The Inguinal and Lacunar Ligaments

Total Page:16

File Type:pdf, Size:1020Kb

The Inguinal and Lacunar Ligaments J. Anat. (1974), 118, 2, pp. 241-251 241 With 4 figures Printed in Great Britain The inguinal and lacunar ligaments W. J. LYTLE Royal Infirmary, Sheffield (Accepted 12 May 1974) INTRODUCTION The inguinal and lacunar ligaments have, over the years, been beset by many problems, not only from changes in their names, but also from doubts about their precise anatomy. Gimbernat (1795), in the English translation'of his book on femoral hernia, described in detail the crural arch, subsequently known as Poupart's ligament, and now the inguinal ligament. He described the crural arch as a remarkable plait or duplicature backwards of the aponeurosis of the external oblique muscle, more manifest towards the os pubis, having a broad insertion for 1 inch or more into the 'crest' of the pubis. Gimbernat's 'crest' became later known as the iliopectineal line and is now called the pecten pubis. The inguinal ligament is often described as a cord which extends from the anterior superior iliac spine to the pubic tubercle, the remainder being named its pectineal part, but as this name is also given to the lacunar ligament it will not be used again in this article. The aponeurotic inguinal ligament, as here described, has a 2 5 cm broad attachment to the pubic tubercle and pecten pubis. The lacunar ligament, with its characteristic curved edge, lies much deeper, and is so closely hidden behind the inguinal ligament and posterior inguinal wall that its exact position and relations still remain uncertain. Gimbernat described this deep part as a membranous expansion from the posterior border of the medial part of the inguinal ligament, passing back to the pecten pubis-and inserting itself behind the femoral sheath. This is, in fact, thefascial lacunar ligament derived, as will be shown, from the fascia lata of the thigh, but it is remarkable that Gimbernat did not mention its important curved edge. However, two curved edges are seen by the surgeon operating on cases of strangu- lated femoral hernia where gangrenous bowel requires resection by a combined approach through the abdominal wall and below the inguinal ligament. The upper curved edge, viewed from within the abdominal cavity, lies on the medial side of the femoral ring, where it is attached to the pecten pubis. The lower curved edge, seen from below the inguinal ligament, lies on the medial side of the neck of the femoral hernial sac well below the pecten. A full exposure and photograph of the lacunar liga- ment should disclose which of the curved edges belongs to it. Unfortunately, there is much difficulty in exposing thelacunar ligament in the dissecting room, for in hardened preserved bodies the fascial layers of the groin adhere firmly and resist separation. In the living body, at inguinal hernia operations, the lacunar ligament can be exposed and clearly seen, but it lies in a very confined space and is difficult to photograph. I 242 W. J. LYTLE Fig. 1. Photograph of a dissection of the right groin. Note: 1. Upper and lateral quadrant: cut edge of external oblique aponeurosis. 2. Upper and medial: retractor raises the posterior inguinal wall to show the pecten pubis and lacunar ligament. 3. Lower and medial: inguinal ligament cut and drawn forwards to show the fascia lata laterally and lacunar ligament medially arising from its posterior border. 4. In the centre: large oblong area of transversalis fascia of the posterior inguinal wall and femoral sheath with white shining patches on its surface. have illustrated the lacunar ligament by drawings (1957), as have also Madden et al. (1971), but drawings of this elusive ligament have differed so widely over the years that the situation is highly confused. In the fresh cadaver, fascial layers are readily separated, and, by wide incisions and forcible retraction, both inguinal and lacunar ligaments can be clearly displayed and photographed. OBSERVATIONS Figure 1 is a photograph of a dissection of the right groin, in a male subject, shortly after death. The aponeurosis of the external oblique muscle has been widely divided, 2 cm above and parallel with the inguinal ligament. In the upper and lateral quadrant of the photograph, the upper cut edge of the external oblique aponeurosis is clearly The inguinal and lacunar ligaments 243 seen, but medially, where the three-pronged retractor lies, the cut edge is overlain by fat. This three-pronged retractor has also drawn up, and holds in its grasp the greyish white transversalis fascia of the medial part of the posterior inguinal wall, and this has exposed a 3 cm length of the pecten pubis which lies 1 cm below the prongs of the retractor. Anterior to the pecten is a striking view of the dark grey lacunar ligament with its curved edge. In the medial and lower quadrant of the photograph the white shining fibres of the medial half of the inguinal ligament stand out. The ligament has been cut across 7 cm lateral to the pubic tubercle, whose position is shown by a white circular marker. The cut end of the medial half of the ligament has been seized by partially hidden artery forceps and vigorously pulled downwards and forwards, exposing in the centre of the photograph a large quadrilateral light grey area with shining white patches on its surface. The upper third of this area is the transversalis fascia of the posterior inguinal wall, from which the inguinal ligament has been forcibly detached. The lower two-thirds is the transversalis fascia of the anterior wall of the femoral sheath. Traction on the inguinal ligament has detached its posterior border from the posterior inguinal wall and arising from this border, in front of the femoral sheath, is a dark grey band of fascia. This band when followed medially joins the lacunar ligament. This is the fascia lata of the thigh which is passing down to cover the femoral sheath, and more medially to form the lacunar ligament whose curved edge has also been detached by traction from the femoral sheath. The inguinal ligament The inguinal ligament extends from the anterior superior iliac spine, where it is pointed and narrow, to its broad insertion into the pubic tubercle and along the pecten pubis for 1 5-2-5 cm. The ligament is the lower border of the external oblique aponeurosis folded back at right-angles upon itself. It has an anterior and a posterior border which lie in the same horizontal plane. The ligament is set obliquely in the groin, at an angle which varies from 35 to 40 degrees to the horizontal, and measures some 12-14 cm in length. The fibres of the external oblique aponeurosis do not lie parallel with the inguinal ligament, as is often shown, for each fibre approaches it at an angle which varies from 10 to 20 degrees, and this is well illustrated by Astley Cooper's artist (1844) whose lithograph is reproduced in Figure 2. There is not a simple folding back of the aponeurosis which would result in a ligament of similar strength, with fibres lying obliquely in the ligament and ending at its posterior border. Instead, each oblique fibre of the aponeurosis, on entering the ligament, turns medially to lie in its long axis. Except for some fibres which, near the anterior superior iliac spine, may end in the fascia lata, the fibres all pass to their insertion into the pubic tubercle and pecten pubis. The obliquity of the fibres entering the inguinal ligament allows of a broad band of aponeurosis to be closely packed into a relatively narrow and strong ligament. This broad band can be outlined by splitting the aponeurosis from the superficial inguinal ring, upwards and laterally, along the line of its fibres (Fig. 3). Measuring upwards from the anterior superior iliac spine at right angles to the fibres, the band of the external oblique aponeurosis varies from 3 to 5 cm in width and this band is concentrated into a ligament of less than half its width. Figure 3 shows how the fibres of the broad band of aponeurosis, here shown widely spaced, converge I6 AANA ii8 244 W. J. LYTLE Fig. 2. Astley Cooper's drawing showing the obliquity of the fibres of the external oblique aponeurosis entering the inguinal ligament. to form a ligament with fibres closely placed in its long axis. In addition, the apo- neurosis is shown turned down to reveal its deep surface, and here the fibres are drawn in interrupted lines to demonstrate their entry into the inguinal ligament. The external oblique aponeurosis is thickest and strongest in the lower abdomen and this gives added strength to the ligament. The ligament, of uniform thickness, is pointed and narrow at the anterior superior iliac spine and gradually widens medially as it receives additional fibres from the external oblique aponeurosis, to measure trans- versely from 05 to 1 cm in front of the femoral sheath and from 1 to 1 5 cm near its insertion. Rarely do the fibres of the aponeurosis lie almost parallel with the inguinal ligament and in these cases the ligament is both narrow and weak. The inguinal and lacunar ligaments 245 Fig. 3. Diagram to show how the oblique fibres of the external oblique aponeurosis, shown widely spaced, influence the shape, direction of the fibres and strength of the inguinal ligament. The aponeurosis is turned down, exposing its deep surface, to indicate how its fibres, shown in interrupted lines, are concentrated in the inguinal ligament. The narrow lateral half of the inguinal ligament, measuring from 6 to 7 cm in length, has an inferior surface fixed to the fascia lata of the thigh, which here appears to be the fascia iliaca continued forward from the posterior abdominal wall.
Recommended publications
  • The Femoral Hernia: Some Necessary Additions
    International Journal of Clinical Medicine, 2014, 5, 752-765 Published Online July 2014 in SciRes. http://www.scirp.org/journal/ijcm http://dx.doi.org/10.4236/ijcm.2014.513102 The Femoral Hernia: Some Necessary Additions Ljubomir S. Kovachev Department of General Surgery, Medical University, Pleven, Bulgaria Email: [email protected] Received 28 April 2014; revised 27 May 2014; accepted 26 June 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Purpose: The anatomic region through which most inguinal hernias emerge is overcrowded by various anatomical structures with intricate relationships. This is reflected by the wide range of anatomic interpretations. Material and Methods: A prospective anatomic study of over 100 fresh cadavers and 47 patients operated on for femoral hernias. Results: It was found that the transver- salis fascia did not continue distally into the lymphatic lacuna. Medially this fascia did not reach the lacunar ligament, but was rather positioned above it forming laterally the vascular sheath. Here the fascia participates in the formation of a fossa, which varies in width and depth—the pre- peritoneal femoral fossa. The results did not confirm the presence of a femoral canal. The dis- tances were measured between the pubic tubercle and the medial margin of the femoral vein, and between the inguinal and the Cooper’s ligaments. The results clearly indicate that in women with femoral hernias these distances are much larger. Along the course of femoral hernia exploration we established the presence of three zones that are rigid and narrow.
    [Show full text]
  • Tension Free Femoral Hernia Repair with Plug Milivoje Vuković1, Nebojša Moljević1, Siniša Crnogorac2
    Journal of Acute Disease (2013)40-43 40 Contents lists available at ScienceDirect Journal of Acute Disease journal homepage: www.jadweb.org Document heading doi: 10.1016/S2221-6189(13)60093-1 Tension free femoral hernia repair with plug Milivoje Vuković1, Nebojša Moljević1, Siniša Crnogorac2 1Clinical Center of Vojvodina, Clinic for Abdominal, Endocrine and Transplantation Surgery, Novi Sad, Serbia 2Clinical Center of Vojvodina, Emergency Center, Novi Sad, Serbia ARTICLE INFO ABSTRACT Article history: Objective: To investigate the conventional technique involves treatment of femoral hernia an Received 10 January 2012 approximation inguinal ligament to pectinealMethod: ligament. In technique which uses mesh closure for Received in revised form 15 March 2012 femoral canal without tissue tension. A prospective study from January 01. 2007-May Accepted 15 May 2012 30. 2009. We analyzed 1 042 patients with inguinal hernia, of which there were 83 patients with 86 Available online 20 November 2012 Result: femoral hernia. Femoral hernias were present in 7.96% of cases. Males were 13 (15.66%) and 70 women (84.34%). The gender distribution of men: women is 1:5.38. Urgent underwent 69 Keywords: (83%), and the 14 election (17%) patients. Average age was 63 years, the youngest patient was a Femoral hernia 24 and the oldest 86 years. Ratio of right: left hernias was 3.4:1. With bilateral femoral hernias % ( %) Mesh+plug Conclusions:was 3.61 of cases. In 7 patients 8.43 underwent femoral hernia repair with 9 Prolene plug. Hernioplasty The technique of closing the femoral canal with plug a simple. The plug is made from monofilament material and is easily formed.
    [Show full text]
  • Sportsman's Hernia
    International Surgery Journal Vagholkar K et al. Int Surg J. 2019 Jul;6(7):2659-2662 http://www.ijsurgery.com pISSN 2349-3305 | eISSN 2349-2902 DOI: http://dx.doi.org/10.18203/2349-2902.isj20192564 Review Article Sportsman’s hernia Ketan Vagholkar*, Shivangi Garima, Yash Kripalani, Shantanu Chandrashekhar, Suvarna Vagholkar Department of Surgery, D.Y. Patil University School of Medicine, Navi Mumbai, Maharashtra, India Received: 14 May 2019 Accepted: 30 May 2019 *Correspondence: Dr. Ketan Vagholkar, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Sportsman’s hernia is a complex entity with injuries occurring at different levels in the groin region. Each damaged anatomical structure gives rise to a different set of symptoms and signs making the diagnosis difficult. The apprehension of a hernia is foremost in the mind of the surgeon. Absence of a hernia sac adds to the confusion. Hence awareness of this condition is essential for the general surgeon to avoid misdiagnosis. Keywords: Sportsman’s hernia, Gilmore's groin, Athletic pubalgia INTRODUCTION insert only anterior to the rectus muscle making it an area of potential weakness. The only structure protecting this Sportsman’s hernia also described as Gilmore’s groin is area is the transversalis fascia. The aponeurosis of an entity which is becoming increasingly common internal oblique and transversus abdominis fuse medially amongst athletes especially professional athletes such as to form the conjoint tendon before insertion into the footballers, hockey players etc.1,2 The diagnosis is pubic tubercle.
    [Show full text]
  • Femoral Nerve Dimensions at the Inguinal Ligament and Inguinal Crease Levels: Implications for Femoral Nerve Block
    Original article http://dx.doi.org/10.4322/jms.062413 Femoral nerve dimensions at the inguinal ligament and inguinal crease levels: implications for femoral nerve block OYEDUN, O. S.1*, RUKEWE, A.2 and FATIREGUN, A.3 1Gross Anatomy Lab, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, +234 Ibadan, Oyo State, Nigéria 2Anaesthesia Unit, Accident and Emergency Department, University College Hospital, +234 Ibadan, Oyo State, Nigéria 3Department of Epidemiology and Medical Statistics, Faculty of Public Health, University of Ibadan, +234 Ibadan, Oyo State, Nigéria *E-mail: [email protected] Abstract Introduction: Femoral nerve block, when used solely or as a supplement to general anaesthesia, provides anaesthesia and analgesia to the anterior thigh. In spite of its established benefits, femoral nerve block is still underutilized in Nigeria. Our objective was to study the dimensions of femoral nerve at the level of the inguinal ligament and inguinal crease using a cadaveric model; no such data exists in Nigeria. Materials and Methods: Using 7 adult human cadavers (6 males and 1 female), the depth and thickness of the femoral nerve were measured at the levels of inguinal ligament and inguinal crease. The spatial relationship of femoral nerve to the surrounding structures was also observed. Result: The study showed a significantly wider thickness and shorter depth of the femoral nerve at the level of inguinal crease relative to inguinal ligament. Conclusion: We concluded that in centers where ultrasound and neurostimulation techniques for femoral nerve block in Nigerians are unavailable, the inguinal crease level where the femoral nerve is more superficial and wider in thickness would be the landmark of choice compared to the inguinal ligament level.
    [Show full text]
  • Sportsmans Groin: the Inguinal Ligament and the Lloyd Technique
    Rennie, WJ and Lloyd, DM. Sportsmans Groin: The Inguinal Ligament and the Lloyd Technique. Journal of the Belgian Society of Radiology. 2017; 101(S2): 16, pp. 1–4. DOI: https://doi.org/10.5334/jbr-btr.1404 OPINION ARTICLE Sportsmans Groin: The Inguinal Ligament and the Lloyd Technique WJ Rennie and DM Lloyd Groin pain is a catch all phrase used to define a common set of symptoms that affect many individuals. It is a common condition affecting sportsmen and women (1, 2) and is often referred to as the sportsman groin (SG). Multiple surgical operations have been developed to treat these symptoms yet no definitive imaging modalities exist to diagnose or predict prognosis. This article aims to discuss the anatomy of the groin, suggest a biomechanical pathophysiology and outline a logical surgical solution to treat the underlying pathology. A systematic clinical and imaging approach with inguinal ligament and pubic specific MRI assessment, can result in accurate selection for intervention. Close correlation with clinical examination and imaging in series is recommended to avoid misinterpretation of chronic changes in athletes. Keywords: Groin pain; Inguinal Ligament; MRI; Surgery; Lloyd release Introduction from SG is due to altered biomechanics, with specific pain Groin pain is a catch all phrase used to define a common symptoms that differ from those caused by inguinal or set of symptoms that affect many individuals. It is a com- femoral hernias. mon condition affecting sportsmen and women [1, 2] and is often referred to as the sportsman groin (SG). Multiple Anatomy of Sportsman’s Groin surgical operations have been developed to treat these The anatomical central structure in the groin is the pubic symptoms, yet no definitive imaging modalities exist to bone.
    [Show full text]
  • Inguinofemoral Area
    Inguinofemoral Area Inguinal Canal Anatomy of the Inguinal Canal in Infants and Children There are readily apparent differences between the inguinal canals of infants and adults. In infants, the canal is short (1 to 1.5 cm), and the internal and external rings are nearly superimposed upon one another. Scarpa's fascia is so well developed that the surgeon may mistake it for the aponeurosis of the external oblique muscle, resulting in treating a superficial ectopic testicle as an inguinal cryptorchidism. There also may be a layer of fat between the fascia and the aponeurosis. We remind surgeons of the statement of White that the external oblique fascia has not been reached as long as fat is encountered. In a newborn with an indirect inguinal hernia, there is nothing wrong with the posterior wall of the inguinal canal. Removal of the sac, therefore, is the only justifiable procedure. However, it is extremely difficult to estimate the weakness of the newborn's posterior inguinal wall by palpation. If a defect is suspected, a few interrupted permanent sutures might be used to perform the repair. Adult Anatomy of the Inguinal Canal The inguinal canal in the adult is an oblique rift in the lower part of the anterior abdominal wall. It measures approximately 4 cm in length. It is located 2 to 4 cm above the inguinal ligament, between the opening of the external (superficial) and internal (deep) inguinal rings. The boundaries of the inguinal canal are as follows: Anterior: The anterior boundary is the aponeurosis of the external oblique muscle and, more laterally, the internal oblique muscle.
    [Show full text]
  • Describe the Anatomy of the Inguinal Canal. How May Direct and Indirect Hernias Be Differentiated Anatomically
    Describe the anatomy of the inguinal canal. How may direct and indirect hernias be differentiated anatomically. How may they present clinically? Essentially, the function of the inguinal canal is for the passage of the spermatic cord from the scrotum to the abdominal cavity. It would be unreasonable to have a single opening through the abdominal wall, as contents of the abdomen would prolapse through it each time the intraabdominal pressure was raised. To prevent this, the route for passage must be sufficiently tight. This is achieved by passing through the inguinal canal, whose features allow the passage without prolapse under normal conditions. The inguinal canal is approximately 4 cm long and is directed obliquely inferomedially through the inferior part of the anterolateral abdominal wall. The canal lies parallel and 2-4 cm superior to the medial half of the inguinal ligament. This ligament extends from the anterior superior iliac spine to the pubic tubercle. It is the lower free edge of the external oblique aponeurosis. The main occupant of the inguinal canal is the spermatic cord in males and the round ligament of the uterus in females. They are functionally and developmentally distinct structures that happen to occur in the same location. The canal also transmits the blood and lymphatic vessels and the ilioinguinal nerve (L1 collateral) from the lumbar plexus forming within psoas major muscle. The inguinal canal has openings at either end – the deep and superficial inguinal rings. The deep (internal) inguinal ring is the entrance to the inguinal canal. It is the site of an outpouching of the transversalis fascia.
    [Show full text]
  • Clinical Pelvic Anatomy
    SECTION ONE • Fundamentals 1 Clinical pelvic anatomy Introduction 1 Anatomical points for obstetric analgesia 3 Obstetric anatomy 1 Gynaecological anatomy 5 The pelvic organs during pregnancy 1 Anatomy of the lower urinary tract 13 the necks of the femora tends to compress the pelvis Introduction from the sides, reducing the transverse diameters of this part of the pelvis (Fig. 1.1). At an intermediate level, opposite A thorough understanding of pelvic anatomy is essential for the third segment of the sacrum, the canal retains a circular clinical practice. Not only does it facilitate an understanding cross-section. With this picture in mind, the ‘average’ of the process of labour, it also allows an appreciation of diameters of the pelvis at brim, cavity, and outlet levels can the mechanisms of sexual function and reproduction, and be readily understood (Table 1.1). establishes a background to the understanding of gynae- The distortions from a circular cross-section, however, cological pathology. Congenital abnormalities are discussed are very modest. If, in circumstances of malnutrition or in Chapter 3. metabolic bone disease, the consolidation of bone is impaired, more gross distortion of the pelvic shape is liable to occur, and labour is likely to involve mechanical difficulty. Obstetric anatomy This is termed cephalopelvic disproportion. The changing cross-sectional shape of the true pelvis at different levels The bony pelvis – transverse oval at the brim and anteroposterior oval at the outlet – usually determines a fundamental feature of The girdle of bones formed by the sacrum and the two labour, i.e. that the ovoid fetal head enters the brim with its innominate bones has several important functions (Fig.
    [Show full text]
  • Iliopectineal Ligament As an Important Landmark in Ilioinguinal Approach of the Anterior Acetabulum
    International Journal of Anatomy and Research, Int J Anat Res 2019, Vol 7(3.3):6976-82. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2019.274 ILIOPECTINEAL LIGAMENT AS AN IMPORTANT LANDMARK IN ILIOINGUINAL APPROACH OF THE ANTERIOR ACETABULUM: A CADAVERIC MORPHOLOGIC STUDY Ayman Ahmed Khanfour *1, Ashraf Ahmed Khanfour 2. *1 Anatomy department Faculty of Medicine, Alexandria University, Egypt. 2 Chairman of Orthopaedic surgery department Damanhour National Medical Institute Egypt. ABSTRACT Background: The iliopectineal ligament is the most stout anterior part of the iliopectineal membrane. It separates “lacuna musculorum” laterally from “lacuna vasorum” medially. This ligament is an important guide in the safe anterior approach to the acetabulum. Aim of the work: To study the detailed anatomy of the iliopectineal ligament demonstrating its importance as a surgical landmark in the anterior approach to the acetabulum. Material and methods: The material of this work included eight adult formalin preserved cadavers. Dissection of the groin was done for each cadaver in supine position with exposure of the inguinal ligament. The iliopectineal ligament and the three surgical windows in the anterior approach to the acetabulum were revealed. Results: Results described the detailed morphological anatomy of the iliopectineal ligament as regard its thickness, attachments and variations in its thickness. The study also revealed important anatomical measurements in relation to the inguinal ligament. The distance between the anterior superior iliac spine (ASIS) to the pubic tubercle ranged from 6.7 to 10.1 cm with a mean value of 8.31±1.3. The distance between the anterior superior iliac spine (ASIS) to the blending point of the iliopectineal ligament to the inguinal ligament ranged from 1.55 to 1.92 cm with a mean value of 1.78±0.15.
    [Show full text]
  • Henle's Ligament: a Comprehensive Review of Its Anatomy and Terminology Over Almost One and a Half Centuries
    Providence St. Joseph Health Providence St. Joseph Health Digital Commons Journal Articles and Abstracts 9-26-2018 Henle's Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries. Raja Gnanadev Joe Iwanaga Rod J Oskouian Neurosurgery, Swedish Neuroscience Institute, Seattle, USA. Marios Loukas R Shane Tubbs Follow this and additional works at: https://digitalcommons.psjhealth.org/publications Part of the Medical Pathology Commons, and the Neurosciences Commons Recommended Citation Gnanadev, Raja; Iwanaga, Joe; Oskouian, Rod J; Loukas, Marios; and Tubbs, R Shane, "Henle's Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries." (2018). Journal Articles and Abstracts. 996. https://digitalcommons.psjhealth.org/publications/996 This Article is brought to you for free and open access by Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Journal Articles and Abstracts by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact [email protected]. Open Access Review Article DOI: 10.7759/cureus.3366 Henle’s Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries Raja Gnanadev 1 , Joe Iwanaga 2 , Rod J. Oskouian 3 , Marios Loukas 4 , R. Shane Tubbs 5 1. Research Fellow, Seattle Science Foundation, Seattle, USA 2. Medical Education and Simulation, Seattle Science Foundation, Seattle, USA 3. Neurosurgery, Swedish Neuroscience Institute, Seattle, USA 4. Anatomical Sciences, St. George's University, St. George's, GRD 5. Neurosurgery, Seattle Science Foundation, Seattle, USA Corresponding author: Joe Iwanaga, [email protected] Disclosures can be found in Additional Information at the end of the article Abstract Henle’s ligament was first described by German physician and anatomist, Friedrich Henle, in 1871.
    [Show full text]
  • Anatomical Study on the Psoas Minor Muscle in Human Fetuses
    Int. J. Morphol., 30(1):136-139, 2012. Anatomical Study on the Psoas Minor Muscle in Human Fetuses Estudio Anatómico del Músculo Psoas Menor en Fetos Humanos *Danilo Ribeiro Guerra; **Francisco Prado Reis; ***Afrânio de Andrade Bastos; ****Ciro José Brito; *****Roberto Jerônimo dos Santos Silva & *,**José Aderval Aragão GUERRA, D. R.; REIS, F. P.; BASTOS, A. A.; BRITO, C. J.; SILVA, R. J. S. & ARAGÃO, J. A. Anatomical study on the psoas minor muscle in human fetuses. Int. J. Morphol., 30(1):136-139, 2012. SUMMARY: The anatomy of the psoas minor muscle in human beings has frequently been correlated with ethnic and racial characteristics. The present study had the aim of investigating the anatomy of the psoas minor, by observing its occurrence, distal insertion points, relationship with the psoas major muscle and the relationship between its tendon and muscle portions. Twenty-two human fetuses were used (eleven of each gender), fixed in 10% formol solution that had been perfused through the umbilical artery. The psoas minor muscle was found in eight male fetuses: seven bilaterally and one unilaterally, in the right hemicorpus. Five female fetuses presented the psoas minor muscle: three bilaterally and two unilaterally, one in the right and one in the left hemicorpus. The muscle was independent, inconstant, with unilateral or bilateral presence, with distal insertions at different anatomical points, and its tendon portion was always longer than the belly of the muscle. KEY WORDS: Psoas Muscles; Muscle, Skeletal; Anatomy; Gender Identity. INTRODUCTION When the psoas minor muscle is present in humans, The aim of the present study was to investigate the it is located in the posterior wall of the abdomen, laterally to anatomy of the psoas minor muscle in human fetuses: the lumbar spine and in close contact and anteriorly to the establishing the frequency of its occurrence according to sex; belly of the psoas major muscle (Van Dyke et al., 1987; ascertaining the distal insertion points; analyzing the possible Domingo, Aguilar et al., 2004; Leão et al., 2007).
    [Show full text]
  • Anterior Abdominal Wall
    Abdominal wall Borders of the Abdomen • Abdomen is the region of the trunk that lies between the diaphragm above and the inlet of the pelvis below • Borders Superior: Costal cartilages 7-12. Xiphoid process: • Inferior: Pubic bone and iliac crest: Level of L4. • Umbilicus: Level of IV disc L3-L4 Abdominal Quadrants Formed by two intersecting lines: Vertical & Horizontal Intersect at umbilicus. Quadrants: Upper left. Upper right. Lower left. Lower right Abdominal Regions Divided into 9 regions by two pairs of planes: 1- Vertical Planes: -Left and right lateral planes - Midclavicular planes -passes through the midpoint between the ant.sup.iliac spine and symphysis pupis 2- Horizontal Planes: -Subcostal plane - at level of L3 vertebra -Joins the lower end of costal cartilage on each side -Intertubercular plane: -- At the level of L5 vertebra - Through tubercles of iliac crests. Abdominal wall divided into:- Anterior abdominal wall Posterior abdominal wall What are the Layers of Anterior Skin Abdominal Wall Superficial Fascia - Above the umbilicus one layer - Below the umbilicus two layers . Camper's fascia - fatty superficial layer. Scarp's fascia - deep membranous layer. Deep fascia : . Thin layer of C.T covering the muscle may absent Muscular layer . External oblique muscle . Internal oblique muscle . Transverse abdominal muscle . Rectus abdominis Transversalis fascia Extraperitoneal fascia Parietal Peritoneum Superficial Fascia . Camper's fascia - fatty layer= dartos muscle in male . Scarpa's fascia - membranous layer. Attachment of scarpa’s fascia= membranous fascia INF: Fascia lata Sides: Pubic arch Post: Perineal body - Membranous layer in scrotum referred to as colle’s fascia - Rupture of penile urethra lead to extravasations of urine into(scrotum, perineum, penis &abdomen) Muscles .
    [Show full text]