Iliopectineal Ligament As an Important Landmark in Ilioinguinal Approach of the Anterior Acetabulum

Total Page:16

File Type:pdf, Size:1020Kb

Iliopectineal Ligament As an Important Landmark in Ilioinguinal Approach of the Anterior Acetabulum International Journal of Anatomy and Research, Int J Anat Res 2019, Vol 7(3.3):6976-82. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2019.274 ILIOPECTINEAL LIGAMENT AS AN IMPORTANT LANDMARK IN ILIOINGUINAL APPROACH OF THE ANTERIOR ACETABULUM: A CADAVERIC MORPHOLOGIC STUDY Ayman Ahmed Khanfour *1, Ashraf Ahmed Khanfour 2. *1 Anatomy department Faculty of Medicine, Alexandria University, Egypt. 2 Chairman of Orthopaedic surgery department Damanhour National Medical Institute Egypt. ABSTRACT Background: The iliopectineal ligament is the most stout anterior part of the iliopectineal membrane. It separates “lacuna musculorum” laterally from “lacuna vasorum” medially. This ligament is an important guide in the safe anterior approach to the acetabulum. Aim of the work: To study the detailed anatomy of the iliopectineal ligament demonstrating its importance as a surgical landmark in the anterior approach to the acetabulum. Material and methods: The material of this work included eight adult formalin preserved cadavers. Dissection of the groin was done for each cadaver in supine position with exposure of the inguinal ligament. The iliopectineal ligament and the three surgical windows in the anterior approach to the acetabulum were revealed. Results: Results described the detailed morphological anatomy of the iliopectineal ligament as regard its thickness, attachments and variations in its thickness. The study also revealed important anatomical measurements in relation to the inguinal ligament. The distance between the anterior superior iliac spine (ASIS) to the pubic tubercle ranged from 6.7 to 10.1 cm with a mean value of 8.31±1.3. The distance between the anterior superior iliac spine (ASIS) to the blending point of the iliopectineal ligament to the inguinal ligament ranged from 1.55 to 1.92 cm with a mean value of 1.78±0.15. Conclusion: The iliopectineal ligament detailed morphology and attachments are crucial when planning to do anterior approach of the acetabulum to decrease incidence of iatrogenic injury to the femoral vessels. KEY WORDS: Iliopsoas fascia - Iliopectineal membrane - Iliopectineal ligament - Inguinal ligament -Anterior acetabular approach. Address for Correspondence: Ayman Ahmed Khanfour: Assistant professor in the human Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Egypt. Mobile: 00201223815866. E-Mail: [email protected] Access this Article online Journal Information Quick Response code International Journal of Anatomy and Research ICV for 2016 ISSN (E) 2321-4287 | ISSN (P) 2321-8967 90.30 https://www.ijmhr.org/ijar.htm DOI-Prefix: https://dx.doi.org/10.16965/ijar Article Information Received: 17 Jul 2019 Accepted: 19 Aug 2019 Peer Review: 17 Jul 2019 Published (O): 05 Sep 2019 DOI: 10.16965/ijar.2019.274 Revised: None Published (P): 05 Sep 2019 INTRODUCTION considered as a continuation of the transversus The iliopsoas fascia is the mother name given abdominis fascia. It is thinner anteriorly but to all the relatively dense layer of fascia that progressively becomes thicker medially [1,2]. covers the anteromedial aspect of iliopsoas The iliopectineal membrane is the relatively muscle as a whole. It tethers the iliopsoas denser medial part of this iliopsoas fascia on muscle, femoral nerve and lateral cutaneous its anteromedial surface run the great femoral nerve of the thigh to the iliac fossa. It could be vessels. Consequently, the most anterior part of Int J Anat Res 2019, 7(3.3):6976-82. ISSN 2321-4287 6976 Ayman Ahmed Khanfour, Ashraf Ahmed Khanfour. ILIOPECTINEAL LIGAMENT AS AN IMPORTANT LANDMARK IN ILIOINGUINAL APPROACH OF THE ANTERIOR ACETABULUM: A CADAVERIC MORPHOLOGIC STUDY. this iliopectineal membrane forms an even more (Fig. 1). The skin and subcutaneous tissues along stout ligament like structure that is called the the proposed line of incision were deepened up iliopectineal ligament which subdivides the to the aponeurosis of the external oblique space deep to the inguinal ligament into a muscle. At the end, the ilioinguinal approach was lateral muscular lacunae and a medial vascular completed by developing three anatomical lacunae [3]. windows (Fig. 2). The 1st window was devel- Surgical treatment of anterior acetabular oped by subperiosteal dissection of the iliac fractures entails good anatomic reduction with crest and iliac fossa elevating the insertion of restoring hip congruency [4,5]. This necessi- the anterior abdominal wall muscles together tates adequate anterior exposure using the well- with the origin of the iliacus in continuity up to known ilioinguinal approach in which isolation the sacroiliac joint posteriorly and the pelvic of the iliopectineal ligament is a crucial step [6]. brim anteriorly. The 2nd window starts by opening the anterior wall of the inguinal canal Sharp cutting of this iliopectineal ligament as a by incising the external oblique aponeurosis crucial step in the ilioinguinal approach to from the anterior superior iliac spine (ASIS) up mobilize the iliopsoas muscle to permit good to the midline 1 cm above the superficial exposure, reduction and fixation of anterior inguinal ring. The spermatic cord or the round acetabular fractures located anyway from the ligament was retracted by a rubber sling anterior aspect of the sacroiliac joint up to the medially. pubic symphysis, including exposure of the quadrilateral surface. Unfortunately, great Then, the posterior wall of the inguinal canal is femoral vessels (artery and vein) lie directly on opened by sharp incising the inguinal ligament the anteromedial surface of this ligament, into two equal superior and inferior flaps, putting them at high risk for iatrogenic injury exposing the subinguinal region posterior to the [7,8]. Limited sources about the detailed inguinal ligament. This region is subdivided into morphological anatomy about this important two spaces; the “lacuna vasorum” lies medially iliopectineal membrane and ligament was the and the “lacuna musculosum” laterally major driving force for this study. separated by the iliopectineal ligament that is the issue of this study. Now the 2nd window can Aim of the work: The aim of this work was to be developed by retracting the “lacuna study the detailed anatomy of the iliopectineal musculosum” containing the iliopsoas, the ligament demonstrating its importance as a femoral nerve and the lateral cutaneous nerve surgical landmark in the anterior approach to of the thigh laterally, and the “Lacuna vasorum” the acetabulum. And using it together with spe- containing the external iliac vessels medially cial surgical tactics to prevent iatrogenic injury with the iliopectineal ligament. At this stage, to great femoral vessels. the iliopectineal membrane and ligament MATERIALS AND METHODS become fully isolated and their detailed The material of this work included eight adult anatomical morphology was studied as regards formalin preserved cadavers obtained from the their attachment, thickness, point of its hitch Dissecting Room of Anatomy Department, hike of the iliopectineal ligament to the inguinal Faculty of Medicine, Alexandria University. ligament, and their relation to the vital In this study, the ilioinguinal approach that was structures especially great femoral vessels. In originally described in the literature of Emile the original description of this approach, the Letournel in 1993 was simulated in all of the iliopectineal ligament and membrane were cases included in this study [7]. The cadaveric completely incised in an anteroposterior position was supine with exposure of the groin direction up to the pelvic brim in order to freely area. An incision was done extending along the mobilize the Iliopsoas muscle developing the 3rd anterior two-thirds of the iliac crest, passing window by retracting the slung lacuna vasorum through the anterior superior iliac spine (ASIS) laterally and the spermatic cord medially. At this then continued to the midline, approximately step, a detailed morphological anatomy of the two fingerbreadths above the pubic symphysis iliopectineal membrane and ligament took place. Int J Anat Res 2019, 7(3.3):6976-82. ISSN 2321-4287 6977 Ayman Ahmed Khanfour, Ashraf Ahmed Khanfour. ILIOPECTINEAL LIGAMENT AS AN IMPORTANT LANDMARK IN ILIOINGUINAL APPROACH OF THE ANTERIOR ACETABULUM: A CADAVERIC MORPHOLOGIC STUDY. Fig. 1: A photograph of a right side groin showing the analysis was done using Statistical Package for line of incision starting from the anterior two-thirds of Social Sciences (SPSS/version 20) software. the iliac crest (I), passing through the anterior superior iliac spine (ASIS) then continues to the midline, approxi- Arthematic mean, standard deviation were used mately two fingerbreadths above the pubic symphysis to the numerical measurements. To find the (SP). association between two variables, Spearman correlation coefficient test was used and the level of significant was 0.05. To predict the distance of the blending point of iliopectineal ligament to inguinal ligament, the multiple logestic regression analysis was done to predict the equation. RESULTS Morphological findings: The investing fascia of the iliopsoas was found to invest the iliop- soas muscle together with the femoral nerve and the lateral cutaneous nerve of the thigh. It forms a thin membrane anteriorly, then it becomes thicker as we go medially to form the iliopectineal membrane. Again, the most anterior part of the iliopectineal membrane Fig. 2: A photograph of a right groin showing the three becomes
Recommended publications
  • Femoral Nerve Dimensions at the Inguinal Ligament and Inguinal Crease Levels: Implications for Femoral Nerve Block
    Original article http://dx.doi.org/10.4322/jms.062413 Femoral nerve dimensions at the inguinal ligament and inguinal crease levels: implications for femoral nerve block OYEDUN, O. S.1*, RUKEWE, A.2 and FATIREGUN, A.3 1Gross Anatomy Lab, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, +234 Ibadan, Oyo State, Nigéria 2Anaesthesia Unit, Accident and Emergency Department, University College Hospital, +234 Ibadan, Oyo State, Nigéria 3Department of Epidemiology and Medical Statistics, Faculty of Public Health, University of Ibadan, +234 Ibadan, Oyo State, Nigéria *E-mail: [email protected] Abstract Introduction: Femoral nerve block, when used solely or as a supplement to general anaesthesia, provides anaesthesia and analgesia to the anterior thigh. In spite of its established benefits, femoral nerve block is still underutilized in Nigeria. Our objective was to study the dimensions of femoral nerve at the level of the inguinal ligament and inguinal crease using a cadaveric model; no such data exists in Nigeria. Materials and Methods: Using 7 adult human cadavers (6 males and 1 female), the depth and thickness of the femoral nerve were measured at the levels of inguinal ligament and inguinal crease. The spatial relationship of femoral nerve to the surrounding structures was also observed. Result: The study showed a significantly wider thickness and shorter depth of the femoral nerve at the level of inguinal crease relative to inguinal ligament. Conclusion: We concluded that in centers where ultrasound and neurostimulation techniques for femoral nerve block in Nigerians are unavailable, the inguinal crease level where the femoral nerve is more superficial and wider in thickness would be the landmark of choice compared to the inguinal ligament level.
    [Show full text]
  • Sportsmans Groin: the Inguinal Ligament and the Lloyd Technique
    Rennie, WJ and Lloyd, DM. Sportsmans Groin: The Inguinal Ligament and the Lloyd Technique. Journal of the Belgian Society of Radiology. 2017; 101(S2): 16, pp. 1–4. DOI: https://doi.org/10.5334/jbr-btr.1404 OPINION ARTICLE Sportsmans Groin: The Inguinal Ligament and the Lloyd Technique WJ Rennie and DM Lloyd Groin pain is a catch all phrase used to define a common set of symptoms that affect many individuals. It is a common condition affecting sportsmen and women (1, 2) and is often referred to as the sportsman groin (SG). Multiple surgical operations have been developed to treat these symptoms yet no definitive imaging modalities exist to diagnose or predict prognosis. This article aims to discuss the anatomy of the groin, suggest a biomechanical pathophysiology and outline a logical surgical solution to treat the underlying pathology. A systematic clinical and imaging approach with inguinal ligament and pubic specific MRI assessment, can result in accurate selection for intervention. Close correlation with clinical examination and imaging in series is recommended to avoid misinterpretation of chronic changes in athletes. Keywords: Groin pain; Inguinal Ligament; MRI; Surgery; Lloyd release Introduction from SG is due to altered biomechanics, with specific pain Groin pain is a catch all phrase used to define a common symptoms that differ from those caused by inguinal or set of symptoms that affect many individuals. It is a com- femoral hernias. mon condition affecting sportsmen and women [1, 2] and is often referred to as the sportsman groin (SG). Multiple Anatomy of Sportsman’s Groin surgical operations have been developed to treat these The anatomical central structure in the groin is the pubic symptoms, yet no definitive imaging modalities exist to bone.
    [Show full text]
  • Lab #23 Anal Triangle
    THE BONY PELVIS AND ANAL TRIANGLE (Grant's Dissector [16th Ed.] pp. 141-145) TODAY’S GOALS: 1. Identify relevant bony features/landmarks on skeletal materials or pelvic models. 2. Identify the sacrotuberous and sacrospinous ligaments. 3. Describe the organization and divisions of the perineum into two triangles: anal triangle and urogenital triangle 4. Dissect the ischiorectal (ischioanal) fossa and define its boundaries. 5. Identify the inferior rectal nerve and artery, the pudendal (Alcock’s) canal and the external anal sphincter. DISSECTION NOTES: The perineum is the diamond-shaped area between the upper thighs and below the inferior pelvic aperture and pelvic diaphragm. It is divided anatomically into 2 triangles: the anal triangle and the urogenital (UG) triangle (Dissector p. 142, Fig. 5.2). The anal triangle is bounded by the tip of the coccyx, sacrotuberous ligaments, and a line connecting the right and left ischial tuberosities. It contains the anal canal, which pierced the levator ani muscle portion of the pelvic diaphragm. The urogenital triangle is bounded by the ischiopubic rami to the inferior surface of the pubic symphysis and a line connecting the right and left ischial tuberosities. This triangular space contains the urogenital (UG) diaphragm that transmits the urethra (in male) and urethra and vagina (in female). A. Anal Triangle Turn the cadaver into the prone position. Make skin incisions as on page 144, Fig. 5.4 of the Dissector. Reflect skin and superficial fascia of the gluteal region in one flap to expose the large gluteus maximus muscle. This muscle has proximal attachments to the posteromedial surface of the ilium, posterior surfaces of the sacrum and coccyx, and the sacrotuberous ligament.
    [Show full text]
  • Approach to the Anterior Pelvis (Enneking Type III Resection) Bruno Fuchs, MD Phd & Franklin H.Sim, MD Indication 1
    Approach to the Anterior Pelvis (Enneking Type III Resection) Bruno Fuchs, MD PhD & Franklin H.Sim, MD Indication 1. Tumors of the pubis 2. part of internal and external hemipelvectomy 3. pelvic fractures Technique 1. Positioning: Type III resections involve the excision of a portion of the symphysis or the whole pubis from the pubic symphysis to the lateral margin of the obturator foramen. The best position for these patients is the lithotomy or supine position. The patient is widely prepared and draped in the lithotomy position with the affected leg free to allow manipulation during the procedure. This allows the hip to be flexed, adducted, and externally rotated to facilitate exposure. 2. Landmarks: One should palpate the ASIS, the symphysis with the pubic tubercles, and the ischial tuberosity. 3. Incision: The incision may be Pfannenstiel like with vertical limbs set laterally along the horizontal incision depending on whether the pubic bones on both sides are resected or not. Alternatively, if only one side is resected, a curved incision following the root of the thigh may be used. This incision begins below the inguinal ligament along the medial border of the femoral triangle and extends across the medial thigh a centimeter distal to the inguinal crease and perineum, to curve distally below the ischium several centimeters (Fig.1). 4. Full thickness flaps are raised so that the anterior inferior pubic ramus is shown in its entire length, from the pubic tubercle to the ischial spine. Laterally, the adductor muscles are visualized, cranially the pectineus muscle and the pubic tubercle with the insertion of the inguinal ligament (Fig.2).
    [Show full text]
  • Describe the Anatomy of the Inguinal Canal. How May Direct and Indirect Hernias Be Differentiated Anatomically
    Describe the anatomy of the inguinal canal. How may direct and indirect hernias be differentiated anatomically. How may they present clinically? Essentially, the function of the inguinal canal is for the passage of the spermatic cord from the scrotum to the abdominal cavity. It would be unreasonable to have a single opening through the abdominal wall, as contents of the abdomen would prolapse through it each time the intraabdominal pressure was raised. To prevent this, the route for passage must be sufficiently tight. This is achieved by passing through the inguinal canal, whose features allow the passage without prolapse under normal conditions. The inguinal canal is approximately 4 cm long and is directed obliquely inferomedially through the inferior part of the anterolateral abdominal wall. The canal lies parallel and 2-4 cm superior to the medial half of the inguinal ligament. This ligament extends from the anterior superior iliac spine to the pubic tubercle. It is the lower free edge of the external oblique aponeurosis. The main occupant of the inguinal canal is the spermatic cord in males and the round ligament of the uterus in females. They are functionally and developmentally distinct structures that happen to occur in the same location. The canal also transmits the blood and lymphatic vessels and the ilioinguinal nerve (L1 collateral) from the lumbar plexus forming within psoas major muscle. The inguinal canal has openings at either end – the deep and superficial inguinal rings. The deep (internal) inguinal ring is the entrance to the inguinal canal. It is the site of an outpouching of the transversalis fascia.
    [Show full text]
  • Clinical Pelvic Anatomy
    SECTION ONE • Fundamentals 1 Clinical pelvic anatomy Introduction 1 Anatomical points for obstetric analgesia 3 Obstetric anatomy 1 Gynaecological anatomy 5 The pelvic organs during pregnancy 1 Anatomy of the lower urinary tract 13 the necks of the femora tends to compress the pelvis Introduction from the sides, reducing the transverse diameters of this part of the pelvis (Fig. 1.1). At an intermediate level, opposite A thorough understanding of pelvic anatomy is essential for the third segment of the sacrum, the canal retains a circular clinical practice. Not only does it facilitate an understanding cross-section. With this picture in mind, the ‘average’ of the process of labour, it also allows an appreciation of diameters of the pelvis at brim, cavity, and outlet levels can the mechanisms of sexual function and reproduction, and be readily understood (Table 1.1). establishes a background to the understanding of gynae- The distortions from a circular cross-section, however, cological pathology. Congenital abnormalities are discussed are very modest. If, in circumstances of malnutrition or in Chapter 3. metabolic bone disease, the consolidation of bone is impaired, more gross distortion of the pelvic shape is liable to occur, and labour is likely to involve mechanical difficulty. Obstetric anatomy This is termed cephalopelvic disproportion. The changing cross-sectional shape of the true pelvis at different levels The bony pelvis – transverse oval at the brim and anteroposterior oval at the outlet – usually determines a fundamental feature of The girdle of bones formed by the sacrum and the two labour, i.e. that the ovoid fetal head enters the brim with its innominate bones has several important functions (Fig.
    [Show full text]
  • Henle's Ligament: a Comprehensive Review of Its Anatomy and Terminology Over Almost One and a Half Centuries
    Providence St. Joseph Health Providence St. Joseph Health Digital Commons Journal Articles and Abstracts 9-26-2018 Henle's Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries. Raja Gnanadev Joe Iwanaga Rod J Oskouian Neurosurgery, Swedish Neuroscience Institute, Seattle, USA. Marios Loukas R Shane Tubbs Follow this and additional works at: https://digitalcommons.psjhealth.org/publications Part of the Medical Pathology Commons, and the Neurosciences Commons Recommended Citation Gnanadev, Raja; Iwanaga, Joe; Oskouian, Rod J; Loukas, Marios; and Tubbs, R Shane, "Henle's Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries." (2018). Journal Articles and Abstracts. 996. https://digitalcommons.psjhealth.org/publications/996 This Article is brought to you for free and open access by Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Journal Articles and Abstracts by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact [email protected]. Open Access Review Article DOI: 10.7759/cureus.3366 Henle’s Ligament: A Comprehensive Review of Its Anatomy and Terminology over Almost One and a Half Centuries Raja Gnanadev 1 , Joe Iwanaga 2 , Rod J. Oskouian 3 , Marios Loukas 4 , R. Shane Tubbs 5 1. Research Fellow, Seattle Science Foundation, Seattle, USA 2. Medical Education and Simulation, Seattle Science Foundation, Seattle, USA 3. Neurosurgery, Swedish Neuroscience Institute, Seattle, USA 4. Anatomical Sciences, St. George's University, St. George's, GRD 5. Neurosurgery, Seattle Science Foundation, Seattle, USA Corresponding author: Joe Iwanaga, [email protected] Disclosures can be found in Additional Information at the end of the article Abstract Henle’s ligament was first described by German physician and anatomist, Friedrich Henle, in 1871.
    [Show full text]
  • The Sacroiliac Problem: Review of Anatomy, Mechanics, and Diagnosis
    The sacroiliac problem: Review of anatomy, mechanics, and diagnosis MYRON C. BEAL, DD., FAAO East Lansing, Michigan methods have evolved along with modifications in Studies of the anatomy of the the hypotheses. Unfortunately, definitive analysis sacroiliac joint are reviewed, of the sacroiliac joint problem has yet to be including joint changes associated achieved. with aging and sex. Both descriptive Two excellent reviews of the medical literature and analytical investigations of joint on the sacroiliac joint are by Solonen i and a three- movement are presented, as well as part series by Weisl. clinical hypotheses of sacroiliac joint The present treatise will review the anatomy of motion. The diagnosis of sacroiliac the sacroiliac joint, studies of sacroiliac move- joint dysfunction is described in ment, hypotheses of sacroiliac mechanics, and the detail. diagnosis of sacroiliac dysfunction. Anatomy The formation of the sacroiliac joint begins during the tenth week of intrauterine life, and the joint is fully developed by the seventh month. The joint In recent years it has been generally recognized surfaces remain flat until sometime after puberty; that the sacroiliac joints are capable of movement. smooth surfaces in the adult are the exception. The clinical significance of sacroiliac motion, or The contour of the joint surface continues to lack of motion, is still subject to debate. The role of change with age. 2m In the third and fourth decades the sacroiliac joints in body mechanics can be illus- there is an increase in the number and size of the trated by a mechanical analogy. A 1 to 2 mm. mal- elevations and depressions, which interlock and alignment of a bearing in a machine can cause ab- limit mobility.
    [Show full text]
  • The Pelvis Structure the Pelvic Region Is the Lower Part of the Trunk
    The pelvis Structure The pelvic region is the lower part of the trunk, between the abdomen and the thighs. It includes several structures: the bony pelvis (or pelvic skeleton) is the skeleton embedded in the pelvic region of the trunk, subdivided into: the pelvic girdle (i.e., the two hip bones, which are part of the appendicular skeleton), which connects the spine to the lower limbs, and the pelvic region of the spine (i.e., sacrum, and coccyx, which are part of the axial skeleton) the pelvic cavity, is defined as the whole space enclosed by the pelvic skeleton, subdivided into: the greater (or false) pelvis, above the pelvic brim , the lesser (or true) pelvis, below the pelvic brim delimited inferiorly by the pelvic floor(or pelvic diaphragm), which is composed of muscle fibers of the levator ani, the coccygeus muscle, and associated connective tissue which span the area underneath the pelvis. Pelvic floor separate the pelvic cavity above from the perineum below. The pelvic skeleton is formed posteriorly (in the area of the back), by the sacrum and the coccyx and laterally and anteriorly (forward and to the sides), by a pair of hip bones. Each hip bone consists of 3 sections, ilium, ischium, and pubis. During childhood, these sections are separate bones, joined by the triradiate hyaline cartilage. They join each other in a Y-shaped portion of cartilage in the acetabulum. By the end of puberty the three bones will have fused together, and by the age of 25 they will have ossified. The two hip bones join each other at the pubic symphysis.
    [Show full text]
  • Laparoscopic Inguinal Ligament Suspension: a Novel Procedure to Repair Uterine Prolapse
    International Urogynecology Journal (2019) 30:657–660 https://doi.org/10.1007/s00192-018-3780-6 IUJ VIDEO Laparoscopic inguinal ligament suspension: a novel procedure to repair uterine prolapse Zhiyuan Dai1 & Hui Li1 & Huimin Shu1 & Xiaohong Guan 1 & Kai Zhang2 Received: 25 December 2017 /Accepted: 24 September 2018 /Published online: 25 October 2018 # The International Urogynecological Association 2018 Abstract Introduction and hypothesis Traditionally, surgical treatment for uterine prolapse has included hysterectomy. However, more patients now prefer a uterine-preserving operation because of concerns about fertility or sexual dysfunction. In this video, we describe a novel approach to correcting uterine prolapse in an attempt to demonstrate an alternative option for patients. Methods A 42-year-old woman with symptomatic stage I-IV uterine prolapse (POP-Q: Aa +2, Ba +2, C + 3, gh 6.5, pb 3, TVL 8.5, Ap 0, Bp 0, D 0) underwent inguinal ligament suspension. The principle steps and techniques to complete the operation are outlined in the video. Results Prolapse repair was successfully completed without any intraoperative complications. The uterus was restored to its anatomic position. During the 12-month follow-up, neither recurrence nor postoperative complications, such as mesh exposure, de novo incontinence or bowel obstruction, etc., occurred. Conclusions Laparoscopic inguinal ligament suspension is a safe and feasible alternative for correcting the uterine prolapse. This surgery could be an attractive choice for patients who prefer a uterine-sparing surgery. Keywords Inguinal ligament suspension . Laparoscopic route . Pelvic organ prolapse . Uterine prolapse . Uterine-sparing surgery Aim of the video Methods Here we demonstrate the principle steps of laparoscopic in- The featured patient in the video is a 42-year-old multiparous guinal ligament suspension, a novel uterine-preserving proce- woman with 3 years of symptomatic apical prolapse.
    [Show full text]
  • Printable Notes
    12/9/2013 Diagnosis and Treatment of Hip Pain in the Athlete History Was there an injury? Pain Duration Location Type Better/Worse Severity Subjective Jonathan M. Fallon, D.O., M.S. assessment Shoulder Surgery and Operative Sports Medicine Sports www.hamportho.com Hip and Groin Pain Location, Location , Location 1. Inguinal Region • Diagnosis difficult and 2. Peri-Trochanteric confusing Compartment • Extensive rehabilitation • Significant risk for time loss 3. Mid-line/abdominal Structures • 5‐9% of sports injuries 3 • Literature extensive but often contradictory 1 • Consider: 2 – Bone – Soft tissue – Intra‐articular pathology Differential Diagnosis Orthopaedic Etiology Non‐Orthopaedic Etiology Adductor strain Inguinal hernia Rectus femoris strain Femoral hernia Physical Examination Iliopsoas strain Peritoneal hernia Rectus abdominus strain Testicular neoplasm Gait Muscle contusion Ureteral colic Avulsion fracture Prostatitis Abdominal Exam Gracilis syndrome Epididymitis Spine Exam Athletic hernia Urethritis/UTI Osteitis pubis Hydrocele/varicocele Knee Exam Hip DJD Ovarian cyst SCFE PID Limb Lengths AVN Endometriosis Stress fracture Colorectal neoplasm Labral tear IBD Lumbar radiculopathy Diverticulitis Ilioinguinal neuropathy Obturator neuropathy Bony/soft tissue neoplasm Seronegative spondyloarthropathy 1 12/9/2013 Physical Examination • Point of maximal tenderness Athletic Pubalgia – Psoas, troch, pub sym, adductor – Gilmore’s groin (Gilmore • C sign • ROM 1992) • Thomas Test: flexion contracture – Sportsman’s hernia • McCarthy Test: labral pathology (Malycha 1992) • Impingement Test – Incipient hernia 3 • Clicking: psoas vs labrum • Resisted SLR: intra‐articular – Hockey Groin Syndrome – • Ober: IT band Slapshot Gut • FABER: SI joint – Ashby’s inguinal ligament • Heel Strike: Femoral neck • Log Roll: intra‐articular enthesopathy • Single leg stance –Trendel. Location, Location , Location Athletic Pubalgia - Natural History 1.
    [Show full text]
  • Arxiv:2008.05217V2 [Eess.IV] 14 Aug 2020 Risk Variables Following Lifestyle Intervention and Even Risk of Mortality
    Large-Scale Analysis of Iliopsoas Muscle Volumes in the UK Biobank Julie Fitzpatrick1*, Nicolas Basty1*+, Madeleine Cule2, Yi Liu2, Jimmy D. Bell1, E. Louise Thomas1, and Brandon Whitcher1 1Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK 2Calico Life Sciences LLC, South San Francisco, California, USA *joint first authors +email: [email protected] ABSTRACT Psoas muscle measurements are frequently used as markers of sarcopenia and predictors of health. Manually measured cross-sectional areas are most commonly used, but there is a lack of consistency regarding the position of the measurement and manual annotations are not practical for large population studies. We have developed a fully automated method to measure iliopsoas muscle volume (comprised of the psoas and iliacus muscles) using a convolutional neural network. Magnetic resonance images were obtained from the UK Biobank for 5,000 male and female participants, balanced for age, gender and BMI. Ninety manual annotations were available for model training and validation. The model showed excellent performance against out-of-sample data (dice score coefficient of 0.912 ± 0.018). Iliopsoas muscle volumes were successfully measured in all 5,000 participants. Iliopsoas volume was greater in male compared with female subjects. There was a small but significant asymmetry between left and right iliopsoas muscle volumes. We also found that iliopsoas volume was significantly related to height, BMI and age, and that there was an acceleration in muscle volume decrease in men with age. Our method provides a robust technique for measuring iliopsoas muscle volume that can be applied to large cohorts.
    [Show full text]