Printable Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MUSCULOSKELETAL MRI Temporomandibular Joints (TMJ) Temporomandibular Joints (TMJ) MRI - W/O Contrast
MUSCULOSKELETAL MRI Temporomandibular Joints (TMJ) Temporomandibular joints (TMJ) MRI - W/O Contrast . CPT Code 70336 • Arthritis • TMJ disc abnormality • Osteonecrosis (AVN) Temporomandibular joints (TMJ) MRI - W and W/O Contrast . CPT Code 70336 • Arthritis/Synovitis • Mass/Tumor Chest Chest Wall/Rib, Sternum, Bilateral Pectoralis Muscles, Bilateral Clavicles MRI - W/O Contrast . CPT Code 71550 • Rib fracture, costochondral cartilage injury • Muscle, tendon or nerve injury Chest Wall/Rib, Sternum, Bilateral Pectoralis Muscles, Bilateral Clavicles MRI - W and W/O Contrast . CPT Code 71552 • Mass/Tumor • Infection Upper Extremity (Non-Joint) Scapula MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Scapula MRI - W and W/O Contrast . CPT code 73220 • Mass/Tumor • Infection Humerus, Arm MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Humerus, Arm MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection Forearm MRI - W/O Contrast . CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Forearm MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection Hand MRI - W/O Contrast. CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Hand MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection • Tenosynovitis Finger(s) MRI - W/O Contrast. CPT Code 73218 • Fracture • Muscle, tendon or nerve injury Finger(s) MRI - W and W/O Contrast . CPT Code 73220 • Mass/Tumor • Infection • Tenosynovitis Upper Extremity (Joint) Shoulder MRI - W/O Contrast. CPT Code 73221 • Muscle, tendon (rotator cuff) or nerve injury • Fracture • Osteoarthritis Shoulder MRI - W Contrast (Arthrogram only; no IV contrast) . CPT Code 73222 • Labral (SLAP) tear • Rotator cuff tear Shoulder MRI - W and W/O Contrast . -
Femoral Nerve Dimensions at the Inguinal Ligament and Inguinal Crease Levels: Implications for Femoral Nerve Block
Original article http://dx.doi.org/10.4322/jms.062413 Femoral nerve dimensions at the inguinal ligament and inguinal crease levels: implications for femoral nerve block OYEDUN, O. S.1*, RUKEWE, A.2 and FATIREGUN, A.3 1Gross Anatomy Lab, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, +234 Ibadan, Oyo State, Nigéria 2Anaesthesia Unit, Accident and Emergency Department, University College Hospital, +234 Ibadan, Oyo State, Nigéria 3Department of Epidemiology and Medical Statistics, Faculty of Public Health, University of Ibadan, +234 Ibadan, Oyo State, Nigéria *E-mail: [email protected] Abstract Introduction: Femoral nerve block, when used solely or as a supplement to general anaesthesia, provides anaesthesia and analgesia to the anterior thigh. In spite of its established benefits, femoral nerve block is still underutilized in Nigeria. Our objective was to study the dimensions of femoral nerve at the level of the inguinal ligament and inguinal crease using a cadaveric model; no such data exists in Nigeria. Materials and Methods: Using 7 adult human cadavers (6 males and 1 female), the depth and thickness of the femoral nerve were measured at the levels of inguinal ligament and inguinal crease. The spatial relationship of femoral nerve to the surrounding structures was also observed. Result: The study showed a significantly wider thickness and shorter depth of the femoral nerve at the level of inguinal crease relative to inguinal ligament. Conclusion: We concluded that in centers where ultrasound and neurostimulation techniques for femoral nerve block in Nigerians are unavailable, the inguinal crease level where the femoral nerve is more superficial and wider in thickness would be the landmark of choice compared to the inguinal ligament level. -
Sportsmans Groin: the Inguinal Ligament and the Lloyd Technique
Rennie, WJ and Lloyd, DM. Sportsmans Groin: The Inguinal Ligament and the Lloyd Technique. Journal of the Belgian Society of Radiology. 2017; 101(S2): 16, pp. 1–4. DOI: https://doi.org/10.5334/jbr-btr.1404 OPINION ARTICLE Sportsmans Groin: The Inguinal Ligament and the Lloyd Technique WJ Rennie and DM Lloyd Groin pain is a catch all phrase used to define a common set of symptoms that affect many individuals. It is a common condition affecting sportsmen and women (1, 2) and is often referred to as the sportsman groin (SG). Multiple surgical operations have been developed to treat these symptoms yet no definitive imaging modalities exist to diagnose or predict prognosis. This article aims to discuss the anatomy of the groin, suggest a biomechanical pathophysiology and outline a logical surgical solution to treat the underlying pathology. A systematic clinical and imaging approach with inguinal ligament and pubic specific MRI assessment, can result in accurate selection for intervention. Close correlation with clinical examination and imaging in series is recommended to avoid misinterpretation of chronic changes in athletes. Keywords: Groin pain; Inguinal Ligament; MRI; Surgery; Lloyd release Introduction from SG is due to altered biomechanics, with specific pain Groin pain is a catch all phrase used to define a common symptoms that differ from those caused by inguinal or set of symptoms that affect many individuals. It is a com- femoral hernias. mon condition affecting sportsmen and women [1, 2] and is often referred to as the sportsman groin (SG). Multiple Anatomy of Sportsman’s Groin surgical operations have been developed to treat these The anatomical central structure in the groin is the pubic symptoms, yet no definitive imaging modalities exist to bone. -
Describe the Anatomy of the Inguinal Canal. How May Direct and Indirect Hernias Be Differentiated Anatomically
Describe the anatomy of the inguinal canal. How may direct and indirect hernias be differentiated anatomically. How may they present clinically? Essentially, the function of the inguinal canal is for the passage of the spermatic cord from the scrotum to the abdominal cavity. It would be unreasonable to have a single opening through the abdominal wall, as contents of the abdomen would prolapse through it each time the intraabdominal pressure was raised. To prevent this, the route for passage must be sufficiently tight. This is achieved by passing through the inguinal canal, whose features allow the passage without prolapse under normal conditions. The inguinal canal is approximately 4 cm long and is directed obliquely inferomedially through the inferior part of the anterolateral abdominal wall. The canal lies parallel and 2-4 cm superior to the medial half of the inguinal ligament. This ligament extends from the anterior superior iliac spine to the pubic tubercle. It is the lower free edge of the external oblique aponeurosis. The main occupant of the inguinal canal is the spermatic cord in males and the round ligament of the uterus in females. They are functionally and developmentally distinct structures that happen to occur in the same location. The canal also transmits the blood and lymphatic vessels and the ilioinguinal nerve (L1 collateral) from the lumbar plexus forming within psoas major muscle. The inguinal canal has openings at either end – the deep and superficial inguinal rings. The deep (internal) inguinal ring is the entrance to the inguinal canal. It is the site of an outpouching of the transversalis fascia. -
A+ Mobile Ultrasound Services LLC Seattle, WA 206-799-3301 [email protected] Musculoskeletal (MSK)
A+ Mobile Ultrasound Services LLC Seattle, WA 206-799-3301 [email protected] Musculoskeletal (MSK) www.APlusUltrasound.com Shoulder Hip • Rotator Cuff Tear/Tedonosis • Bowel Hernia • Biceps Tendon Tear • Sports Hernia • Tendinitis/Tenosynovitis/Subluxation • Snapping Hip Syndrome • Shoulder Impingement • Effusion • AC joint separation • Gluteal or thigh muscle injury • Fluid Collections – Bursitis / Effusion Knee Elbow • MCL / LCL Injury • Tennis Elbow – Lateral Epicondylitis • Iliotibial Band Syndrome • Golfer’s Elbow – Medial Epicondylitis • Jumper’s Knee – Patellar Tendon Injury • Biceps Tendon Insertion • Lateral, Medial or Posterior Meniscus Tear • Ulnar Nerve Entrapment • Runner’s knee • (Cubital Tunnel Syndrome) • Fluid collection – Bursitis / Effusion / Baker’s • Ulnar Collateral Ligament (UCL) Injury Cyst • Triceps Tendon Tear/Tendonosis Ankle/Foot • Fluid Collection – Bursitis / Effusion • Achilles’ Tendon Tear/Tendinitis Wrist • Tibial Tendon Tear/Tendinitis/Tenosynovitis • Medial Nerve Entrapment • Peroneal • Carpal Tunnel Syndrome Tear/Tendinitis/Tenosynovitis/Subluxation • Extensor Tendonosis/Tenosynovitis • Ankle Sprain – Ligament Injury (ATFL) • De Quervain’s Syndrome • High Ankle Sprain – Tibiofibular Ligament Tear • Flexor Tendonosis/Tenosynovitis • Tibial Nerve Entrapment Hand/Finger • Fluid Collection – Bursitis / Effusion • Trigger Finger • Plantar Fasciitis • Avulsion • Morton’s Neuroma • Fracture • Turf Toe MSK Jaw and Neck Ultrasound MSK Extremity – Non Joint • Neck Pain • Muscle Sprain/Tear • Whiplash -
Clinical Pelvic Anatomy
SECTION ONE • Fundamentals 1 Clinical pelvic anatomy Introduction 1 Anatomical points for obstetric analgesia 3 Obstetric anatomy 1 Gynaecological anatomy 5 The pelvic organs during pregnancy 1 Anatomy of the lower urinary tract 13 the necks of the femora tends to compress the pelvis Introduction from the sides, reducing the transverse diameters of this part of the pelvis (Fig. 1.1). At an intermediate level, opposite A thorough understanding of pelvic anatomy is essential for the third segment of the sacrum, the canal retains a circular clinical practice. Not only does it facilitate an understanding cross-section. With this picture in mind, the ‘average’ of the process of labour, it also allows an appreciation of diameters of the pelvis at brim, cavity, and outlet levels can the mechanisms of sexual function and reproduction, and be readily understood (Table 1.1). establishes a background to the understanding of gynae- The distortions from a circular cross-section, however, cological pathology. Congenital abnormalities are discussed are very modest. If, in circumstances of malnutrition or in Chapter 3. metabolic bone disease, the consolidation of bone is impaired, more gross distortion of the pelvic shape is liable to occur, and labour is likely to involve mechanical difficulty. Obstetric anatomy This is termed cephalopelvic disproportion. The changing cross-sectional shape of the true pelvis at different levels The bony pelvis – transverse oval at the brim and anteroposterior oval at the outlet – usually determines a fundamental feature of The girdle of bones formed by the sacrum and the two labour, i.e. that the ovoid fetal head enters the brim with its innominate bones has several important functions (Fig. -
Eastern Athletic Trainers' Association Annual Meeting & Clinical Symposium Cd Subject Index
EASTERN ATHLETIC TRAINERS’ ASSOCIATION ANNUAL MEETING & CLINICAL SYMPOSIUM CD SUBJECT INDEX 11/18/06 A ACI Questioning Skills (abstract)- 2006 ACL Injuries in Females-2004 ACL Surgery Workshop-2006 Acute Trauma With Recurrent Shoulder Instability (abstract)- 2006 Adherence To Rehabilitation- Research To Reality Presentation 2006 Alternatives to NSAIDS- 2006 An Infrapatellar Fat Pad Tear In A High School Athlete (abstract)- 2007 An Outcomes Analysis Of A Sports Medicine Approach To Prevent And Manage Work-Related Low Back Pain (abstract)- 2007 Anatomical and Biomechanical Assessments of Medial Tibial Stress Syndrome (abstract)- 2006 Anatomical Evaluation of Tibial Nerve (abstract)- 2006 Ankle Anatomy- 2004 Ankle- Chronic Dysfunction Test (abstract)- 2004 Ankle Injury- Return to Play Criteria- 2004 Ankle Research Update-2004 Ankle-Talar Dome Injury (abstract)- 2004 Anterior Cruciate Ligament Injury Of The Knee With Secondary Development Of A Deep Vein Thrombosis In An Intercollegiate Female Volleyball Player (abstract)- 2007 Aquatic Plyometric Training Program (abstract)- 2006 Aquatic Therapy- 2004 Asthma- 2004 Athletic Training Students’ Perception of Their Retention in Undergrad AT Programs (abstract)-04 Athletic Training Students’ Use Of Time During Clinical Education Experiences: A Case Study Approach Using Time Profiles (abstract) – 2005 Athletic Pubalgia And Adductor Tendon Avulsion Repair In A Collegiate Football Player (abstract)- 2007 Auscultation Skills- 2004 Automated External Defibrillators- 2004 Avulsion Fracture Of Lesser -
Iliopectineal Ligament As an Important Landmark in Ilioinguinal Approach of the Anterior Acetabulum
International Journal of Anatomy and Research, Int J Anat Res 2019, Vol 7(3.3):6976-82. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2019.274 ILIOPECTINEAL LIGAMENT AS AN IMPORTANT LANDMARK IN ILIOINGUINAL APPROACH OF THE ANTERIOR ACETABULUM: A CADAVERIC MORPHOLOGIC STUDY Ayman Ahmed Khanfour *1, Ashraf Ahmed Khanfour 2. *1 Anatomy department Faculty of Medicine, Alexandria University, Egypt. 2 Chairman of Orthopaedic surgery department Damanhour National Medical Institute Egypt. ABSTRACT Background: The iliopectineal ligament is the most stout anterior part of the iliopectineal membrane. It separates “lacuna musculorum” laterally from “lacuna vasorum” medially. This ligament is an important guide in the safe anterior approach to the acetabulum. Aim of the work: To study the detailed anatomy of the iliopectineal ligament demonstrating its importance as a surgical landmark in the anterior approach to the acetabulum. Material and methods: The material of this work included eight adult formalin preserved cadavers. Dissection of the groin was done for each cadaver in supine position with exposure of the inguinal ligament. The iliopectineal ligament and the three surgical windows in the anterior approach to the acetabulum were revealed. Results: Results described the detailed morphological anatomy of the iliopectineal ligament as regard its thickness, attachments and variations in its thickness. The study also revealed important anatomical measurements in relation to the inguinal ligament. The distance between the anterior superior iliac spine (ASIS) to the pubic tubercle ranged from 6.7 to 10.1 cm with a mean value of 8.31±1.3. The distance between the anterior superior iliac spine (ASIS) to the blending point of the iliopectineal ligament to the inguinal ligament ranged from 1.55 to 1.92 cm with a mean value of 1.78±0.15. -
Henle's Ligament: a Comprehensive Review of Its Anatomy and Terminology Over Almost One and a Half Centuries
Providence St. Joseph Health Providence St. Joseph Health Digital Commons Journal Articles and Abstracts 9-26-2018 Henle's Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries. Raja Gnanadev Joe Iwanaga Rod J Oskouian Neurosurgery, Swedish Neuroscience Institute, Seattle, USA. Marios Loukas R Shane Tubbs Follow this and additional works at: https://digitalcommons.psjhealth.org/publications Part of the Medical Pathology Commons, and the Neurosciences Commons Recommended Citation Gnanadev, Raja; Iwanaga, Joe; Oskouian, Rod J; Loukas, Marios; and Tubbs, R Shane, "Henle's Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries." (2018). Journal Articles and Abstracts. 996. https://digitalcommons.psjhealth.org/publications/996 This Article is brought to you for free and open access by Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Journal Articles and Abstracts by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact [email protected]. Open Access Review Article DOI: 10.7759/cureus.3366 Henle’s Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries Raja Gnanadev 1 , Joe Iwanaga 2 , Rod J. Oskouian 3 , Marios Loukas 4 , R. Shane Tubbs 5 1. Research Fellow, Seattle Science Foundation, Seattle, USA 2. Medical Education and Simulation, Seattle Science Foundation, Seattle, USA 3. Neurosurgery, Swedish Neuroscience Institute, Seattle, USA 4. Anatomical Sciences, St. George's University, St. George's, GRD 5. Neurosurgery, Seattle Science Foundation, Seattle, USA Corresponding author: Joe Iwanaga, [email protected] Disclosures can be found in Additional Information at the end of the article Abstract Henle’s ligament was first described by German physician and anatomist, Friedrich Henle, in 1871. -
Preventing Athletic Pubalgia and Chronic Groin Pain in the Soccer Player Layout 1
ERFORMANCE P SOCCER CONDITIONING A NEWSLETTER DEDICATED TO IMPROVING SOCCER PLAYERS www.performancecondition.com/soccer Preventing Athletic Pubalgia and Chronic Groin Pain in the Soccer Player Chet North The Many Causes of Groin Pain There can be pain in the hip area because of the many different structures there. You have glands that fight off infection plus muscles and tendons located in your upper thighs under the crease of your thigh and abdomen. There is a lot going on in this area. Adding to the situation in highly competitive soccer, even the articulating surface of the hips can cause some pain. With all this it's really hard to differentiate what the pain might be. Is it an articulating surface? Tendonitis? Rupture of a muscle or tendon? Or is it a situation where a tendon separated from part of a bone? There are many causes of pain in this very mobile area. As a coach, to call it pubalgia in the training room or on the soccer field is hard to do. It might be a strain or tendonitis of an adductor, which pulls the hip in. It might be a hip flexor, which brings the hip forward. It might be a pubalgia-type injury where you have strain of the abdominal wall and structures of the lower abdominal area; however, it's hard to determine. It's vague, and that's why you want to have a doctor look at these symptoms early on. A lot of the injuries we think are just muscle strains can be much more than that. -
Diagnosis and Management of Snapping Hip Syndrome
Cur gy: ren lo t o R t e a s e m a u r c e h h Via et al., Rheumatology (Sunnyvale) 2017, 7:4 R Rheumatology: Current Research DOI: 10.4172/2161-1149.1000228 ISSN: 2161-1149 Review article Open Access Diagnosis and Management of Snapping Hip Syndrome: A Comprehensive Review of Literature Alessio Giai Via1*, Alberto Fioruzzi2, Filippo Randelli1 1Department of Orthopaedics and Traumatology, Hip Surgery Center, IRCCS Policlinico San Donato, Milano, Italy 2Department of Orthopaedics and Traumatology, IRCCS Policlinico San Matteo, Pavia, Italy *Corresponding author: Alessio Giai Via, Department of Orthopaedics and Traumatology, Hip Surgery Center, IRCCS Policlinico San Donato, Milano, Italy, Tel: +393396298768; E-mail: [email protected] Received date: September 11, 2017; Accepted date: November 21, 2017; Published date: November 30, 2017 Copyright: ©2017 Via AG, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: Snapping hip is a common clinical condition, characterized by an audible or palpable snap of the hip joint. The snap can be perceived at the lateral side of the hip (external snapping hip), or at the medial (internal snapping hip). It is usually asymptomatic, but in few cases, in particular in athletes, the snap become painful (snapping hip syndrome-SHS). Materials and methods: This is a narrative review of current literature, which describes the pathogenesis, diagnosis and treatment of SHS. Conclusion: The pathogenesis of SHS is multifactorial. -
Laparoscopic Inguinal Ligament Suspension: a Novel Procedure to Repair Uterine Prolapse
International Urogynecology Journal (2019) 30:657–660 https://doi.org/10.1007/s00192-018-3780-6 IUJ VIDEO Laparoscopic inguinal ligament suspension: a novel procedure to repair uterine prolapse Zhiyuan Dai1 & Hui Li1 & Huimin Shu1 & Xiaohong Guan 1 & Kai Zhang2 Received: 25 December 2017 /Accepted: 24 September 2018 /Published online: 25 October 2018 # The International Urogynecological Association 2018 Abstract Introduction and hypothesis Traditionally, surgical treatment for uterine prolapse has included hysterectomy. However, more patients now prefer a uterine-preserving operation because of concerns about fertility or sexual dysfunction. In this video, we describe a novel approach to correcting uterine prolapse in an attempt to demonstrate an alternative option for patients. Methods A 42-year-old woman with symptomatic stage I-IV uterine prolapse (POP-Q: Aa +2, Ba +2, C + 3, gh 6.5, pb 3, TVL 8.5, Ap 0, Bp 0, D 0) underwent inguinal ligament suspension. The principle steps and techniques to complete the operation are outlined in the video. Results Prolapse repair was successfully completed without any intraoperative complications. The uterus was restored to its anatomic position. During the 12-month follow-up, neither recurrence nor postoperative complications, such as mesh exposure, de novo incontinence or bowel obstruction, etc., occurred. Conclusions Laparoscopic inguinal ligament suspension is a safe and feasible alternative for correcting the uterine prolapse. This surgery could be an attractive choice for patients who prefer a uterine-sparing surgery. Keywords Inguinal ligament suspension . Laparoscopic route . Pelvic organ prolapse . Uterine prolapse . Uterine-sparing surgery Aim of the video Methods Here we demonstrate the principle steps of laparoscopic in- The featured patient in the video is a 42-year-old multiparous guinal ligament suspension, a novel uterine-preserving proce- woman with 3 years of symptomatic apical prolapse.