Improving the Efficiency of Heavily Used Railway Networks Through Integrated Real-Time Rescheduling

Total Page:16

File Type:pdf, Size:1020Kb

Improving the Efficiency of Heavily Used Railway Networks Through Integrated Real-Time Rescheduling Research Collection Doctoral Thesis Improving the efficiency of heavily used railway networks through integrated real-time rescheduling Author(s): Lüthi, Marco Publication Date: 2009 Permanent Link: https://doi.org/10.3929/ethz-a-005911895 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 18615 Improving the Efficiency of Heavily Used Railway Networks through Integrated Real-Time Rescheduling A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by MARCO LUTHI¨ Master of Science ETH in Electrical Engineering and Information Technology born 20th September 1977 citizen of Lauperswil (BE) accepted on the recommendation of Prof. Dr. Ulrich Weidmann, examiner Prof. Dr.-Ing. Ingo A. Hansen, co-examiner 2009 ISBN: 978-3-905826-11-1 Acknowledgements Thanks to Prof. Dr. Ulrich Weidmann, I had the opportunity to work in the Institute for Transport Planning and Systems and participated in motivating and challenging projects in the transporta- tion sector. I am very thankful for his supervision and helpful support during my work. I am enormously thankful for the expertise and constructive reviews provided by Prof. Dr.- Ing. Ingo Hansen and his willingness to referee my thesis. I wish to thank Oskar Stalder and Dr. Felix Laube, who worked both for the Swiss Federal Railways, offering me the possibility to collaborate on this specific topic and to get a deep insight into the world of railway operations. Together with Dr. Raimond Wust,¨ Thomas Graffagnino, Samuel Roos, Heinz Egli, Ash Smith, Muriel Perron and many more peoples at SBB, I had the possibility for many fruitful discussions. Many thanks also to Prof. Dr. Hans-Jakob Luthi,¨ Gabrio Caimi, Martin Fuchsberger, Dr. Dan Burkolter, Dr. Thomas Herrmann and Dr. Marco Laumanns from the Institute for Operations Research for numerous, insightful and constructive discussions. The effort made by Martin and Gabrio to extend the algorithms used to calculate timetable rescheduling scenarios for the area of Bern has to be pointed out especially. Special thanks go to Dr. Daniel Hurlimann¨ for the collaboration during his time at IVT and af- terwards with his spin-off company OpenTrack Railway Technology. His invaluable inputs and discussions undoubtedly improved this thesis. I also want to thank all my colleagues at the IVT, in particular Dr. Sonja-Lara Bepperling, Stefan Bollinger, Bernd Bopp, Stefan Buchmuller,¨ Niklaus Fries, Markus Rieder, Hannes Schneebeli, Jost Wichser and Rene´ Zeller. They made the time at IVT so enjoyable and unforgettable for me. I would also like to thank Adrian Johner, Giorgio Medeossi, and other students who have contributed through their work on this research. During my work at IVT, I had the pleasure to get in touch with Dr. Thomas Albrecht, Dr. An- drea D’Ariano, Dr. Markus Montigel, Andrew Nash, Prof. Dr. Arnd Stephan, Werner Stohler, Dr. Markus Ullius and many more railway experts with whom I had valuable discussions on this work and to whom I want to express my gratefulness. I would further like to thank Martin Slater for having poof-read my thesis and for having given me valuable advice on linguistic matters. Thanks go as well to all my good friends with whom I have enjoyed some valuable discussions on this work, apart from many other great moments. Schlussendlich mochte¨ ich mich bei meiner Familie fur¨ die Unterstutzung¨ und Liebe in all den Jahren bedanken. Abstract Demand for rail travel has grown strongly within the last few years and growth is projected to continue in coming years. While central parts of the European rail network are operated punctually at its capacity limits, building new tracks is very cost intensive and thus only possible in exceptional cases. Adding new services to satisfy increasing demand is often achieved by reducing buffer times between consecutive trains. Buffer times are used to reduce the impact of train delays on overall reliability. While reducing buffer times increases capacity, it also means that small delays to a single train may propagate quickly through the network causing knock- on delays to trains impacted by the delayed train. To handle these challenges, new railway operation principles are required. The thesis introduces new railway operation principles implying a new framework that combines rail traffic management by rescheduling in real-time with advice tools supporting drivers and guards in order to provide information allowing them to follow precisely the dynamically change- able schedules. Designed as a superimposition of two feedback control loops, the framework aims to increase capacity and stability in heavily used mixed rail traffic networks. The rescheduling part thereby assures that deviations or events causing conflicts are detected and solved automatically within real-time based on predefined optimisation criterions. These up- dated schedules are transmitted and visualised to drivers and guards who adjust their behaviour accordingly. Recommendations ensure that specified trajectories are followed accurately. The components to improve or develop as part of the new integrated real-time rescheduling frame- work are presented in this thesis. Possible designs and their consequences are pointed out. Specifications and requirements for components of sub-processes are also described in or- der to achieve an efficient and effective framework. With this new framework, rail traffic flow is improved and thus unnecessary time and energy consuming signal stops can be avoided. Consequently, delays and their network-wide propagation are significantly reduced. The thesis points out that enhancements of conventional railway operations must be done in three areas. Firstly, an uplink transmitting the train’s state, position, delay and event information regularly and more frequently than today must be set up. This is used to identify a deviation or event quickly as well as to predict the future behaviour accurately and is the basis for reschedul- ing. Secondly, generating feasible schedules within real-time for larger networks and high traffic density is another challenge. Although promising results have already been obtained, develop- ing algorithms to generate new schedules in real-time will still need research. Thirdly, advice tools visualising the new schedules and the connection from the traffic management system to the train providing this information in real-time is required in order to operate trains accurately accordingly to new recommendations by drivers. A new network decomposition strategy where buffer times are minimised in capacity bottleneck areas and running time supplements are used in compensation areas in-between is proposed. The combination of an integrated real-time rescheduling framework with a new network decom- position strategy allows scheduled buffer times to be reduced in capacity bottleneck areas. As a result, infrastructure utilisation can be improved without having more delays than with conven- tional railway operation principles. A new tolerance band principle is also described. Using this, rescheduling as well as planning are more formalised. A train exceeding the given tolerance directly initiates new reschedul- ing, resulting in fast identification and a clear process for all actors. For scheduling, tolerance bands are added to minimal headways instead of allocating general, imprecisely planned buffer times. Also, open questions regarding inherent conflicts between rescheduling performance, nervousness, duration, and feasibility are exemplified. Finally, the additional benefits and limits of the new framework are derived and illustrated by simulations and case scenarios in the areas of Lucerne, Bern and Winterthur. It is shown that the knock-on delay of a single train applying the new framework may be reduced by up to several minutes if an unnecessary signal stop is avoided. For bottleneck areas where recorded delay patterns were applied, the thesis also shows that the overall delay may be significantly reduced with the integrated real-time rescheduling framework. However, precise operations following the reference trajectory is required. Test runs have shown that the robustness and reliability of the driver’s display tool are necessary prerequisites but difficult to achieve. Test trials with the new display tool proved that following a reference trajectory is possible. Nevertheless, the aspired level of accuracy only seems achievable when the reference speed is displayed. In particular, references with abrupt speed changes, which may occur to avoid conflicts as part of the rescheduling, will not be manageable without speed information. To summarise, the thesis demonstrates that with the combination of real-time rescheduling and precise train operations, the benefits of new traffic management systems are utilised and also significantly improved. Altogether, the integrated real-time rescheduling framework developed is a promising approach to improve the performance of the railway system both efficiently as well as effectively. vi Zusammenfassung Die Nachfrage im Eisenbahnverkehr hat uber¨ die letzten Jahre stark zugenommen und Pro- gnosen deuten auf einen weiteren Anstieg hin. An einigen Stellen wird die Infrastruktur von europaischen¨ Eisenbahnnetzwerken jedoch schon heute an der Kapazitatsgrenze¨ betrieben. Anpassungen oder Erweiterungen der Infrastruktur sind uberaus¨ kostenintensiv und werden
Recommended publications
  • PROVÁDĚCÍ NAŘÍZENÍ KOMISE (EU) 2019/773 Ze Dne 16
    27.5.2019 CS Úřední věstník Evropské unie L 139 I/5 PROVÁDĚCÍ NAŘÍZENÍ KOMISE (EU) 2019/773 ze dne 16. května 2019 o technické specifikaci pro interoperabilitu týkající se subsystému „provoz a řízení dopravy“ železničního systému v Evropské unii a o zrušení rozhodnutí 2012/757/EU (Text s významem pro EHP) EVROPSKÁ KOMISE, s ohledem na Smlouvu o fungování Evropské unie, s ohledem na směrnici Evropského parlamentu a Rady (EU) 2016/797 ze dne 11. května 2016 o interoperabilitě železničního systému v Evropské unii (1) a zejména na čl. 5 odst. 11 uvedené směrnice, vzhledem k těmto důvodům: (1) Článek 11 rozhodnutí Komise v přenesené pravomoci (EU) 2017/1474 (2) vymezuje konkrétní cíle pro vypracování, přijetí a přezkum technických specifikací pro interoperabilitu (TSI) železničního systému v Unii. (2) Podle čl. 3 odst. 5 písm. b) a f) rozhodnutí (EU) 2017/1474 by TSI měly být přezkoumány s cílem zohlednit vývoj železničního systému Unie a souvisejících činností v oblasti výzkumu a inovací a aktualizovat odkazy na normy. (3) Podle čl. 3 odst. 5 písm. c) rozhodnutí (EU) 2017/1474 by TSI měly být přezkoumány s cílem uzavřít zbývající otevřené body. Je třeba zejména vymezit rozsah otevřených bodů týkajících se provozu a rozlišit mezi příslušnými vnitrostátními předpisy a pravidly vyžadujícími harmonizaci prostřednictvím práva Unie s cílem umožnit přechod na interoperabilní systém a vymezit optimální úroveň technické harmonizace. (4) Dne 22. září 2017 Komise v souladu s čl. 19 odst. 1 nařízení Evropského parlamentu a Rady (EU) 2016/796 (3) požádala Agenturu Evropské unie pro železnice (dále jen „agentura“), aby připravila doporučení pro provedení výběru konkrétních cílů stanovených v rozhodnutí (EU) 2017/1474.
    [Show full text]
  • Road Level Crossing Protection Equipment
    Engineering Procedure Signalling CRN SM 013 ROAD LEVEL CROSSING PROTECTION EQUIPMENT Version 2.0 Issued December 2013 Owner: Principal Signal Engineer Approved by: Stewart Rendell Authorised by: Glenn Dewberry Disclaimer. This document was prepared for use on the CRN Network only. John Holland Rail Pty Ltd makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user’s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by JHR. JHR accepts no liability whatsoever in relation to the use of this document by any party, and JHR excludes any liability which arises in any manner by the use of this document. Copyright. The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of JHR. © JHR UNCONTROLLED WHEN PRINTED Page 1 of 66 Issued December 2013 Version 2.0 CRN Engineering Procedure - Signalling CRN SM 013 Road Level Crossing Protection Equipment Document control Revision Date of Approval Summary of change 1.0 June 1999 RIC Standard SC 07 60 01 00 EQ Version 1.0 June 1999. 1.0 July 2011 Conversion to CRN Signalling Standard CRN SM 013. 2.0 December 2013 Inclusion of Safetran S40 and S60 Mechanisms, reformatting of figures and tables, and updating text Summary of changes from previous version Section Summary of change All Include automated
    [Show full text]
  • Modeling of ERTMS Level 2 As an Sos and Evaluation of Its Dependability Parameters Using Statecharts Siqi Qiu, Mohamed Sallak, Walter Schön, and Zohra Cherfi-Boulanger
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE SYSTEMS JOURNAL 1 Modeling of ERTMS Level 2 as an SoS and Evaluation of its Dependability Parameters Using Statecharts Siqi Qiu, Mohamed Sallak, Walter Schön, and Zohra Cherfi-Boulanger Abstract—In this paper, we consider the European Rail Traffic INCOSE International Council on Systems Engineering. Management System (ERTMS) as a System-of-Systems (SoS) and GSM-R Global System for Mobile communications— propose modeling it using Unified Modeling Language statecharts. Railways. We define the performance evaluation of the SoS in terms of dependability parameters and average time spent in each state RTM Radio Transmission Module. (working state, degraded state, and failed state). The originality BTM Balise Transmission Module. of this work lies in the approach that considers ERTMS Level 2 TIU Train Interface Unit. as an SoS and seeks to evaluate its dependability parameters by DMI Driver Machine Interface. considering the unavailability of the whole SoS as an emergent EVC European Vital Computer. property. In addition, human factors, network failures, Common- Cause Failures (CCFs), and imprecise failure and repair rates are RBC Radio Block Center. taken into account in the proposed model. EEIG European Economic Interest Group. MUT Mean Up Time. Index Terms—Common-Cause Failures (CCFs), dependability, emergent property, European Rail Traffic Management System MDT Mean Down Time. (ERTMS), human factors, network failures, statecharts, System- MTTF Mean Time to Failure. of-Systems (SoS). MTBF Mean Time Between Failures. ACRONYMS ERTMS European Rail Traffic Management System.
    [Show full text]
  • [(Central] [Central, 6 E -1 4
    /NEWYORK^ Fnewyork^ [(Central] [Central, 6 e -1 4 Reference Marks NEW YORK CENTRAL LC.L Between POPULAR ALL-COACH DAYLINER Dally. II Meal station. Sunday only. • Thla train does not carry baggage SERVICE ADVANTAGES Chicago, Pittsburgh & Boston Daily except Sunday- Ex. Sun.—Runs dally except Sunday. Daily except Monday. E.T.—Eastern Standard Time. Daily except Saturday. C.T.—Central Standard Time. In addition to the train service shown, buses of the United Traction Company run at frequent intervals between Albany and Troy. | I i^i ichedulot . pcart'd to 5 Packing and handling research Stops on signal to receive passengers for stations beyond Albuny. traffic requirement! for most ... they assure the security ol Stops to receive or discbarge passengers for or from Astatabula and beyond. Stops except Saturdays and Sundays. rX|M*llitioilH .1. Ii\ i-r n--. the shipped merchandise. bb Stops at 6.25 a. m. to discharge passengers from Rochester and beyond or to 2 Free pick up and delivery ser• receive passengers for Chicago. Smooth operation . easy 4 Stops on signal to receive passengers for beyond Troy. vice . direct from Hliippcr's grades... superlative roadbed. Stops on signal to discharge or receive passengers. to roiisipiirrV door. No baggage handled for or from this station; *y Constant supervision and pro• Stops regularly, but only to receive passengers. * f Optional trucking allowance to tection in transit.. still mon Stops only to discbarge passengers. nhi|»|MTH jiiul roiittignrcR ... a security for shipped merchan Runs Saturdays only. mi I • i i ii i ii I tavina to both. dise.
    [Show full text]
  • Influence of Train Control System on Railway Track Capacity
    DAAAM INTERNATIONAL SCIENTIFIC BOOK 2012 pp. 419-426 CHAPTER 36 INFLUENCE OF TRAIN CONTROL SYSTEM ON RAILWAY TRACK CAPACITY HARAMINA, H.; BRABEC, D. & GRGIC, D. Abstract: The basic advantage of the train control methods based on the moving block technology compared to the fixed blocks where the headways of the slower trains, regarding their longer blocking times affects negatively the line capacity, lies in the fact that the position and the length of the moving blocks adapts to the position, dynamic characteristics, and actual speed of the successive train. Regarding a higher possibility for influence on the train movement characteristic during the moving block train operation, better traffic fluidity with more regular traffic flow can be achieved. Considering this fact an amount of regular recovery and buffer times needed for railway timetable stability can be decreased and thus more train paths in a particular dedicated time window can be added. In this way the moving block technology can increase the capacity of a railway line, especially in case of high density lines with significant heterogeneity of traffic. Key words: train control system, railway infrastructure capacity, moving block Authors´ data: Dr. Sc. Haramina, H[rvoje]; dipl.ing. Brabec, D[ean]* Dr. Sc. Grgić, D[amir]**; *University of Zagreb, Faculty of Transport and Traffic Sciences, Vukelićeva 4, Zagreb, Croatia, **Hrvatske željeznice, Mihanovićeva 12, Zagreb, Croatia; [email protected], [email protected], [email protected] This Publication has to be referred as: Haramina H[rvoje]; Brabec, D[ean] & Grgić, D[amir] (2012). Influence of Train Control System on Railway Track Capacity, Chapter 36 in DAAAM International Scientific Book 2012, pp.
    [Show full text]
  • Next Generation Train Control (NGTC): More Effective Railways Through the Convergence of Main-Line and Urban Train Control Systems
    Available online at www.sciencedirect.com ScienceDirect Transportation Research Procedia 14 ( 2016 ) 1855 – 1864 6th Transport Research Arena April 18-21, 2016 Next Generation Train Control (NGTC): more effective railways through the convergence of main-line and urban train control systems Peter Gurník a,* aUNIFE – The European Rail Industry, 221 avenue Louise, B-1050 Brussels, Belgium Abstract The main scope of Next Generation Train Control (NGTC) project is to analyse the commonality and differences of required functionality for mainline and urban lines and develop the convergence of both European Train Control System (ETCS) and Communication Based Train Control (CBTC) systems, determining the level of commonality of architecture, hardware platforms, and system design that can be achieved. This will be accomplished by building on the experience of ETCS and its standardised train protection kernel, where the different manufacturers can deliver equipment based on the same standardized specifications and by using the experience the suppliers have gained by having developed very sophisticated and innovative CBTC systems around the world. The paper focuses on the analyses of the already produced NGTC Functional Requirements Specifications and is summarizing other project activities on various train control technology developments suitable for future train control systems. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (©http://creativecommons.org/licenses/by-nc-nd/4.0/ 2016The Authors. Published by Elsevier B.V..). PeerPeer-review-review under under responsibility responsibility of Road of Road and Bridgeand Bridge Research Research Institute Institute (IBDiM) (IBDiM). Keywords: Railways; signalling; automation; ERTMS / ETCS; CBTC; ATO; ATP; ATS; FRS, SRS; Moving Block; IP Radio Communication; GNSS * Corresponding author.
    [Show full text]
  • Federal Railroad Administration, DOT § 235.7
    Federal Railroad Administration, DOT § 235.7 railroads that operate on standard gage (5) Removal of an intermittent auto- track which is part of the general rail- matic train stop system in conjunction road system of transportation. with the implementation of a positive (b) This part does not apply to rail train control system approved by FRA rapid transit operations conducted over under subpart I of part 236 of this chap- track that is used exclusively for that ter. purpose and that is not part of the gen- (b) When the resultant arrangement eral system of railroad transportation. will comply with part 236 of this title, it is not necessary to file for approval § 235.5 Changes requiring filing of ap- to decrease the limits of a system as plication. follows: (a) Except as provided in § 235.7, ap- (1) Decrease of the limits of an inter- plications shall be filed to cover the locking when interlocked switches, de- following: rails, or movable-point frogs are not in- (1) The discontinuance of a block sig- volved; nal system, interlocking, traffic con- (2) Removal of electric or mechanical trol system, automatic train stop, lock, or signal used in lieu thereof, train control, or cab signal system or from hand-operated switch in auto- other similar appliance or device; matic block signal or traffic control (2) The decrease of the limits of a territory where train speed over the block signal system, interlocking, traf- switch does not exceed 20 miles per fic control system, automatic train hour; or stop, train control, or cab signal sys- (3) Removal of electric or mechanical tem; or lock, or signal used in lieu thereof, (3) The modification of a block signal from hand-operated switch in auto- system, interlocking, traffic control matic block signal or traffic control system, automatic train stop, train territory where trains are not per- control, or cab signal system.
    [Show full text]
  • Developing Standards for New Technology Signal Systems for Rail Transit Applications
    Transactions on the Built Environment vol 34, © 1998 WIT Press, www.witpress.com, ISSN 1743-3509 Developing standards for new technology signal systems for rail transit applications A. F. Rumsey Parsons Transportation, New York, U.S.A. Abstract Radio communications-based train control (CBTC) systems, also referred to as transmission-based signalling (TBS) systems, permit more effective utilization of rail transit infrastructure by allowing trains to operate safety at much closer headways, by permitting greater flexibility and greater precision in train control, and by providing continuous safe train separation assurance and overspeed protection. One of the challenges facing transit agencies who are considering the introduction of CBTC systems, however, is the lack of industry standards for this emerging technology, and the current inability of trains equipped with CBTC equipment from one supplier to operate on track equipped with CBTC equipment from a second supplier. This paper reports on the status of two separate initiatives being taken in North America to develop standards for CBTC systems for rail transit applications; one based on a voluntary consensus development approach, and the second based on a competitive procurement approach. 1 Background Conventional signalling and train control systems rely almost exclusively on track circuits to detect the presence of trains. Information on the status of the track ahead is provided to train operators either through wayside signals or trainborne cab signals. Ensuring compliance with the signals is achieved either through strict observance of operating procedures, or through automatic train protection features such as wayside electro-mechanical train stops, or trainborne supervisory equipment linked to the train's braking system.
    [Show full text]
  • Irse News Issue 161 November 2010 Irse Careers Page and Job Board
    IRSE NEWS ISSUE 161 NOVEMBER 2010 IRSE CAREERS PAGE AND JOB BOARD The IRSE Careers site is now live at www.irse.org/careers Here you can view signalling job vacancies, fi nd out about other careers options, and contact recruiting companies to help you fi nd the next step in your career. For more information on the advertising and branding opportunities available, please contact Joe Brooks on +44 (0)20 657 1801 or [email protected]. Front Cover: Dakota, Minnesota & Eastern train Second 170, bound from Minneapolis, Minnesota to Kansas City, Missouri, passes the radio-activated switch at the north siding switch Eckards, Iowa, on 4 October 2009. This is one of several locations on the DM&E system where radio-activated switches are used to expedite train operations without the expense of a full Centralized Traffic Control (CTC) installation. Photo by Jon Roma NEWS VIEW 161 Let’s plan for the future IRSE NEWS is published monthly by the Institution of The UK Government has unveiled their spending review during October, pledging to Railway Signal Engineers (IRSE). The IRSE is not as a invest more than 30 billion pounds on transport projects over the next four years, with body responsible for the opinions expressed in IRSE NEWS. this sector seen as a particular key driver for economic growth and productivity. © Copyright 2010, IRSE. All rights reserved. This includes 14 billion pounds of funding that will go to Network Rail to support No part of this publication may be reproduced, maintenance and investment, including improvements to the East Coast Main Line, stored in a retrieval system, or transmitted in any station upgrades around the West Midlands and signal replacement programmes in form or by any means without the permission in writing of the publisher.
    [Show full text]
  • ERTMS/ETCS - Indian Railways Perspective
    ERTMS/ETCS - Indian Railways Perspective P Venkata Ramana IRSSE, MIRSTE, MIRSE Abstract nal and Balise. Balises are passive devices and gets energised whenever Balise Reader fitted on Locomo- European Railway Traffic Management System tive passes over it. On energisation, balises transmits (ERTMS) is evolved to harmonize cross-border rail telegrams to OBE. Telegram may consist of informa- connections for seamless operations across European tion about aspect of Lineside Signal, Gradients etc., nations. ERTMS is stated to be the most performant Balises are generally grouped and unique identifica- train control system which brings significant advan- tion will be provided to each balise. It helps to detect tages in terms of safety, reliability, punctuality and the direction of train. There four types of balises ex- traffic capacity. ERT.MS is evolving as a global stan- ist based their usage - Switchable, Infill, Fixed and dard. Many countries outside Europe - US, China, Repositioning balises. Switchable balises will be pro- Taiwan, South Korea and Saudi Arabia have adopted vided near lineside signals and they transmit aspect ERTMS standards for train traffic command and con- of lineside signal, permanent speed restrictions, gra- trol. dient information etc., Infill balises are provided in advance of signals to convey aspect of lineside signals earlier than Switchable balises. Fixed balises convey 1 Introduction information in regard to temporary speed restrictions and Repositioning balises provides data corrections. Signalling component of ERTMS has basically Balises transmit data in long or short telegrams four components - European Train Control System and those pertaining to direction. They are of two (ETCS) with Automatic Train Protection System, types - standard and reduced.
    [Show full text]
  • Low-Cost Highway-Rail Intersection Active Warning System Field
    Low•Cost Highway•Rail Intersection Active Warning System Field Operational Test Evaluation Report Prepared for: December 2005 Low•Cost Highway•Rail Intersection Active Warning System Field Operational Test Evaluation Report Prepared for: Minnesota Department of Transportation Office of Traffic, Security and Operations Prepared by: URS Corporation and TranSmart Technologies, Inc. December 2005 Table of Contents EXECUTIVE SUMMARY .......................................................................................................... v 1. INTRODUCTION................................................................................................................. 1 1.1 ROJECTP PURPOSE............................................................................................................ 2 1.2 ARTICIPANTSP .................................................................................................................. 3 2. PROJECT BACKGROUND................................................................................................ 4 2.1 YSTEMS DEVELOPMENT, TESTING, AND FIELD OPERATIONAL TEST................................ 4 2.2 HUMAN FACTORS EVALUATION....................................................................................... 6 3. REVIEW OF EMERGING HRI TECHNOLOGY ........................................................... 7 3.1 OVERVIEW OF ACTIVE WARNING TECHNOLOGY ............................................................. 7 3.2 MERGINGE HRI TECHNOLOGY........................................................................................
    [Show full text]
  • Intelligent Transportation Systems at Highway-Rail Intersections a Cross-Cutting Study
    Intelligent Transportation Systems at Highway-Rail Intersections A Cross-Cutting Study Improving Safety and Mobility at Highway-Rail Grade Crossings December 2001 Intelligent Transportation Systems at Highway-Rail Intersections: A Cross-Cutting Study i Executive Summary In 1997, the ITS Joint Program Office (JPO) at the Federal Highway Administration commissioned a study to identify projects being conducted in the U.S. that used Intelligent Transportation Systems (ITS) at highway-rail grade crossings, including not only those projects that were Federally-sponsored, but state and locally-sponsored ones, as well. The study identified seven projects that tested five functions: in-vehicle warning, second train warning, use of crossing blockage information for traveler information and traffic management, four quadrant gates with automatic train stop, and a comprehensive set of technologies called the Intelligent Grade Crossing. The following year, the JPO commissioned a cross-cutting study to examine the commonalities and differences among the seven projects. This report documents the findings of that cross-cutting study: · Several railroads were reluctant to fully participate in the projects due to liability, safety and operational concerns. Although there were exceptions, passenger railroads – and, in particular, light rail transit – tended to be more involved in these projects than freight railroads. · In all but one of the seven projects examined in this study, the largest share of funding came from the Federal level, through either direct Federal grants or Congressional designations. In the one project that was the exception to this rule, the largest share of funding came from a private sector technology vendor who made in-kind contributions, using the opportunity of the test to refine its prototype system.
    [Show full text]