quelle: Autographen-Sammlung der Cleveland Public Library, Ohio). Vgl. auch S. 325. Lasker war ein produktiver und vielseitiger Mathematiker. 8. Brief an Otto Toeplitz, 27. August 1911 (Kramer, Letters of Emanuel Seine Hauptarbeit Zur Theorie der Moduln und Ideale (1905) Lasker, Nr. 134), darin auch Erwähnung von Hilbert; ebenso im Brief an gehört ins Gebiet der Algebra, doch daneben hat er auch Martha Lasker aus Lugano, 5. April 1916 (Kramer, Letters of Emanuel mehrere Arbeiten über geometrische Fragestellungen publi- Lasker, Nr. 192), worin neben Hilbert auch Hurwitz erwähnt wird. Ferner: Brief von Adolf Hurwitz an Emanuel Lasker aus Zürich, 1. Mai 1904 ziert, und seine Dissertation ist der Analysis zuzuordnen. (Archiv Jurgen Stigter, Amsterdam). Zu diesen und anderen jüdischen Seine in den Jahren 1929 und 1931 publizierten Werke zum Mathematikern vgl. auch Bergmann/Epple, Jüdische Mathematiker (2009). 213 m m Art & Satz • Ulrich Dirr Seite »213« 2 von 20 Forster/Hansen/Negele, Emanuel Lasker Rosenthal.tex Rev.2.7, 18.10.2009 18:37:47+02 [22.10.2009 15:18] m m 214 kapitel 9 joachim rosenthal: der mathematiker emanuel lasker Lasker hielt als »Alter Herr« dem Mathematischen Verein der Universität Berlin die Treue. Der hier angekündigte Vortrag wurde 1915 unter dem Titel »Ueber das mathematisch Schöne« in den Mathematisch-Naturwissenschaftlichen Blättern veröf- fentlicht. Dabei stellte sich ihm auch wiederholt die Frage nach ei- ner eigenen akademischen Karriere als Mathematiker. Wohl hatte er 1902 eine akademische Anstellung in Manchester, doch Versuche in Missouri (1903) und Pittsburgh (1904) so- wie weitere Anläufe in den dreißiger Jahren blieben erfolglos. Edmund G.H. Landau, 1901 an der Berliner Universität habili- Seine akademischen Leistungen, besonders seine Disser- tiert, kannte den neun Jahre älteren Lasker sicherlich schon tation und seine Arbeit zu den Moduln und Idealen von aus dessen Berliner Jahren. 1909 wurde Landau in Göttingen 1905, wären sicherlich Grundlage genug gewesen, ihm nach Nachfolger des früh verstorbenen Hermann Minkowski. Im 1905 eine Professur an einer guten Universität anzubieten. In Herbst 1933 musste er unter dem politischen Druck der Nazis Deutschland fehlte ihm allerdings die Habilitation, während emeritieren. in England und den Vereinigten Staaten viele akademische Stellen primär lectureships waren, also Stellen, welche mit ei- Was halte ich von Emanuel Lasker? ner großen Lehrbelastung und mit wenig Zeit zum Forschen Gratulationsschreiben von Edmund Landau zum 60. Ge- und Reisen einhergingen, was für Lasker kaum attraktiv war. burtstag Umgekehrt war sein mathematischer Leistungsausweis wohl zu wenig ausgeprägt, um sich erfolgreich auf eine der weni- Bei Lasker liegt einer der seltenen Fälle in der Geschich- gen Stellen an den amerikanischen Spitzen-Universitäten zu te des Geistes vor, dass ein Mann in mehr als einem bewerben, was gewiss schon damals sehr attraktiv gewesen Wissensgebiete Grosses, Unvergängliches geschaffen hat. wäre. Emanuel Lasker hat im Schach Grösstes geleistet, ich Im Folgenden wird Laskers Werdegang als Mathemati- bin stolz darauf, die Entwicklung des Weltmeisters von ker etwas näher nachgezeichnet und der Stellenwert seiner seinem ersten Aufstiege an miterlebt zu haben. Und in Arbeiten erklärt. Dabei soll besonders das Lasker-Noether- der Mathematik hat er in wenigen Abhandlungen Be- Theorem wegen seiner großen Bedeutung auch auf techni- deutendes geliefert. Wahrscheinlich wird ihm von den scher Ebene näher skizziert werden, um so einem breiteren Vertretern anderer Wissenschaften, in denen ich Laie Publikum zu erlauben, seinen Inhalt und seine Wichtigkeit bin, ähnliches Lob gespendet werden. nachzuvollziehen und zu schätzen.9 Göttingen, 7.11.28 Quelle: Lasker Scrapbooks, Cleveland Public Library, 9. Zur Würdigung Laskers als Mathematiker siehe auch Thesing, Zum mathematischen Werk von Emanuel Lasker (1999); M. Lang, »Laskers Ohio. ›Ideale‹ und die Fundierung der modernen Algebra« in: Dreyer/Sieg, Las- ker, S. 93–111, und
Recommended publications
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Emmy Noether, Greatest Woman Mathematician Clark Kimberling
    Emmy Noether, Greatest Woman Mathematician Clark Kimberling Mathematics Teacher, March 1982, Volume 84, Number 3, pp. 246–249. Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). With more than 100,000 members, NCTM is the largest organization dedicated to the improvement of mathematics education and to the needs of teachers of mathematics. Founded in 1920 as a not-for-profit professional and educational association, NCTM has opened doors to vast sources of publications, products, and services to help teachers do a better job in the classroom. For more information on membership in the NCTM, call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright March 1982 by the National Council of Teachers of Mathematics. All rights reserved. mmy Noether was born over one hundred years ago in the German university town of Erlangen, where her father, Max Noether, was a professor of Emathematics. At that time it was very unusual for a woman to seek a university education. In fact, a leading historian of the day wrote that talk of “surrendering our universities to the invasion of women . is a shameful display of moral weakness.”1 At the University of Erlangen, the Academic Senate in 1898 declared that the admission of women students would “overthrow all academic order.”2 In spite of all this, Emmy Noether was able to attend lectures at Erlangen in 1900 and to matriculate there officially in 1904.
    [Show full text]
  • Notices of the American Mathematical Society ABCD Springer.Com
    ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook Collection of the American Mathematical Society August 2009 Volume 56, Number 7 Guido Castelnuovo and Francesco Severi: NEW NEW NEW Two Personalities, Two The objective of this textbook is the Blackjack is among the most popular This second edition of Alexander Soifer’s Letters construction, analysis, and interpreta- casino table games, one where astute How Does One Cut a Triangle? tion of mathematical models to help us choices of playing strategy can create demonstrates how different areas of page 800 understand the world we live in. an advantage for the player. Risk and mathematics can be juxtaposed in the Students and researchers interested in Reward analyzes the game in depth, solution of a given problem. The author mathematical modelling in math- pinpointing not just its optimal employs geometry, algebra, trigono- ematics, physics, engineering and the strategies but also its financial metry, linear algebra, and rings to The Dixmier–Douady applied sciences will find this text useful. performance, in terms of both expected develop a miniature model of cash flow and associated risk. mathematical research. Invariant for Dummies 2009. Approx. 480 p. (Texts in Applied Mathematics, Vol. 56) Hardcover 2009. Approx. 140 p. 23 illus. Hardcover 2nd ed. 2009. XXX, 174 p. 80 illus. Softcover page 809 ISBN 978-0-387-87749-5 7 $69.95 ISBN 978-1-4419-0252-8 7 $49.95 ISBN 978-0-387-74650-0 7 approx. $24.95 For access check with your librarian Waco Meeting page 879 A Primer on Scientific Data Mining in Agriculture Explorations in Monte Programming with Python A.
    [Show full text]
  • Wolf Barth (1942--2016)
    Wolf Barth (1942{2016) Thomas Bauer, Klaus Hulek, Slawomir Rams, Alessandra Sarti, Tomasz Szemberg 1. Life 1.1. Youth Wolf Paul Barth was born on 20th October 1942 in Wernigerode, a small town in the Harz mountains. This is where his family, originally living in Nuremberg, had sought refuge from the bombing raids. In 1943 the family moved to Simmelsdorf, which is close to Nuremberg, but less vulnerable to attacks. In 1945 Barth's brother Hannes was born. The family, the father was a town employee, then moved back to Nuremberg and Wolf Barth's home was close to the famous Nuremberg castle { his playgrounds were the ruins of Nuremberg. In 1961 Wolf Barth successfully completed the Hans Sachs Gymnasium in Nuremberg. He was an excellent student (except in sports), and he then chose to study mathemat- ics and physics at the nearby Universit¨atErlangen, officially called Friedrich-Alexander Universit¨atErlangen-N¨urnberg. 1.2. Studies and early academic career As it was the standard at the time, Wolf Barth enroled for the Staatsexamen, the German high school teacher's examination. At this time, Reinhold Remmert was a professor of mathematics in Erlangen and Wolf Barth soon felt attracted to this area of mathematics. So, when Remmert moved to G¨ottingenin 1963, Barth went with him. G¨ottingen had at that time started to recover to some extent after its losses in the Nazi period and Hans Grauert was one on the leading figures who attracted many talented mathematicians. And indeed, it was Grauert, who became Barth's second academic teacher and a figure who influenced his mathematical thinking greatly.
    [Show full text]
  • Startling Simplicity
    Startling simplicity P (6) iδui = δL − ( !) d P 1 @L 2 @L (1) k @L (k−1) − dx 1 (1) δui + 1 (2) δui + ··· + 1 (k) δui @ui @ui @ui ( !) d2 P 2 @L 3 @L (1) k @L (k−2) + dx2 2 (2) δui + 2 (3) δui + ··· + 2 (k) δui @ui @ui @ui k dk P k @L ··· + (−1) dxk k (k) δui : @ui On its face, an equation Euler or Lagrange could have written. Direct consequence of additivity, chain rule, and integration by parts. In several independent variables those lines become a sum: @A @A Div(A) = 1 + ··· + n : @x1 @xn Noether’s Aj are not functions. They are differential operators. d The last three lines are a derivative dx . Direct consequence of additivity, chain rule, and integration by parts. In several independent variables those lines become a sum: @A @A Div(A) = 1 + ··· + n : @x1 @xn Noether’s Aj are not functions. They are differential operators. d The last three lines are a derivative dx . On its face, an equation Euler or Lagrange could have written. In several independent variables those lines become a sum: @A @A Div(A) = 1 + ··· + n : @x1 @xn Noether’s Aj are not functions. They are differential operators. d The last three lines are a derivative dx . On its face, an equation Euler or Lagrange could have written. Direct consequence of additivity, chain rule, and integration by parts. Noether’s Aj are not functions. They are differential operators. d The last three lines are a derivative dx . On its face, an equation Euler or Lagrange could have written.
    [Show full text]
  • On Resolving Singularities of Plane Curves Via a Theorem Attributed to Clebsch
    On Resolving Singularities of Plane Curves via a Theorem attributed to Clebsch David E. Rowe Mainz University Abstract: This paper discusses a central theorem in birational geometry first proved by Eugenio Bertini in 1891. J.L. Coolidge described the main ideas behind Bertini's proof, but he attributed the theorem to Clebsch. He did so owing to a short note that Felix Klein appended to the republication of Bertini's article in 1894. The precise circumstances that led to Klein's inter- vention can be easily reconstructed from letters Klein exchanged with Max Noether, who was then completing work on the lengthy report he and Alexan- der Brill published on the history of algebraic functions [Brill/Noether 1894]. This correspondence sheds new light on Noether's deep concerns about the importance of this report in substantiating his own priority rights and larger intellectual legacy. MSCCode: 14-03, 01A55, 01A60 Key words: algebraic curves; birational geometry; resolution of singularities arXiv:1912.02489v1 [math.AG] 5 Dec 2019 1. Introduction Julian Lowell Coolidge was a great expert on classical algebraic geometry [Struik 1955]. After studying under Corrado Segre in Turin, he went on to take his doctorate under Eduard Study in Bonn. As a mathematician, Coolidge excelled in writing books, some of them familiar to historians of geometry, others less so. Among the latter, his Treatise on Algebraic Plane Curves [Coolidge 1931] is easily overlooked. Certainly its style and contents appear very old-fashioned today, especially when set alongside a text like [Brieskorn/Kn¨orrer1986], despite obvious similarities in the subject matter.
    [Show full text]
  • Amalie (Emmy) Noether (1882 - 1935)
    Amalie (Emmy) Noether (1882 - 1935) Mairi Sakellariadou King’s College London Emmy Noether was born in Erlangen, Germany on March 23, 1882 She was named Amalie, but always called "Emmy" 2 Emmy Noether 10th February 2016 Zakopane Mairi Sakellariadou The family The father: Max Noether (1844 Mannheim– 1921 Erlangen) From a Jewish family of wealthy wholesale hardware dealers. At 14, Max contracted polio and was afflicted by its effects for the rest of his life. Through self-study, he learned advanced mathematics and entered the University of Heidelberg in 1865. He moved to the University of Erlagen in 1888. While there, he helped to found the field of algebraic geometry. In 1880 he married Ida Amalia Kaufmann, the daughter of another wealthy Jewish merchant family. Two years later they had their first child, named Amalia (“ Emmy “) after her mother. 3 Emmy Noether 10th February 2016 Zakopane Mairi Sakellariadou The family The mother: Ida Amalia Kaufmann (1852 Koln – 1951 Erlagen) From a wealthy Jewish merchant family. Ida had a brother who was a professor at the University of Berlin. In 1880 she married Max Noether ; they had four children. Ida was a skilled pianist. 4 Emmy Noether 10th February 2016 Zakopane Mairi Sakellariadou The family . Emmy 1882 – 1935 Professor of Mathematics in Erlagen, Gottingen, and Bryn Mawr (USA) . Alfred 1883 – 1918 Chemist . Fritz 1884 – 1937 Professor of Mathematics in Breslavia (Germany) and in Tomsk (Russia) . Gustav Robert 1889 -- 1928 5 Emmy Noether 10th February 2016 Zakopane Mairi Sakellariadou The family a bit before the first world war 6 Emmy Noether 10th February 2016 Zakopane Mairi Sakellariadou The Erlagen period (1882 – 1915) Emmy's childhood was unexceptional, going to school, learning domestic skills, and taking piano lessons.
    [Show full text]
  • Borsuk-Ulam Theorem and Hilbert's Nullstellensatz
    Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Borsuk-Ulam Theorem and Hilbert’s Dilip P. Patil Nullstellensatz § 1 Borsuk-Ulam — and vice versa Theorem §2 Borsuk’s Nullstellensatz and its Dilip P. Patil Equivalents §3 2-Fields Department of Mathematics §4 Dimension Indian Institute of Science, Bangalore and Multiplicity §5 Projective 1 Nullstellensatz Bhaskaracharya Pratishthana , Pune §6 Analogs of July 22, 2018 HNS to 2fields 1On the occasion of Birthday of Late Professor Shreeram S. Abhyankar (1930 – 2012), Founder Director, Bhaskaracharya Pratishthana, Pune. Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Shreeram Shankar Abhayankar (22 July, 1930 – 02 Nov, 2012) Founder Director Bhaskaracharya Pratishthana, Pune. Late Professor Shreeram Shankar Abhayankar Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Founder Director Bhaskaracharya Pratishthana, Pune. Late Professor Shreeram Shankar Abhayankar Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension Shreeram Shankar Abhayankar (22 July, 1930 – 02 Nov, 2012) and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Late Professor Shreeram Shankar Abhayankar Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension Shreeram Shankar Abhayankar (22 July, 1930 – 02 Nov, 2012) and Founder Director Multiplicity §5 Projective Bhaskaracharya Pratishthana, Pune.
    [Show full text]
  • Notices of the American Mathematical Society ABCD Springer.Com
    ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook Collection of the American Mathematical Society September 2009 Volume 56, Number 8 Bôcher, Osgood, ND and the Ascendance NEW NEW 2 EDITION EDITION of American Mathematics forms bridges between From the reviews of the first edition The theory of elliptic curves is Mathematics at knowledge, tradition, and contemporary 7 Chorin and Hald provide excellent distinguished by the diversity of the Harvard life. The continuous development and explanations with considerable insight methods used in its study. This book growth of its many branches permeates and deep mathematical understanding. treats the arithmetic theory of elliptic page 916 all aspects of applied science and 7 SIAM Review curves in its modern formulation, technology, and so has a vital impact on through the use of basic algebraic our society. The book will focus on these 2nd ed. 2009. X, 162 p. 7 illus. number theory and algebraic geometry. aspects and will benefit from the (Surveys and Tutorials in the Applied contribution of world-famous scientists. Mathematical Sciences) Softcover 2nd ed. 2009. XVIII, 514 p. 14 illus. Invariant Theory ISBN 978-1-4419-1001-1 (Graduate Texts in Mathematics, 2009. XI, 263 p. (Modeling, Simulation & 7 Approx. $39.95 Volume 106) Hardcover of Tensor Product Applications, Volume 3) Hardcover ISBN 978-0-387-09493-9 7 $59.95 Decompositions of ISBN 978-88-470-1121-2 7 $59.95 U(N) and Generalized Casimir Operators For access check with your librarian page 931 Stochastic Partial Linear Optimization Mathematica in Action Riverside Meeting Differential Equations The Simplex Workbook The Power of Visualization A Modeling, White Noise Approach G.
    [Show full text]
  • The Bicentennial Tribute to American Mathematics 1776–1976
    THE BICENTENNIAL TRIBUTE TO AMERICAN MATHEMATICS Donald J. Albers R. H. McDowell Menlo College Washington University Garrett Birkhof! S. H. Moolgavkar Harvard University Indiana University J. H. Ewing Shelba Jean Morman Indiana University University of Houston, Victoria Center Judith V. Grabiner California State College, C. V. Newsom Dominguez Hills Vice President, Radio Corporation of America (Retired) W. H. Gustafson Indiana University Mina S. Rees President Emeritus, Graduate School P. R. Haimos and University Center, CUNY Indiana University Fred S. Roberts R. W. Hamming Rutgers University Bell Telephone Laboratories R. A. Rosenbaum I. N. Herstein Wesleyan University University of Chicago S. K. Stein Peter J. Hilton University of California, Davis Battelle Memorial Institute and Case Western Reserve University Dirk J. Struik Massachusetts Institute of Technology Morris Kline (Retired) Brooklyn College (CUNY) and New York University Dalton Tarwater Texas Tech University R. D. Larsson Schenectady County Community College W. H. Wheeler Indiana University Peter D. Lax New York University, Courant Institute A. B. Willcox Executive Director, Mathematical Peter A. Lindstrom Association of America Genesee Community College W. P. Ziemer Indiana University The BICENTENNIAL TRIBUTE to AMERICAN MATHEMATICS 1776 1976 Dalton Tarwater, Editor Papers presented at the Fifty-ninth Annual Meeting of the Mathematical Association of America commemorating the nation's bicentennial Published and distributed by The Mathematical Association of America © 1977 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 77-14706 ISBN 0-88385-424-4 Printed in the United States of America Current printing (Last Digit): 10 987654321 PREFACE It was decided in 1973 that the Mathematical Association of America would commemorate the American Bicentennial at the San Antonio meet- ing of the Association in January, 1976, by stressing the history of Ameri- can mathematics.
    [Show full text]
  • Basic Algebra
    Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore May-July 2003 Basic Algebra 3. Modules 1) — Submodules ;— Ideals Max Noether† Emmy Amalie Noether†† (1844-1921) (1882-1935) 3.1. (Modular Law)Forsubmodules U,W,N of an A–module V with U ⊆ W, prove that: W ∩ (U + N) = U + (W ∩ N). 3.2. Let U,W,U,W be submodules of an A–module V with U ∩ W = U ∩ W . Prove that U is the intersection of U + (W ∩ U ) and U + (W ∩ W ). 3.3. LetA be a ring and let Vi ,i∈ I, be an infinite family of non-zero A–modules. Prove that W := i∈I Vi is not a finite A–module. 3.4. For every natural number m ≥ 1, give a minimal generating system for the Z–module Z consisting of m elements. 3.5. Let K be a field and let A be a subring of K such that every element of K can be expressed as a quotient a/b with a,b ∈ A, b = 0. (i.e. K is the quotient field of A). If K is a finite A–module, then prove that A = K. In particular, Q is not a finite Z–module. ( Hint : Suppose 2 K = Ax1 +···+Axn and b ∈ A, b = 0, with bxi ∈ A for i = 1,...,n. Now, try to express 1/b as a linear combination of xi .) 3.6. Let K be a field and let V be a K–vector space. Suppose that V1,...,Vn be distinct K- subspaces of V .IfK has at least n elements (in particular, if K is infinite), then V1 ∪···∪Vn = V .
    [Show full text]