New Model of Abiogenesis

Total Page:16

File Type:pdf, Size:1020Kb

New Model of Abiogenesis Goldschmidt2020 Abstract New model of abiogenesis A. IVANOV1, V. SEVASTYANOV1, A. DOLGONOSOV1 AND E. GALIMOV1 1Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences, Kosygina street 19, Moscow 119334, Russia ([email protected]) Understanding the nature of the causes that led to the beginning of the structural self-organization of protobionts is a fundamental question in finding solutions to the problem of abiogenic origin of life. The main difficulties in understanding the question - how this happened, arise due to the fact that after 4 billion years of geological and biological activity of the planet, direct material evidence, the complex process of spontaneous generation of living matter, was not found. But is it possible, with a detailed examination of the geophysical and geochemical features of the situation of the early Earth, to restore the history of the sequence of prebiological events that predetermined the formation of protocellular precursors of the first living organisms? After all, in fact, having embarked on this path, you can trace the order of formation of prebiotic structures reveal the principle of self-organization of primary biological matter, and eventually come to a pristine type of living matter. Probably, the primary living matter required not only special conditions, but also special location that could protect and maintain its existence for a long time, since the aggressive environment of the primitive Earth would not allow primitive life to develop without such protection. This is due to the various kinds of exposure to hard cosmic radiation, as well as the adverse effects of other physical and chemical factors. Therefore, studies of this work were aimed at searching for features of the conditions of the primordial environment, which predetermined the path of the inanimate to the living. The result of this research was a new model of abiogenesis, which sets out the experimental results of testing its real performance [1]. [1] Ivanov A.A., Sevastyanov V.S., Shnykin B.A., Dolgonosov A.A., Krivenko A.P., Priymak S.V., Roslyakova A.S., Galimov E.M. (2019) Experiment in Geosciences Vol. 25 N 1, 27-28 .
Recommended publications
  • Geochemistry - (2021-2022 Catalog) 1
    Geochemistry - (2021-2022 Catalog) 1 GEGN586 NUMERICAL MODELING OF GEOCHEMICAL 3.0 Geochemistry SYSTEMS GEOL512 MINERALOGY AND CRYSTAL CHEMISTRY 3.0 Degrees Offered GEOL513 HYDROTHERMAL GEOCHEMISTRY 3.0 • Master of Science (Geochemistry) GEOL523 REFLECTED LIGHT AND ELECTRON 2.0 MICROSCOPY * • Doctor of Philosophy (Geochemistry) GEOL535 LITHO ORE FORMING PROCESSES 1.0 • Certificate in Analytical Geochemistry GEOL540 ISOTOPE GEOCHEMISTRY AND 3.0 • Professional Masters in Analytical Geochemistry (non-thesis) GEOCHRONOLOGY • Professional Masters in Environmental Geochemistry (non-thesis) GEGN530 CLAY CHARACTERIZATION 2.0 Program Description GEGX571 GEOCHEMICAL EXPLORATION 3.0 The Graduate Program in Geochemistry is an interdisciplinary program * Students can add one additional credit of independent study with the mission to educate students whose interests lie at the (GEOL599) for XRF methods which is taken concurrently with intersection of the geological and chemical sciences. The Geochemistry GEOL523. Program consists of two subprograms, administering two M.S. and Ph.D. degree tracks, two Professional Master's (non-thesis) degree programs, Master of Science (Geochemistry degree track) students must also and a Graduate Certificate. The Geochemistry (GC) degree track pertains complete an appropriate thesis, based upon original research they have to the history and evolution of the Earth and its features, including but not conducted. A thesis proposal and course of study must be approved by limited to the chemical evolution of the crust and
    [Show full text]
  • Organic Geochemistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZENODO Organic Geochemistry Organic Geochemistry 37 (2006) 1–11 www.elsevier.com/locate/orggeochem Review Organic geochemistry – A retrospective of its first 70 years q Keith A. Kvenvolden * U.S. Geological Survey, 345 Middlefield Road, MS 999, Menlo Park, CA 94025, USA Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA Received 1 September 2005; accepted 1 September 2005 Available online 18 October 2005 Abstract Organic geochemistry had its origin in the early part of the 20th century when organic chemists and geologists realized that detailed information on the organic materials in sediments and rocks was scientifically interesting and of practical importance. The generally acknowledged ‘‘father’’ of organic geochemistry is Alfred E. Treibs (1899–1983), who discov- ered and described, in 1936, porphyrin pigments in shale, coal, and crude oil, and traced the source of these molecules to their biological precursors. Thus, the year 1936 marks the beginning of organic geochemistry. However, formal organiza- tion of organic geochemistry dates from 1959 when the Organic Geochemistry Division (OGD) of The Geochemical Soci- ety was founded in the United States, followed 22 years later (1981) by the establishment of the European Association of Organic Geochemists (EAOG). Organic geochemistry (1) has its own journal, Organic Geochemistry (beginning in 1979) which, since 1988, is the official journal of the EAOG, (2) convenes two major conferences [International Meeting on Organic Geochemistry (IMOG), since 1962, and Gordon Research Conferences on Organic Geochemistry (GRC), since 1968] in alternate years, and (3) is the subject matter of several textbooks.
    [Show full text]
  • W. M. White Geochemistry Chapter 5: Kinetics
    W. M. White Geochemistry Chapter 5: Kinetics CHAPTER 5: KINETICS: THE PACE OF THINGS 5.1 INTRODUCTION hermodynamics concerns itself with the distribution of components among the various phases and species of a system at equilibrium. Kinetics concerns itself with the path the system takes in T achieving equilibrium. Thermodynamics allows us to predict the equilibrium state of a system. Kinetics, on the other hand, tells us how and how fast equilibrium will be attained. Although thermo- dynamics is a macroscopic science, we found it often useful to consider the microscopic viewpoint in developing thermodynamics models. Because kinetics concerns itself with the path a system takes, what we will call reaction mechanisms, the microscopic perspective becomes essential, and we will very often make use of it. Our everyday experience tells one very important thing about reaction kinetics: they are generally slow at low temperature and become faster at higher temperature. For example, sugar dissolves much more rapidly in hot tea than it does in ice tea. Good instructions for making ice tea might then incor- porate this knowledge of kinetics and include the instruction to be sure to dissolve the sugar in the hot tea before pouring it over ice. Because of this temperature dependence of reaction rates, low tempera- ture geochemical systems are often not in equilibrium. A good example might be clastic sediments, which consist of a variety of phases. Some of these phases are in equilibrium with each other and with porewater, but most are not. Another example of this disequilibrium is the oceans. The surface waters of the oceans are everywhere oversaturated with respect to calcite, yet calcite precipitates from sea- water only through biological activity.
    [Show full text]
  • The Role of Geochemistry and Stress on Fracture Development And
    Geothermal Technologies Program 2010 Peer Review Public Service of Colorado Ponnequin Wind Farm The Role of Geochemistry and Principal Investigator (Joseph Moore) Stress on Fracture Development Presenter Name (John McLennan) and Proppant Behavior in EGS Organization University of Utah Reservoirs Track Name Reservoir Characterization May 18, 2010 This presentation does not contain any proprietary confidential,1 | US DOE or Geothermalotherwise restricted Program information. eere.energy.gov Timeline DOE Start Date:9/30/2008 DOE Contract Signed: 9/26/2008 Ends 11/30/2011 Project ~40% Complete 2 | US DOE Geothermal Program eere.energy.gov Budget Overview DOE Awardee Total Share Share Project $972,751 $243,188 $1,215,939 Funding FY 2009 $244,869 $107,130 $351,999 FY 2010 $383,952 $64,522 $448,474 FY 2011 $343,930 $71,536 $415,466 DOE Start Date:9/30/2008 DOE Contract Signed: 9/26/2008 Ends 11/30/2011 Project ~40% Complete 3 | US DOE Geothermal Program eere.energy.gov Overview: Barriers and Partners . Barriers to EGS Reservoir Development Addressed: . Reservoir Creation . Long-Term Reservoir and Fracture Sustainability . Zonal Isolation . Partners . Independent Evaluation 4 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research Problem . Maximizing initial conductivity of EGS domains . Maintaining long-term conductivity . Facilitate development of extensive stimulated domain via diversion Solution . Proppant placed in fractures Challenge . Proppant behavior at geothermal conditions poorly understood Use of proppant recognized as potential technology under Task “Keep Flow Paths Open” in DOE EGS Technology Evaluation Report 5 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research OBJECTIVE Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs .
    [Show full text]
  • Lecture 2 Our Place in the Universe (Cont'd)
    Astronomy 110 –1 Lecture 2 Our Place in the Universe (Cont’d) 14/01/09 1 Copyright © 2009 Pearson Education, Inc. A few useful mathematical skills 14/01/09 2 Copyright © 2009 Pearson Education, Inc. Powers of ten 103 = 10 x 10 x 10 = 1000 102 = 10 x 10 = 100 101 = 10 100 = 1 10-1 = 1/10 = 0.1 10-2 = 1/10 x 1/10 = 0.01 10-3 = 1/10 x 1/10 x 1/10 = 0.001 Then: 300 = 3 x 100 = 3 x 102 2,500 = 2.5 x 1000 = 2.5 x 103 14/01/09 3 Copyright © 2009 Pearson Education, Inc. Multiplying & dividing 101 x 101 = 100 = 102 101 x 102 = 10 x 100 = 1000 = 103 102 x 102 = 100 x 100 = 10000 = 104 When multiplying two powers of ten, add the exponents 1000 ÷ 100 = 103 ÷ 102 = 10 = 101 10 ÷ 10 = 101 ÷ 101 = 1 = 100 10 ÷ 100 = 101 ÷ 102 = 1/10 = 10-1 When dividing, subtract exponent of divisor from exponent of numerator 14/01/09 4 Copyright © 2009 Pearson Education, Inc. Powers and roots (104)3 = 104 x 104 x 104 = 1012 Rule of thumb: when raising to a power, multiply exponents What about √(104)? √(104) = 102 taking roots is the same as raising to a fractional power, in this case 1/2 power: √(104) = (104)1/2 = 102 √ is the same as raising to 1/2 power 3√ is the same as raising to 1/3 power 4√ is the same as raising to 1/4 power 14/01/09 5 Copyright © 2009 Pearson Education, Inc.
    [Show full text]
  • Critical Analysis of Article "21 Reasons to Believe the Earth Is Young" by Jeff Miller
    1 Critical analysis of article "21 Reasons to Believe the Earth is Young" by Jeff Miller Lorence G. Collins [email protected] Ken Woglemuth [email protected] January 7, 2019 Introduction The article by Dr. Jeff Miller can be accessed at the following link: http://apologeticspress.org/APContent.aspx?category=9&article=5641 and is an article published by Apologetic Press, v. 39, n.1, 2018. The problems start with the Article In Brief in the boxed paragraph, and with the very first sentence. The Bible does not give an age of the Earth of 6,000 to 10,000 years, or even imply − this is added to Scripture by Dr. Miller and other young-Earth creationists. R. C. Sproul was one of evangelicalism's outstanding theologians, and he stated point blank at the Legionier Conference panel discussion that he does not know how old the Earth is, and the Bible does not inform us. When there has been some apparent conflict, either the theologians or the scientists are wrong, because God is the Author of the Bible and His handiwork is in general revelation. In the days of Copernicus and Galileo, the theologians were wrong. Today we do not know of anyone who believes that the Earth is the center of the universe. 2 The last sentence of this "Article In Brief" is boldly false. There is almost no credible evidence from paleontology, geology, astrophysics, or geophysics that refutes deep time. Dr. Miller states: "The age of the Earth, according to naturalists and old- Earth advocates, is 4.5 billion years.
    [Show full text]
  • Radiogenic Isotope Geochemistry
    W. M. White Geochemistry Chapter 8: Radiogenic Isotope Geochemistry CHAPTER 8: RADIOGENIC ISOTOPE GEOCHEMISTRY 8.1 INTRODUCTION adiogenic isotope geochemistry had an enormous influence on geologic thinking in the twentieth century. The story begins, however, in the late nineteenth century. At that time Lord Kelvin (born William Thomson, and who profoundly influenced the development of physics and ther- R th modynamics in the 19 century), estimated the age of the solar system to be about 100 million years, based on the assumption that the Sun’s energy was derived from gravitational collapse. In 1897 he re- vised this estimate downward to the range of 20 to 40 million years. A year earlier, another Eng- lishman, John Jolly, estimated the age of the Earth to be about 100 million years based on the assump- tion that salts in the ocean had built up through geologic time at a rate proportional their delivery by rivers. Geologists were particularly skeptical of Kelvin’s revised estimate, feeling the Earth must be older than this, but had no quantitative means of supporting their arguments. They did not realize it, but the key to the ultimate solution of the dilemma, radioactivity, had been discovered about the same time (1896) by Frenchman Henri Becquerel. Only eleven years elapsed before Bertram Boltwood, an American chemist, published the first ‘radiometric age’. He determined the lead concentrations in three samples of pitchblende, a uranium ore, and concluded they ranged in age from 410 to 535 million years. In the meantime, Jolly also had been busy exploring the uses of radioactivity in geology and published what we might call the first book on isotope geochemistry in 1908.
    [Show full text]
  • Earth: Atmospheric Evolution of a Habitable Planet
    Earth: Atmospheric Evolution of a Habitable Planet Stephanie L. Olson1,2*, Edward W. Schwieterman1,2, Christopher T. Reinhard1,3, Timothy W. Lyons1,2 1NASA Astrobiology Institute Alternative Earth’s Team 2Department of Earth Sciences, University of California, Riverside 3School of Earth and Atmospheric Science, Georgia Institute of Technology *Correspondence: [email protected] Table of Contents 1. Introduction ............................................................................................................................ 2 2. Oxygen and biological innovation .................................................................................... 3 2.1. Oxygenic photosynthesis on the early Earth .......................................................... 4 2.2. The Great Oxidation Event ......................................................................................... 6 2.3. Oxygen during Earth’s middle chapter ..................................................................... 7 2.4. Neoproterozoic oxygen dynamics and the rise of animals .................................. 9 2.5. Continued oxygen evolution in the Phanerozoic.................................................. 11 3. Carbon dioxide, climate regulation, and enduring habitability ................................. 12 3.1. The faint young Sun paradox ................................................................................... 12 3.2. The silicate weathering thermostat ......................................................................... 12 3.3. Geological
    [Show full text]
  • The Solar System
    The Solar System Our automated spacecraft have traveled to the Moon and to all the planets beyond our world The Sun appears to have been active for 4.6 billion years and has enough fuel for another 5 except Pluto; they have observed moons as large as small planets, flown by comets, and billion years or so. At the end of its life, the Sun will start to fuse helium into heavier elements sampled the solar environment. The knowledge gained from our journeys through the solar and begin to swell up, ultimately growing so large that it will swallow Earth. After a billion years system has redefined traditional Earth sciences like geology and meteorology and spawned an as a "red giant," it will suddenly collapse into a "white dwarf" -- the final end product of a star like entirely new discipline called comparative planetology. By studying the geology of planets, ours. It may take a trillion years to cool off completely. moons, asteroids, and comets, and comparing differences and similarities, we are learning more about the origin and history of these bodies and the solar system as a whole. We are also Mercury gaining insight into Earth's complex weather systems. By seeing how weather is shaped on other worlds and by investigating the Sun's activity and its influence through the solar system, Obtaining the first close-up views of Mercury was the primary objective of the Mariner 10 we can better understand climatic conditions and processes on Earth. spacecraft, launched Nov 3, 1973. After a journey of nearly 5 months, including a flyby of Venus, the spacecraft passed within 703 km (437 mi) of the solar system's innermost planet on Mar 29, The Sun 1974.
    [Show full text]
  • Does the Rapid Appearance of Life on Earth Suggest That Life Is Common in the Universe?
    ASTROBIOLOGY Volume 2, Number 3, 2002 © Mary Ann Liebert, Inc. Does the Rapid Appearance of Life on Earth Suggest that Life Is Common in the Universe? CHARLES H. LINEWEAVER 1,2 and TAMARA M. DAVIS 1 ABSTRACT It is sometimes assumed that the rapidity of biogenesis on Earth suggests that life is common in the Universe. Here we critically examine the assumptions inherent in this if-life-evolved- rapidly-life-must-be-common argument. We use the observational constraints on the rapid- ity of biogenesis on Earth to infer the probability of biogenesis on terrestrial planets with the same unknown probability of biogenesis as the Earth. We find that on such planets, older than ,1 Gyr, the probability of biogenesis is .13% at the 95% confidence level. This quan- tifies an important term in the Drake Equation but does not necessarily mean that life is com- mon in the Universe. Key Words: Biogenesis—Drake Equation. Astrobiology 2, 293–304. THE BIOGENESIS LOTTERY duction–oxidation pairs are common (Nealson and Conrad, 1999). UCHOFCURRENTASTROBIOLOGICALRESEARCH Mis focused on learning more about the early It is difficult to translate this circumstantial ev- evolution of the Earth and about the origin of life. idence into an estimate of how common life is in We may be able to extrapolate and generalize our the Universe. Without definitive detections of ex- knowledge of how life formed here to how it traterrestrial life we can say very little about how might have formed elsewhere. Indirect evidence common it is or even whether it exists. Our exis- suggesting that life may be common in the Uni- tence on Earth can tell us little about how com- verse includes: mon life is in the Universe or about the proba- bility of biogenesis on a terrestrial planet because, Sun-like stars are common.
    [Show full text]
  • Alternate Constellation Guide
    ARKANSAS NATURAL SKY ASSOCIATION LEARNING THE CONSTELLATIONS (Library Telescope Manual included) By Robert Togni Cover Image courtesy of Wikimedia. Do not write in this book, and return with scope to library. A personal copy of this guide can be obtained online at www.darkskyarkansas.com Preface This publication was inspired by and built upon Robert (Rocky) Togni’s quest to share the night sky with all who can be enticed under it. His belief is that the best place to start a relationship with the night sky is to learn the constellations and explore the principle ob- jects within them with the naked eye and a pair of common binoculars. Over a period of years, Rocky evolved a concept, using seasonal asterisms like the Summer Triangle and the Winter Hexagon, to create an easy to use set of simple charts to make learning one’s way around the night sky as simple and fun as possible. Recognizing that the most avid defenders of the natural night time environment are those who have grown to know and love nature at night and exploring the universe that it re- veals, the Arkansas Natural Sky Association (ANSA) asked Rocky if the Association could publish his guide. The hope being that making this available in printed form at vari- ous star parties and other relevant venues would help bring more people to the night sky as well as provide funds for the Association’s work. Once hooked, the owner will definitely want to seek deeper guides. But there is no better publication for opening the sky for the neophyte observer, making the guide the perfect companion for a library telescope.
    [Show full text]
  • Geochemistry and Crystallography of Recrystallized Sedimentary Dolomites
    Goldschmidt2019 Abstract Geochemistry and crystallography of recrystallized sedimentary dolomites GEORGINA LUKOCZKI1*, PANKAJ SARIN2, JAY M. GREGG1, CÉDRIC M. JOHN3 1 Oklahoma State University, Boone Pickens School of Geology, Stillwater, OK, USA 2 Oklahoma State University, School of Materials Science and Engineering, Tulsa, OK, USA 3 Imperial College London, Department of Earth Science and Engineering, London, UK (*Correspondence: [email protected]) Most sedimentary dolomites [CaMg(CO3)2] are meta- stable upon formation and either transform into more stable dolomite via recrystallization, or persist as meta-stable phases over deep geological time. The stability of dolomite has long been considered to be influenced by ordering and stoichiometry [1]; however, how recrystallization alters the crystal structure and chemistry of dolomites remains poorly understood. In order to better understand the relationship between various chemical and crystallographic properties and the underlying geological processes, sedimentary dolomites, formed in various diagenetic environments, were investigated in detail. The innovative aspect of this study is the application of high resolution diffraction techniques, such as sychrotron X-ray and neutron diffraction, together with various geochemical proxies, including clumped isotopes, to characterize recrystallized sedimentary dolomites. The age of the studied samples ranges from Holocene to Cambrian. The diagenetic environments of dolomitization and recrystallization were determined primarily on the basis of petrographic and geochemical data [2, 3, 4]. Rietveld refinement of high-resolution diffraction data revealed notable differences in crystallographic parameters across the various dolomite types. Several dolomite bodies have been identified as potential sites for CO2 sequestration [5]; therefore, new insights into what factors control dolomite ordering and stoichiometry will contribute to an improved understanding of dolomite reactivity and may be particularly important for CO2 sequestration studies.
    [Show full text]