Borsuk-Ulam Theorem and Hilbert's Nullstellensatz

Total Page:16

File Type:pdf, Size:1020Kb

Borsuk-Ulam Theorem and Hilbert's Nullstellensatz Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Borsuk-Ulam Theorem and Hilbert’s Dilip P. Patil Nullstellensatz § 1 Borsuk-Ulam — and vice versa Theorem §2 Borsuk’s Nullstellensatz and its Dilip P. Patil Equivalents §3 2-Fields Department of Mathematics §4 Dimension Indian Institute of Science, Bangalore and Multiplicity §5 Projective 1 Nullstellensatz Bhaskaracharya Pratishthana , Pune §6 Analogs of July 22, 2018 HNS to 2fields 1On the occasion of Birthday of Late Professor Shreeram S. Abhyankar (1930 – 2012), Founder Director, Bhaskaracharya Pratishthana, Pune. Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Shreeram Shankar Abhayankar (22 July, 1930 – 02 Nov, 2012) Founder Director Bhaskaracharya Pratishthana, Pune. Late Professor Shreeram Shankar Abhayankar Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Founder Director Bhaskaracharya Pratishthana, Pune. Late Professor Shreeram Shankar Abhayankar Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension Shreeram Shankar Abhayankar (22 July, 1930 – 02 Nov, 2012) and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Late Professor Shreeram Shankar Abhayankar Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension Shreeram Shankar Abhayankar (22 July, 1930 – 02 Nov, 2012) and Founder Director Multiplicity §5 Projective Bhaskaracharya Pratishthana, Pune. Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Abstract Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem The main aim of this talk is to provide an algebraic proof of the well-known Borsuk-Ulam theorem by using projective algebraic §2 Borsuk’s Nullstellensatz sets. In fact, we prove a more general form of Borsuk-Ulam and its Equivalents theorem called the Borsuk-Ulam’s Nullstellensatz by establishing its equivalence with the real algebraic Nullstellensatz. §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz The personal discussions with late Prof. Dr. Uwe Storch (1940 – 2017), Ruhr-Universität Bochum, Germany and his lecture on 23 January 2003, on the occasion of 141-th birthday of Hilbert at the Ruhr-Universität Bochum, Germany. Uwe Storch (12 July, 1940 – 17 Sept, 2017) The recent preprint (jointly with Kriti Goel and Jugal Verma) Nullstellensätze and Applications, IIT Bombay, 2018. Late Professor Uwe Storch Borsuk-Ulam Discussion and Ideas of Proofs are based on : Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Uwe Storch (12 July, 1940 – 17 Sept, 2017) The recent preprint (jointly with Kriti Goel and Jugal Verma) Nullstellensätze and Applications, IIT Bombay, 2018. Late Professor Uwe Storch Borsuk-Ulam Discussion and Ideas of Proofs are based on : Theorem and Hilbert’s Nullstellensatz The personal discussions with late Prof. Dr. Uwe Storch Dilip P. Patil (1940 – 2017), Ruhr-Universität Bochum, Germany and his lecture on 23 January 2003, on the occasion of 141-th birthday of Hilbert § 1 at the Ruhr-Universität Bochum, Germany. Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Uwe Storch (12 July, 1940 – 17 Sept, 2017) The recent preprint (jointly with Kriti Goel and Jugal Verma) Nullstellensätze and Applications, IIT Bombay, 2018. Late Professor Uwe Storch Borsuk-Ulam Discussion and Ideas of Proofs are based on : Theorem and Hilbert’s Nullstellensatz The personal discussions with late Prof. Dr. Uwe Storch Dilip P. Patil (1940 – 2017), Ruhr-Universität Bochum, Germany and his lecture on 23 January 2003, on the occasion of 141-th birthday of Hilbert § 1 at the Ruhr-Universität Bochum, Germany. Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz The recent preprint (jointly with Kriti Goel and Jugal Verma) Nullstellensätze and Applications, IIT Bombay, 2018. Late Professor Uwe Storch Borsuk-Ulam Discussion and Ideas of Proofs are based on : Theorem and Hilbert’s Nullstellensatz The personal discussions with late Prof. Dr. Uwe Storch Dilip P. Patil (1940 – 2017), Ruhr-Universität Bochum, Germany and his lecture on 23 January 2003, on the occasion of 141-th birthday of Hilbert § 1 at the Ruhr-Universität Bochum, Germany. Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of Uwe Storch (12 July, 1940 – 17 Sept, 2017) HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Late Professor Uwe Storch Borsuk-Ulam Discussion and Ideas of Proofs are based on : Theorem and Hilbert’s Nullstellensatz The personal discussions with late Prof. Dr. Uwe Storch Dilip P. Patil (1940 – 2017), Ruhr-Universität Bochum, Germany and his lecture on 23 January 2003, on the occasion of 141-th birthday of Hilbert § 1 at the Ruhr-Universität Bochum, Germany. Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of Uwe Storch (12 July, 1940 – 17 Sept, 2017) HNS to 2fields The recent preprint (jointly with Kriti Goel and Jugal Verma) Nullstellensätze and Applications, IIT Bombay, 2018. Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Theorem 1.1 ( B o r s u k - U l a m ) n n For every continuous map g :S ! R , n 2 N; there exist anti-podal points t, −t 2 Sn with g(t) = g(−t). n n+1 2 n 2 n+1 S = ft = (t0;:::;tn) 2 R j jjtjj = ∑i=0 ti = 1g ⊆ R is the n-sphere. This was conjectured by S. Ulam and was proved by K. Borsuk in 1933 by elementary methods but technically involved. § 1 Borsuk-Ulam Theorem Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil A well-known B o r s u k - U l a m t h e o r e m says that: § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz This was conjectured by S. Ulam and was proved by K. Borsuk in 1933 by elementary methods but technically involved. § 1 Borsuk-Ulam Theorem Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil A well-known B o r s u k - U l a m t h e o r e m says that: § 1 Borsuk-Ulam Theorem 1.1 ( B o r s u k - U l a m ) Theorem For every continuous map g :Sn ! n, n 2 ; there exist §2 Borsuk’s R N Nullstellensatz anti-podal points t, −t 2 Sn with g(t) = g(−t). and its Equivalents n n+1 2 n 2 n+1 §3 2-Fields S = ft = (t0;:::;tn) 2 R j jjtjj = ∑i=0 ti = 1g ⊆ R is the §4 Dimension n-sphere. and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz § 1 Borsuk-Ulam Theorem Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil A well-known B o r s u k - U l a m t h e o r e m says that: § 1 Borsuk-Ulam Theorem 1.1 ( B o r s u k - U l a m ) Theorem For every continuous map g :Sn ! n, n 2 ; there exist §2 Borsuk’s R N Nullstellensatz anti-podal points t, −t 2 Sn with g(t) = g(−t). and its Equivalents n n+1 2 n 2 n+1 §3 2-Fields S = ft = (t0;:::;tn) 2 R j jjtjj = ∑i=0 ti = 1g ⊆ R is the §4 Dimension n-sphere. and Multiplicity This was conjectured by S. Ulam and was proved by K. Borsuk in §5 Projective Nullstellensatz 1933 by elementary methods but technically involved. §6 Analogs of HNS to 2fields Dilip P. Patil Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Stanislaw Ulam (1909 – 1984) Karol Borsuk (1905 – 1982) Borsuk presented the theorem at the International Congress of Mathenmatics at Zürich in 1932 and published in the Fundamentae Mathematicae 20, 177-190 (1933) with the title Drei Sätze über n-dimentionale euclidische Sphäre. It was also already remarked by Borsuk in the footnote that H. Hopf also proved this theorem with the methods of Algebraic topology, mainly using the Theory of mapping degrees (which goes back to L. E. J. Brouwer). This appeared in the book of P.Alexandroff and H. Hopf : Toplogogie, Repre. New York 1972 (1. Aufl. : Berlin 1935). Karol Borsuk and Stanislaw Ulam Borsuk-Ulam Theorem and Hilbert’s Nullstellensatz Dilip P. Patil § 1 Borsuk-Ulam Theorem §2 Borsuk’s Nullstellensatz and its Equivalents §3 2-Fields §4 Dimension and Multiplicity §5 Projective Nullstellensatz §6 Analogs of HNS to 2fields Dilip P.
Recommended publications
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • ADJOINT DIVISORS and FREE DIVISORS Contents 1. Introduction
    ADJOINT DIVISORS AND FREE DIVISORS DAVID MOND AND MATHIAS SCHULZE Abstract. We describe two situations where adding the adjoint divisor to a divisor D with smooth normalization yields a free divisor. Both also involve stability or versality. In the first, D is the image of a corank 1 stable map-germ (Cn, 0) → (Cn+1, 0), and is not free. In the second, D is the discriminant of a versal deformation of a weighted homogeneous function with isolated critical point (subject to certain numerical conditions on the weights). Here D itself is already free. We also prove an elementary result, inspired by these first two, from which we obtain a plethora of new examples of free divisors. The presented results seem to scratch the surface of a more general phenomenon that is still to be revealed. Contents 1. Introduction 1 Notation 4 Acknowledgments 4 2. Images of stable maps 4 3. Discriminants of hypersurface singularities 12 4. Pull-back of free divisors 20 References 22 1. Introduction Let M be an n-dimensional complex analytic manifold and D a hypersurface in M. The OM -module Der( log D) of logarithmic vector fields along D consists of all vector fields on M tangent− to D at all smooth points of D. If this module is locally free, D is called a free divisor. This terminology was introduced by Kyoji Saito in [Sai80b]. As freeness is evidently a local condition, so we may pass to n germs of analytic spaces D X := (C , 0), pick coordinates x1,...,xn on X and a defining equation h O ⊂= C x ,...,x for D.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Emmy Noether, Greatest Woman Mathematician Clark Kimberling
    Emmy Noether, Greatest Woman Mathematician Clark Kimberling Mathematics Teacher, March 1982, Volume 84, Number 3, pp. 246–249. Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). With more than 100,000 members, NCTM is the largest organization dedicated to the improvement of mathematics education and to the needs of teachers of mathematics. Founded in 1920 as a not-for-profit professional and educational association, NCTM has opened doors to vast sources of publications, products, and services to help teachers do a better job in the classroom. For more information on membership in the NCTM, call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright March 1982 by the National Council of Teachers of Mathematics. All rights reserved. mmy Noether was born over one hundred years ago in the German university town of Erlangen, where her father, Max Noether, was a professor of Emathematics. At that time it was very unusual for a woman to seek a university education. In fact, a leading historian of the day wrote that talk of “surrendering our universities to the invasion of women . is a shameful display of moral weakness.”1 At the University of Erlangen, the Academic Senate in 1898 declared that the admission of women students would “overthrow all academic order.”2 In spite of all this, Emmy Noether was able to attend lectures at Erlangen in 1900 and to matriculate there officially in 1904.
    [Show full text]
  • Arxiv:2007.12573V3 [Math.AC] 28 Aug 2020 1,Tm .] Egtamr Rcs Eso Fteegnau Theore Eigenvalue the of Version Precise 1.2 More a Theorem Get We 3.3], Thm
    STICKELBERGER AND THE EIGENVALUE THEOREM DAVID A. COX To David Eisenbud on the occasion of his 75th birthday. Abstract. This paper explores the relation between the Eigenvalue Theorem and the work of Ludwig Stickelberger (1850-1936). 1. Introduction The Eigenvalue Theorem is a standard result in computational algebraic geom- etry. Given a field F and polynomials f1,...,fs F [x1,...,xn], it is well known that the system ∈ (1.1) f = = fs =0 1 ··· has finitely many solutions over the algebraic closure F of F if and only if A = F [x ,...,xn]/ f ,...,fs 1 h 1 i has finite dimension over F (see, for example, Theorem 6 of [7, Ch. 5, 3]). § A polynomial f F [x ,...,xn] gives a multiplication map ∈ 1 mf : A A. −→ A basic version of the Eigenvalue Theorem goes as follows: Theorem 1.1 (Eigenvalue Theorem). When dimF A< , the eigenvalues of mf ∞ are the values of f at the finitely many solutions of (1.1) over F . For A = A F F , we have a canonical isomorphism of F -algebras ⊗ A = Aa, ∈V a F Y(f1,...,fs) where Aa is the localization of A at the maximal ideal corresponding to a. Following [12, Thm. 3.3], we get a more precise version of the Eigenvalue Theorem: arXiv:2007.12573v3 [math.AC] 28 Aug 2020 Theorem 1.2 (Stickelberger’s Theorem). For every a V (f ,...,fs), we have ∈ F 1 mf (Aa) Aa, and the restriction of mf to Aa has only one eigenvalue f(a). ⊆ This result easily implies Theorem 1.1 and enables us to compute the character- istic polynomial of mf .
    [Show full text]
  • Mor04, Mor12], Provides a Foundational Tool for 1 Solving Problems in A1-Enumerative Geometry
    THE TRACE OF THE LOCAL A1-DEGREE THOMAS BRAZELTON, ROBERT BURKLUND, STEPHEN MCKEAN, MICHAEL MONTORO, AND MORGAN OPIE Abstract. We prove that the local A1-degree of a polynomial function at an isolated zero with finite separable residue field is given by the trace of the local A1-degree over the residue field. This fact was originally suggested by Morel's work on motivic transfers, and by Kass and Wickelgren's work on the Scheja{Storch bilinear form. As a corollary, we generalize a result of Kass and Wickelgren relating the Scheja{Storch form and the local A1-degree. 1. Introduction The A1-degree, first defined by Morel [Mor04, Mor12], provides a foundational tool for 1 solving problems in A1-enumerative geometry. In contrast to classical notions of degree, 1 n n the local A -degree is not integer valued: given a polynomial function f : Ak ! Ak with 1 1 A isolated zero p, the local A -degree of f at p, denoted by degp (f), is defined to be an element of the Grothendieck{Witt group of the ground field. Definition 1.1. Let k be a field. The Grothendieck{Witt group GW(k) is defined to be the group completion of the monoid of isomorphism classes of symmetric non-degenerate bilinear forms over k. The group operation is the direct sum of bilinear forms. We may also give GW(k) a ring structure by taking tensor products of bilinear forms for our multiplication. The local A1-degree, which will be defined in Definition 2.9, can be related to other important invariants at rational points.
    [Show full text]
  • DERIVATIONS PRESERVING a MONOMIAL IDEAL 1. Introduction
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 9, September 2009, Pages 2935–2942 S 0002-9939(09)09922-5 Article electronically published on May 4, 2009 DERIVATIONS PRESERVING A MONOMIAL IDEAL YOHANNES TADESSE (Communicated by Bernd Ulrich) Abstract. Let I be a monomial ideal in a polynomial ring A = k[x1,...,xn] over a field k of characteristic 0, TA/k(I) be the module of I-preserving k- derivations on A and G be the n-dimensional algebraic torus on k. We compute the weight spaces of TA/k(I) considered as a representation of G.Usingthis, we show that TA/k(I) preserves the integral closure of I and the multiplier ideals of I. 1. Introduction Throughout this paper TA/k denotes the module of k-linear derivations of the polynomial ring A = k[x1,...,xn]overafieldk of characteristic 0. Let G = k∗ ×···×k∗ be the n-dimensional algebraic torus on k. There is an action of θ θ1 ··· θn · θ θ1 ··· θn · G on a monomial X = x1 xn defined by (t1,...,tn) X =(t1 tn ) Xθ, and we say that Xθ has weight θ.ThismakesA arepresentationofG and induces an action of G on TA/k which will make TA/k arepresentationsuchthat θ ∈ − ⊆ X ∂xj TA/k has weight (θ1,...,θj 1,...θn). Let I A be a monomial ideal, i.e. a G-invariant ideal. Let TA/k(I)={δ ∈ TA/k | δ(I) ⊆ I}⊂TA/k be the submodule of I-preserving derivations, which is a G-subrepresentation of TA/k. Our first result is a description of the weight spaces of TA/k(I).
    [Show full text]
  • Notices of the American Mathematical Society ABCD Springer.Com
    ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook Collection of the American Mathematical Society August 2009 Volume 56, Number 7 Guido Castelnuovo and Francesco Severi: NEW NEW NEW Two Personalities, Two The objective of this textbook is the Blackjack is among the most popular This second edition of Alexander Soifer’s Letters construction, analysis, and interpreta- casino table games, one where astute How Does One Cut a Triangle? tion of mathematical models to help us choices of playing strategy can create demonstrates how different areas of page 800 understand the world we live in. an advantage for the player. Risk and mathematics can be juxtaposed in the Students and researchers interested in Reward analyzes the game in depth, solution of a given problem. The author mathematical modelling in math- pinpointing not just its optimal employs geometry, algebra, trigono- ematics, physics, engineering and the strategies but also its financial metry, linear algebra, and rings to The Dixmier–Douady applied sciences will find this text useful. performance, in terms of both expected develop a miniature model of cash flow and associated risk. mathematical research. Invariant for Dummies 2009. Approx. 480 p. (Texts in Applied Mathematics, Vol. 56) Hardcover 2009. Approx. 140 p. 23 illus. Hardcover 2nd ed. 2009. XXX, 174 p. 80 illus. Softcover page 809 ISBN 978-0-387-87749-5 7 $69.95 ISBN 978-1-4419-0252-8 7 $49.95 ISBN 978-0-387-74650-0 7 approx. $24.95 For access check with your librarian Waco Meeting page 879 A Primer on Scientific Data Mining in Agriculture Explorations in Monte Programming with Python A.
    [Show full text]
  • Tagungsbericht 18/1996 Kommutative Algebra Und Algebraische
    Tagungsbericht 18/1996 Kommutative Algebra und algebraische Geometrie 05.05. - 11.05.1996 Die Tagung fand unter der Leitung von Ernst Kunz (Regensburg), Josepf Lipman (West La.fayette (USA» und Uwe Storch (Bochum) statt. In den Vorträgen und Diskussionen wurde über neuere Ergebnisse und Probleme aus der kommutativen Algebra und algebraischen Geometrie berichtet und es wurden insbesondere Fragen angesprochen, die heiden Gebieten gemeinsam ent­ springen. Auch Verbindungen zu anderen Bereichen der Mathematik (Homotopie­ theorie, K -Theorie, Kombinatorik) wurden geknüpft. Eine Reihe von Vorträ.gen beschäftigte sich" mit Residuen und Spuren in der Dualitätstheorie. Weitere Schwer­ punktsthemen waren Fundamentalgruppen algebraischer Varietäten, birationale Geometrie, Frobenius- F\mktoren, Auflösungen und Hilbertfunktionen graduier­ ter Ringe und Moduln, insbesondere in Verbindung mit der Geometrie endlicher Punktmengen im pn und kombinatorischen Strukturen. In diesem Zusammen­ hang sind auch mehrere Vorträge über die· MultipllZität lokaler und graduierter Ringe zu sehen. Das große Interesse an der Tagung spiegelt sich auch in der hohen Zahl ausländischer Gäste wider. Neben den 19 deutsChen Teilnehmern kamen 10 weitere aus eu­ ropäischen Ländern (davon 3 aus Osteuropa), 12 aus Nordamerika und je einer aus Indien, Israel, Japan und Taiwan. / 1 /- © • ~'''' ~ ~ ... ~ ': I ~~ .., .., : ;" .. ' --~~ \.... ... ;' - Vortragsauszüge Abhyankar, Shreeram.S. Local Fundamental Gronps of Algebraic Varieties For a. prime number p and integer t ~ 0, let Q,(p) = the set of all quasi­ (p, t) group8, i. e., finite groups G such that G/p{G) is generated by t generators, where p(G) is the subgroup of G generated by all of its p-Sylow sub~oups; members of. Qo(p) are called quasi-p groUp8.
    [Show full text]
  • Wolf Barth (1942--2016)
    Wolf Barth (1942{2016) Thomas Bauer, Klaus Hulek, Slawomir Rams, Alessandra Sarti, Tomasz Szemberg 1. Life 1.1. Youth Wolf Paul Barth was born on 20th October 1942 in Wernigerode, a small town in the Harz mountains. This is where his family, originally living in Nuremberg, had sought refuge from the bombing raids. In 1943 the family moved to Simmelsdorf, which is close to Nuremberg, but less vulnerable to attacks. In 1945 Barth's brother Hannes was born. The family, the father was a town employee, then moved back to Nuremberg and Wolf Barth's home was close to the famous Nuremberg castle { his playgrounds were the ruins of Nuremberg. In 1961 Wolf Barth successfully completed the Hans Sachs Gymnasium in Nuremberg. He was an excellent student (except in sports), and he then chose to study mathemat- ics and physics at the nearby Universit¨atErlangen, officially called Friedrich-Alexander Universit¨atErlangen-N¨urnberg. 1.2. Studies and early academic career As it was the standard at the time, Wolf Barth enroled for the Staatsexamen, the German high school teacher's examination. At this time, Reinhold Remmert was a professor of mathematics in Erlangen and Wolf Barth soon felt attracted to this area of mathematics. So, when Remmert moved to G¨ottingenin 1963, Barth went with him. G¨ottingen had at that time started to recover to some extent after its losses in the Nazi period and Hans Grauert was one on the leading figures who attracted many talented mathematicians. And indeed, it was Grauert, who became Barth's second academic teacher and a figure who influenced his mathematical thinking greatly.
    [Show full text]
  • Quelques Points D'int Rt
    ATELIER INTERNATIONAL SUR LA THORIE ALGBRIQUE et ANALYTIQUE DES RSIDUS ET SES APPLICATIONS PARIS IHP du au MAI La thorie des rsidus est un domaine qui connat une rcente et intressante activit Plusieurs group es de travail se sont p enchs sur ce thme durant cette anne Cet atelier est donc lo ccasion dune prsentation confrontation et synthse des ides sur le sujet aussi bien dun p oint de vue thorique que pratique Quelques p oints dintrt Unication des direntes appro ches algbriques sur les rsidus Connexion entre les appro ches analytiques et algbriques Complexes rsiduels et leur constructions Thormes de BrianonSkoda Calculs eectifs de sommes de rsidus Applications des rsidus la thorie de llimination aux formules de reprsentations aux rsolutions de systmes p olynomiaux Orateurs invits Reinhold HBL Craig HUNEKE Ernst KUNZ Joseph LIPMAN Organisateurs Marc CHARDIN Centre de Mathmatiques Ecole p olytechnique F Palaiseau France Mohamed ELKADI Dept de Mathmatiques Univ de Nice SophiaAntipolis Parc Valrose Nice France Bernard MOURRAIN INRIA Pro jet SAFIR route des Lucioles F Valbonne France Les organisateurs ont t aids dans leur travail par les participants de deux sminaires informels sur ce sujet lun Nice Formes Formules et lautre Paris et aussi par David EISENBUD et JeanPierre JOUANOLOU Cet atelier a reu le soutien du Lab oratoire GAGE cole p olytechnique Palaiseau et du pro jet SAFIR Nice SophiaAntipolis travers le programme HCM SAC INTERNATIONAL WORKSHOP ON ALGEBRAIC AND ANALYTIC THEORY OF RESIDUES AND ITS APPLICATIONS PARIS
    [Show full text]
  • Liftable Derivations for Generically Separably Algebraic Morphisms of Schemes
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 361, Number 1, January 2009, Pages 495–523 S 0002-9947(08)04534-0 Article electronically published on June 26, 2008 LIFTABLE DERIVATIONS FOR GENERICALLY SEPARABLY ALGEBRAIC MORPHISMS OF SCHEMES ROLF KALLSTR¨ OM¨ Abstract. We consider dominant, generically algebraic (e.g. generically fi- nite), and tamely ramified (if the characteristic is positive) morphisms π : X/S → Y/S of S-schemes, where Y,S are Nœtherian and integral and X is a Krull scheme (e.g. normal Nœtherian), and study the sheaf of tangent vector fields on Y that lift to tangent vector fields on X. We give an easily com- putable description of these vector fields using valuations along the critical locus. We apply this to answer the question when the liftable derivations can be defined by a tangency condition along the discriminant. In particular, if π is a blow-up of a coherent ideal I, we show that tangent vector fields that preserve the Ratliff-Rush ideal (equals [In+1 : In] for high n) associated to I are liftable, and that all liftable tangent vector fields preserve the integral closure of I. We also generalise in positive characteristic Seidenberg’s theorem that all tangent vector fields can be lifted to the normalisation, assuming tame ramification. Introduction Let π : X/S → Y/S be a dominant morphism of S-schemes, where Y and S are Nœtherian and X is a Krull scheme (e.g. Nœtherian and normal), so in particular X and Y are integral. Consider the diagram dπ / /C / TX/S TX/S→OY/S X/Y 0 ψ −1 π (TX/S ) O where TX/S = HomOX (ΩX/S , X )isthesheafofS-relative tangent vector fields, dπ is the tangent morphism and ψ is the canonical morphism to the sheaf TX/S→Y/S −1 of derivations from π (OY )toOX ;ifY/S is locally of finite type and either π is ∗ flat or Y/S is smooth, then TX/S→Y/S = π (TY/S).
    [Show full text]