Kinematics and One-Dimensional Motion: Non-Constant Acceleration

Total Page:16

File Type:pdf, Size:1020Kb

Kinematics and One-Dimensional Motion: Non-Constant Acceleration Kinematics and One-Dimensional Motion: Non-Constant Acceleration 8.01 W01D3 Announcements Familiarize Yourself with Website https://lms.mitx.mit.edu/courses/MITx/8.01/2014_Fall/about Buy or Download Textbook (Dourmashkin, Classical Mechanics: MIT 8.01 Course Notes Revised Edition ) Downloadable links (require certificates): https://lms.mitx.mit.edu/courses/MITx/8.01/2014_Fall/ courseware/Intro/about:Resources/ Buy Clicker at MIT Coop Sunday Tutoring in 26-152 from 1-5 pm Average Velocity The average velocity, v ( t ) , is the displacement Δ r ave divided by the time interval Δt Δr Δx ˆ ˆ vave ≡ = i = vave,x (t)i Δt Δt The x-component of the average velocity is given by Δx vave,x = Δt Instantaneous Velocity and Differentiation For each time interval Δ t , calculate the x-component of the average velocity v (t) = Δx / Δt ave,x Take limit as Δ t → 0 sequence of the x-component average velocities Δx x(t + Δt) − x(t) dx lim = lim ≡ Δt→0 Δt Δt→0 Δt dt The limiting value of this sequence is x-component of the instantaneous velocity at the time t. v (t) = dx / dt x Instantaneous Velocity x-component of the velocity is equal to the slope of the tangent line of the graph of x-component of position vs. time at time t dx vx (t) = dt Worked Example: Differentiation x(t) = At 2 x(t + Δt) = A(t + Δt)2 = At 2 + 2AtΔt + AΔt 2 x(t + Δt) − x(t) = 2At + AΔt Δt dx x(t + Δt) − x(t) = lim = lim(2At + AΔt) = 2At dt Δt→0 Δt Δt→0 Generalization for Polynomials: x(t) = At n dx = nAt n−1 dt Concept Question: Instantaneous Velocity The graph shows the position as a function of time for two trains running on parallel tracks. For times greater than t = 0, which of the following is true: 1. At time tB, both trains have the same velocity. 2. Both trains speed up all the time. 3. Both trains have the same velocity at some time before tB, . 4. Somewhere on the graph, both trains have the same acceleration. Average Acceleration Change in instantaneous velocity divided by Δt = t − t the time interval 2 1 Δv Δv (vx,2 − vx,1) Δv a ≡ = x ˆi = ˆi = x ˆi = a ˆi ave t t t t ave,x Δ Δ Δ Δ The x-component of the average acceleration Δvx aave,x = Δt Instantaneous Acceleration and Differentiation For each time interval Δ t , calculate the x-component of the average acceleration a (t) = Δv / Δt ave,x x Take limit as Δ t → 0 sequence of the x-component average accelerations Δvx vx (t + Δt) − vx (t) dvx lim = lim ≡ Δt→0 Δt Δt→0 Δt dt The limiting value of this sequence is x-component of the instantaneous acceleration at the time t. a (t) = dv / dt x x Instantaneous Acceleration The x-component of acceleration is equal to the slope of the tangent line of the graph of the x-component of the velocity vs. time at time t dvx ax (t) = dt Group Problem: Model Rocket A person launches a home-built model rocket straight up into the air at y = 0 from rest at time t = 0 . (The positive y- direction is upwards). The fuel burns out at t = t0. The position of the rocket is given by ⎧1 a 2 0 6 4 y = ⎨ (a0 − g)t − t / t0 ; 0 < t < t0 2 30 ⎩ with a0 and g are positive. Find the y-components of the velocity and acceleration of the rocket as a function of time. Graph ay vs t for 0 < t < t0. Non-Constant Acceleration and Integration Change in Velocity: Integral of Acceleration Consider some time t such that t < t < t 0 f Then the change in the x-component of the velocity is the integral of the x- component acceleration (denote v ≡ v ( t ) ). x,0 x 0 t′=t v (t) − v = a (t′)dt′ x x,0 ∫ x t t ′= 0 “Integration is the inverse operation of differentiation” Change in Position: Integral of Velocity Area under the graph of x-component of the velocity vs. time is the displacement (denote x ≡ x ( t )). 0 0 t′=t x(t) − x = v (t′)dt′ 0 ∫ x t t ′= 0 Worked Example: Time-Dependent Acceleration a (t) At 2 Acceleration is a non-constant function of time x = with t = 0 , v = 0 , and x = 0 . 0 x,0 0 Change in velocity: t t t′=t ′= t′3 At3 v (t) − 0 = At′2 dt′ = A ⇒ v (t) = x ∫ 3 x 3 t′=0 t′=0 Change in position: t′=t t t ′= ⎛ t′3 ⎞ ⎛ ⎛ t′4 ⎞ ⎞ At 4 x(t) − 0 = ∫ A⎜ ⎟ dt′ ⇒ x(t) = ⎜ A⎜ ⎟ ⎟ = t 0 ⎝ 3 ⎠ ⎝ ⎝ 12 ⎠ ⎠ 12 ′= 0 Generalization for Polynomials: t′=t t′=t t′n+1 t n+1 t n+1 t′n dt′ = = − 0 ∫ n +1 n +1 n +1 t′=t0 t′=t0 Special Case: Constant Acceleration Acceleration: ax = constant t′=t Velocity: v (t) − v = a dt′ = a t ⇒ x x,0 ∫ x x t′=0 v (t) = v + a t x x,0 x Position: t′=t x(t) − x = (v + a t′)dt′ ⇒ 0 ∫ x,0 x t′=t0 1 2 x(t) = x0 + vx,0t + axt 2 Concept Question: Integration A particle, starting at rest at t = 0, experiences a non- constant acceleration ax(t) . It’s change of position can be found by 1. Differentiating ax(t) twice. 2. Integrating ax(t) twice. 2 3. (1/2) ax(t) times t . 4. None of the above. 5. Two of the above. Group Problem: Sports Car At t = 0 , a sports car starting at rest at x = 0 accelerates with an x-component of acceleration given by 3 1/2 ax (t) = At − Bt , for 0 < t < (A / B) and zero afterwards with A, B > 0 (1) Find expressions for the velocity and position vectors of the sports car as functions of time for t >0. (2) Sketch graphs of the x-component of the position, velocity and acceleration of the sports car as a function of time for t >0 Appendix: Integration and the Riemann Sum Change in Velocity: Area Under Curve of Acceleration vs. time Mean Value Theorem: For each rectangle there exists a time t < t = c < t i i i+1 such that dvx vx (ti+1) − vx (ti ) = (ci )Δt = ax (ci )Δt dt Apply Mean Value Theorem vx (t1) − vx (t0 ) = ax (c0 )Δt (vx (t2 ) − vx (t1)) = ax (c1)Δt ⋅⋅⋅ = ⋅⋅⋅ vx (ti+1) − vx (ti ) = ax (ci )Δt ⋅⋅⋅ = ⋅⋅⋅ v (t ) − v (t ) = a (c )Δt x n x n−1 x n−1 We can add up the area of the rectangles and find i=n−1 v (t ) v (t ) ((a (c ) t) x n − x 0 = ∑ x i Δ i=0 Change in Velocity: Integral of Acceleration The area under the graph of the x-component of the acceleration vs. time is the change in velocity i=N vx (t f ) − vx (t0 ) = lim ax (ti )Δti Δt →0 ∑ i i=1 t=t f v (t ) − v (t ) ≡ a (t)dt x f x 0 ∫ x t t = 0 http://giphy.com/gifs/math-mathematics-calculus-zTGUlIASZx83u .
Recommended publications
  • Two-Dimensional Rotational Kinematics Rigid Bodies
    Rigid Bodies A rigid body is an extended object in which the Two-Dimensional Rotational distance between any two points in the object is Kinematics constant in time. Springs or human bodies are non-rigid bodies. 8.01 W10D1 Rotation and Translation Recall: Translational Motion of of Rigid Body the Center of Mass Demonstration: Motion of a thrown baton • Total momentum of system of particles sys total pV= m cm • External force and acceleration of center of mass Translational motion: external force of gravity acts on center of mass sys totaldp totaldVcm total FAext==mm = cm Rotational Motion: object rotates about center of dt dt mass 1 Main Idea: Rotation of Rigid Two-Dimensional Rotation Body Torque produces angular acceleration about center of • Fixed axis rotation: mass Disc is rotating about axis τ total = I α passing through the cm cm cm center of the disc and is perpendicular to the I plane of the disc. cm is the moment of inertial about the center of mass • Plane of motion is fixed: α is the angular acceleration about center of mass cm For straight line motion, bicycle wheel rotates about fixed direction and center of mass is translating Rotational Kinematics Fixed Axis Rotation: Angular for Fixed Axis Rotation Velocity Angle variable θ A point like particle undergoing circular motion at a non-constant speed has SI unit: [rad] dθ ω ≡≡ω kkˆˆ (1)An angular velocity vector Angular velocity dt SI unit: −1 ⎣⎡rad⋅ s ⎦⎤ (2) an angular acceleration vector dθ Vector: ω ≡ Component dt dθ ω ≡ magnitude dt ω >+0, direction kˆ direction ω < 0, direction − kˆ 2 Fixed Axis Rotation: Angular Concept Question: Angular Acceleration Speed 2 ˆˆd θ Object A sits at the outer edge (rim) of a merry-go-round, and Angular acceleration: α ≡≡α kk2 object B sits halfway between the rim and the axis of rotation.
    [Show full text]
  • Position Management System Online Subject Area
    USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Insight Quick Reference | Position Management System Online Subject Area What is Position Management System Online (PMSO)? • This Subject Area provides snapshots in time of organization position listings including active (filled and vacant), inactive, and deleted positions. • Position data includes a Master Record, containing basic position data such as grade, pay plan, or occupational series code. • The Master Record is linked to one or more Individual Positions containing organizational structure code, duty station code, and accounting station code data. History • The most recent daily snapshot is available during a given pay period until BEAR runs. • Bi-Weekly snapshots date back to Pay Period 1 of 2014. Data Refresh* Position Management System Online Common Reports Daily • Provides daily results of individual position information, HR Area Report Name Load which changes on a daily basis. Bi-Weekly Organization • Position Daily for current pay and Position Organization with period/ Bi-Weekly • Provides the latest record regardless of previous changes Management PII (PMSO) for historical pay that occur to the data during a given pay period. periods *View the Insight Data Refresh Report to determine the most recent date of refresh Reminder: In all PMSO reports, users should make sure to include: • An Organization filter • PMSO Key elements from the Master Record folder • SSNO element from the Incumbent Employee folder • A time filter from the Snapshot Time folder 1 USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Daily Calendar Filters Bi-Weekly Calendar Filters There are three time options when running a bi-weekly There are two ways to pull the most recent daily data in a PMSO report: PMSO report: 1.
    [Show full text]
  • Position, Displacement, Velocity Big Picture
    Position, Displacement, Velocity Big Picture I Want to know how/why things move I Need a way to describe motion mathematically: \Kinematics" I Tools of kinematics: calculus (rates) and vectors (directions) I Chapters 2, 4 are all about kinematics I First 1D, then 2D/3D I Main ideas: position, velocity, acceleration Language is crucial Physics uses ordinary words but assigns specific technical meanings! WORD ORDINARY USE PHYSICS USE position where something is where something is velocity speed speed and direction speed speed magnitude of velocity vec- tor displacement being moved difference in position \as the crow flies” from one instant to another Language, continued WORD ORDINARY USE PHYSICS USE total distance displacement or path length traveled path length trav- eled average velocity | displacement divided by time interval average speed total distance di- total distance divided by vided by time inter- time interval val How about some examples? Finer points I \instantaneous" velocity v(t) changes from instant to instant I graphically, it's a point on a v(t) curve or the slope of an x(t) curve I average velocity ~vavg is not a function of time I it's defined for an interval between instants (t1 ! t2, ti ! tf , t0 ! t, etc.) I graphically, it's the \rise over run" between two points on an x(t) curve I in 1D, vx can be called v I it's a component that is positive or negative I vectors don't have signs but their components do What you need to be able to do I Given starting/ending position, time, speed for one or more trip legs, calculate average
    [Show full text]
  • Chapters, in This Chapter We Present Methods Thatare Not Yet Employed by Industrial Robots, Except in an Extremely Simplifiedway
    C H A P T E R 11 Force control of manipulators 11.1 INTRODUCTION 11.2 APPLICATION OF INDUSTRIAL ROBOTS TO ASSEMBLY TASKS 11.3 A FRAMEWORK FOR CONTROL IN PARTIALLY CONSTRAINED TASKS 11.4 THE HYBRID POSITION/FORCE CONTROL PROBLEM 11.5 FORCE CONTROL OFA MASS—SPRING SYSTEM 11.6 THE HYBRID POSITION/FORCE CONTROL SCHEME 11.7 CURRENT INDUSTRIAL-ROBOT CONTROL SCHEMES 11.1 INTRODUCTION Positioncontrol is appropriate when a manipulator is followinga trajectory through space, but when any contact is made between the end-effector and the manipulator's environment, mere position control might not suffice. Considera manipulator washing a window with a sponge. The compliance of thesponge might make it possible to regulate the force applied to the window by controlling the position of the end-effector relative to the glass. If the sponge isvery compliant or the position of the glass is known very accurately, this technique could work quite well. If, however, the stiffness of the end-effector, tool, or environment is high, it becomes increasingly difficult to perform operations in which the manipulator presses against a surface. Instead of washing with a sponge, imagine that the manipulator is scraping paint off a glass surface, usinga rigid scraping tool. If there is any uncertainty in the position of the glass surfaceor any error in the position of the manipulator, this task would become impossible. Either the glass would be broken, or the manipulator would wave the scraping toolover the glass with no contact taking place. In both the washing and scraping tasks, it would bemore reasonable not to specify the position of the plane of the glass, but rather to specifya force that is to be maintained normal to the surface.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Position, Velocity, and Acceleration
    Position,Position, Velocity,Velocity, andand AccelerationAcceleration Mr.Mr. MiehlMiehl www.tesd.net/miehlwww.tesd.net/miehl [email protected]@tesd.net Position,Position, VelocityVelocity && AccelerationAcceleration Velocity is the rate of change of position with respect to time. ΔD Velocity = ΔT Acceleration is the rate of change of velocity with respect to time. ΔV Acceleration = ΔT Position,Position, VelocityVelocity && AccelerationAcceleration Warning: Professional driver, do not attempt! When you’re driving your car… Position,Position, VelocityVelocity && AccelerationAcceleration squeeeeek! …and you jam on the brakes… Position,Position, VelocityVelocity && AccelerationAcceleration …and you feel the car slowing down… Position,Position, VelocityVelocity && AccelerationAcceleration …what you are really feeling… Position,Position, VelocityVelocity && AccelerationAcceleration …is actually acceleration. Position,Position, VelocityVelocity && AccelerationAcceleration I felt that acceleration. Position,Position, VelocityVelocity && AccelerationAcceleration How do you find a function that describes a physical event? Steps for Modeling Physical Data 1) Perform an experiment. 2) Collect and graph data. 3) Decide what type of curve fits the data. 4) Use statistics to determine the equation of the curve. Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk. Its location (in feet) at time t (in seconds) is given by P (t ) = t 2 + t. a) Where is the crab after 2 seconds? b) How fast is it moving at that instant (2 seconds)? Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk. Its location (in feet) at time t (in seconds) is given by P (t ) = t 2 + t. a) Where is the crab after 2 seconds? 2 P()22=+ () ( 2) P()26= feet Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk.
    [Show full text]
  • Chapter 3 Motion in Two and Three Dimensions
    Chapter 3 Motion in Two and Three Dimensions 3.1 The Important Stuff 3.1.1 Position In three dimensions, the location of a particle is specified by its location vector, r: r = xi + yj + zk (3.1) If during a time interval ∆t the position vector of the particle changes from r1 to r2, the displacement ∆r for that time interval is ∆r = r1 − r2 (3.2) = (x2 − x1)i +(y2 − y1)j +(z2 − z1)k (3.3) 3.1.2 Velocity If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity for that interval is ∆r ∆x ∆y ∆z v = = i + j + k (3.4) ∆t ∆t ∆t ∆t As before, a more interesting quantity is the instantaneous velocity v, which is the limit of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative of the position vector r: dr v = (3.5) dt d = (xi + yj + zk) (3.6) dt dx dy dz = i + j + k (3.7) dt dt dt can be written: v = vxi + vyj + vzk (3.8) 51 52 CHAPTER 3. MOTION IN TWO AND THREE DIMENSIONS where dx dy dz v = v = v = (3.9) x dt y dt z dt The instantaneous velocity v of a particle is always tangent to the path of the particle. 3.1.3 Acceleration If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for that period is ∆v ∆v ∆v ∆v a = = x i + y j + z k (3.10) ∆t ∆t ∆t ∆t but a much more interesting quantity is the result of shrinking the period ∆t to zero, which gives us the instantaneous acceleration, a.
    [Show full text]
  • Rotational Motion of Electric Machines
    Rotational Motion of Electric Machines • An electric machine rotates about a fixed axis, called the shaft, so its rotation is restricted to one angular dimension. • Relative to a given end of the machine’s shaft, the direction of counterclockwise (CCW) rotation is often assumed to be positive. • Therefore, for rotation about a fixed shaft, all the concepts are scalars. 17 Angular Position, Velocity and Acceleration • Angular position – The angle at which an object is oriented, measured from some arbitrary reference point – Unit: rad or deg – Analogy of the linear concept • Angular acceleration =d/dt of distance along a line. – The rate of change in angular • Angular velocity =d/dt velocity with respect to time – The rate of change in angular – Unit: rad/s2 position with respect to time • and >0 if the rotation is CCW – Unit: rad/s or r/min (revolutions • >0 if the absolute angular per minute or rpm for short) velocity is increasing in the CCW – Analogy of the concept of direction or decreasing in the velocity on a straight line. CW direction 18 Moment of Inertia (or Inertia) • Inertia depends on the mass and shape of the object (unit: kgm2) • A complex shape can be broken up into 2 or more of simple shapes Definition Two useful formulas mL2 m J J() RRRR22 12 3 1212 m 22 JRR()12 2 19 Torque and Change in Speed • Torque is equal to the product of the force and the perpendicular distance between the axis of rotation and the point of application of the force. T=Fr (Nm) T=0 T T=Fr • Newton’s Law of Rotation: Describes the relationship between the total torque applied to an object and its resulting angular acceleration.
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]
  • Kinematics, Impulse, and Human Running
    Kinematics, Impulse, and Human Running Kinematics, Impulse, and Human Running Purpose This lesson explores how kinematics and impulse can be used to analyze human running performance. Students will explore how scientists determined the physical factors that allow elite runners to travel at speeds far beyond the average jogger. Audience This lesson was designed to be used in an introductory high school physics class. Lesson Objectives Upon completion of this lesson, students will be able to: ஃ describe the relationship between impulse and momentum. ஃ apply impulse-momentum theorem to explain the relationship between the force a runner applies to the ground, the time a runner is in contact with the ground, and a runner’s change in momentum. Key Words aerial phase, contact phase, momentum, impulse, force Big Question This lesson plan addresses the Big Question “​What does it mean to observe?” Standard Alignments ஃ Science and Engineering Practices ஃ SP 4​. Analyzing and interpreting data ஃ SP 5​. Using mathematics and computational thinking ஃ MA Science and Technology/Engineering Standards (2016) ஃ HS-PS2-10(MA)​. Use algebraic expressions and Newton’s laws of motion to predict changes to velocity and acceleration for an object moving in one dimension in various situations. ஃ HS-PS2-3.​ Apply scientific principles of motion and momentum to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. ஃ NGSS Standards (2013) HS-PS2-2. ​Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
    [Show full text]
  • Kinematics Big Ideas and Equations Position Vs
    Kinematics Big Ideas and Equations Position vs. Time graphs Big Ideas: A straight line on a p vs t graph indicates constant speed (and velocity) An object at rest is indicated by a horizontal line The slope of a line on a p vs. t graph = velocity of the object (steeper = faster) The main difference between speed and velocity is that velocity incorporates direction o Speed will always be positive but velocity can be positive or negative o Positive vs. Negative slopes indicates the direction; toward the positive end of an axis (number line) or the negative end. For motion detectors this indicates toward (-) and away (+), but only because there is no negative side to the axis. An object with continuously changing speed will have a curved P vs. t graph; (curving steeper – speeding up, curving flatter – slowing down) (Instantaneous) velocity = average velocity if P vs. t is a (straight) line. Velocity vs Time graphs Big Ideas: The velocity can be found by calculating the slope of a position-time graph Constant velocity on a velocity vs. time graph is indicated with a horizontal line. Changing velocity is indicated by a line that slopes up or down. Speed increases when Velocity graph slopes away from v=0 axis. Speed decreases when velocity graph slopes toward v=0 axis. The velocity is negative if the object is moving toward the negative end of the axis - if the final position is less than the initial position (or for motion detectors if the object moves toward the detector) The slope of a velocity vs.
    [Show full text]
  • Oscillations
    CHAPTER FOURTEEN OSCILLATIONS 14.1 INTRODUCTION In our daily life we come across various kinds of motions. You have already learnt about some of them, e.g., rectilinear 14.1 Introduction motion and motion of a projectile. Both these motions are 14.2 Periodic and oscillatory non-repetitive. We have also learnt about uniform circular motions motion and orbital motion of planets in the solar system. In 14.3 Simple harmonic motion these cases, the motion is repeated after a certain interval of 14.4 Simple harmonic motion time, that is, it is periodic. In your childhood, you must have and uniform circular enjoyed rocking in a cradle or swinging on a swing. Both motion these motions are repetitive in nature but different from the 14.5 Velocity and acceleration periodic motion of a planet. Here, the object moves to and fro in simple harmonic motion about a mean position. The pendulum of a wall clock executes 14.6 Force law for simple a similar motion. Examples of such periodic to and fro harmonic motion motion abound: a boat tossing up and down in a river, the 14.7 Energy in simple harmonic piston in a steam engine going back and forth, etc. Such a motion motion is termed as oscillatory motion. In this chapter we 14.8 Some systems executing study this motion. simple harmonic motion The study of oscillatory motion is basic to physics; its 14.9 Damped simple harmonic motion concepts are required for the understanding of many physical 14.10 Forced oscillations and phenomena. In musical instruments, like the sitar, the guitar resonance or the violin, we come across vibrating strings that produce pleasing sounds.
    [Show full text]