Whole-Genome Sequence-Based Analysis of Thyroid Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Datasheet: VPA00477KT Product Details
Datasheet: VPA00477KT Description: CAPZB ANTIBODY WITH CONTROL LYSATE Specificity: CAPZB Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 2 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation 20μl Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 2% Sucrose Immunogen Synthetic peptide directed towards the N-terminal region of human CAPZB External Database Links UniProt: P47756 Related reagents Entrez Gene: 832 CAPZB Related reagents Specificity Rabbit anti Human CAPZB antibody recognizes CAPZB also known as F-actin-capping protein subunit beta or capZ beta. Page 1 of 3 The CAPZB gene encodes the beta subunit of the barbed-end actin binding protein, which belongs to the F-actin capping protein family. The capping protein is a heterodimeric actin capping protein that blocks actin filament assembly and disassembly at the fast growing (barbed) filament ends and functions in regulating actin filament dynamics as well as in stabilizing actin filament lengths in muscle and nonmuscle cells. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Chromosomal Aberrations in Head and Neck Squamous Cell Carcinomas in Norwegian and Sudanese Populations by Array Comparative Genomic Hybridization
825-843 12/9/08 15:31 Page 825 ONCOLOGY REPORTS 20: 825-843, 2008 825 Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization ERIC ROMAN1,2, LEONARDO A. MEZA-ZEPEDA3, STINE H. KRESSE3, OLA MYKLEBOST3,4, ENDRE N. VASSTRAND2 and SALAH O. IBRAHIM1,2 1Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91; 2Department of Oral Sciences - Periodontology, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 17, 5009 Bergen; 3Department of Tumor Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, 0310 Oslo; 4Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway Received January 30, 2008; Accepted April 29, 2008 DOI: 10.3892/or_00000080 Abstract. We used microarray-based comparative genomic logical parameters showed little correlation, suggesting an hybridization to explore genome-wide profiles of chromosomal occurrence of gains/losses regardless of ethnic differences and aberrations in 26 samples of head and neck cancers compared clinicopathological status between the patients from the two to their pair-wise normal controls. The samples were obtained countries. Our findings indicate the existence of common from Sudanese (n=11) and Norwegian (n=15) patients. The gene-specific amplifications/deletions in these tumors, findings were correlated with clinicopathological variables. regardless of the source of the samples or attributed We identified the amplification of 41 common chromosomal carcinogenic risk factors. regions (harboring 149 candidate genes) and the deletion of 22 (28 candidate genes). Predominant chromosomal alterations Introduction that were observed included high-level amplification at 1q21 (harboring the S100A gene family) and 11q22 (including Head and neck squamous cell carcinoma (HNSCC), including several MMP family members). -
And Short‐Term Outcomes in Renal Allografts with Deceased Donors
Received: 30 May 2017 | Revised: 28 October 2017 | Accepted: 13 November 2017 DOI: 10.1111/ajt.14594 ORIGINAL ARTICLE Long- and short- term outcomes in renal allografts with deceased donors: A large recipient and donor genome- wide association study Maria P. Hernandez-Fuentes1 | Christopher Franklin2 | Irene Rebollo-Mesa1 | Jennifer Mollon1,33 | Florence Delaney1,3 | Esperanza Perucha1 | Caragh Stapleton6 | Richard Borrows4 | Catherine Byrne5 | Gianpiero Cavalleri6 | Brendan Clarke7 | Menna Clatworthy8 | John Feehally9 | Susan Fuggle10 | Sarah A. Gagliano11 | Sian Griffin12 | Abdul Hammad13 | Robert Higgins14 | Alan Jardine15 | Mary Keogan31 | Timothy Leach16 | Iain MacPhee17 | Patrick B. Mark15 | James Marsh18 | Peter Maxwell19 | William McKane20 | Adam McLean21 | Charles Newstead22 | Titus Augustine23 | Paul Phelan24 | Steve Powis25 | Peter Rowe26 | Neil Sheerin27 | Ellen Solomon28 | Henry Stephens24 | Raj Thuraisingham29 | Richard Trembath28 | Peter Topham9 | Robert Vaughan30 | Steven H. Sacks1,3 | Peter Conlon6,31 | Gerhard Opelz32 | Nicole Soranzo2,33 | Michael E. Weale28 | Graham M. Lord1,3 | for the United Kingdom and Ireland Renal Transplant Consortium (UKIRTC) and the Wellcome Trust Case Control Consortium (WTCCC)-3 1King’s College London, MRC Centre for Transplantation, London, UK 2Welcome Trust Sanger Institute, Human Genetics, Cambridge, UK 3NIHR Biomedical Research Centre at Guy’s and St Thomas’, NHS Foundation Trust and King’s College London, London, UK 4Renal Institute of Birmingham, Department of Nephrology and Transplantation, -
A Genome-Wide Meta-Analysis Yields 46 New Loci Associating with Biomarkers of Iron Homeostasis
A Genome-Wide Meta-Analysis Yields 46 New Loci Associating with Biomarkers of Iron Homeostasis Bell, Steven ; Rigas, Andreas S. ; Magnusson, Magnus K. ; Ferkingstad, Egil ; Allara, Elias ; Bjornsdottir, Gyda ; Ramond, Anna ; Sørensen, Erik; Halldorsson, Gisli H. ; Paul, Dirk S. ; Burgdorf, Kristoffer Sølvsten; Eggertsson, Hanne P. ; Howson, Joanna M. M. ; Thørner, Lise W. ; Kristmundsdottir, Snaedis ; Astle, William J. ; Erikstrup, Christian; Sigurdsson, Jon K. ; Vukovic, Dragana; Dinh, Khoa M. ; Tragante, Vinicius ; Surendran, Praveen ; Pedersen, Ole Birger; Vidarsson, Brynja ; Jiang, Tao; Paarup, Helene M.; Onundarson, Pall T. ; Akbari, Parsa ; Nielsen, Kaspar René; Lund, Sigrun H. ; Juliusson, Kristinn ; Magnusson, Magnus I. ; Frigge, Michael L. ; Oddsson, Asmundur ; Olafsson, Isleifur ; Kaptoge, Stephen ; Hjalgrim, Henrik; Runarsson, Gudmundur ; Wood, Angela M. ; Jonsdottir, Ingileif ; Folkmann Hansen, Thomas; Sigurdardottir, Olof ; Stefansson, Hreinn ; Rye, David ; Andersen, Steffen; Banasik, Karina; Brunak, Søren; Burgdorf, Kristoffer ; Erikstrup, Christian; Jemec, Gregor Borut Ernst; Jennum, Poul; Johanssond, Pär I.; Nyegaard, Mette; Petersen, Mikkel; Werge, Thomas; Peters, James E. ; Westergaard, David; Holm, Hilma ; Soranzo, Nicole ; Thorleifsson, Gudmar ; Ouwehand, Willem H. ; Thorsteinsdottir, Unnur ; Roberts, David J. ; Sulem, Patrick; Butterworth, Adam S. ; Gudbjartsson, Daniel F. ; Danesh, John ; Brunak, Søren; Angelantonio, Emanuele Di ; Ullum, Henrik; Stefansson, Kari Document Version Final published version Published in: Communications Biology DOI: 10.1038/s42003-020-01575-z Publication date: 2021 License CC BY Citation for published version (APA): Bell, S., Rigas, A. S., Magnusson, M. K., Ferkingstad, E., Allara, E., Bjornsdottir, G., Ramond, A., Sørensen, E., Halldorsson, G. H., Paul, D. S., Burgdorf, K. S., Eggertsson, H. P., Howson, J. M. M., Thørner, L. W., Kristmundsdottir, S., Astle, W. J., Erikstrup, C., Sigurdsson, J. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
Meta-Analysis of Two Genome-Wide Association Studies Identifies Four Genetic Loci Associated with Thyroid Function
Human Molecular Genetics, 2012, Vol. 21, No. 14 3275–3282 doi:10.1093/hmg/dds136 Advance Access published on April 10, 2012 Meta-analysis of two genome-wide association studies identifies four genetic loci associated with thyroid function Rajesh Rawal1,∗,{, Alexander Teumer5,{, Henry Vo¨ lzke6,{, Henri Wallaschofski7, Till Ittermann6, Bjørn O. A˚ svold8,9, Trine Bjøro10,11, Karin H. Greiser12,13, Daniel Tiller13, Karl Werdan14, Henriette E. Meyer zu Schwabedissen15, Angela Doering2,3, Thomas Illig4,16, Christian Gieger1, Christa Meisinger3,{ and Georg Homuth5,{ 1 2 3 4 Institute of Genetic Epidemiology, Institute of Epidemiology I, Institute of Epidemiology II and Research Unit of Downloaded from Molecular Epidemiology, Helmholtz Zentrum Mu¨nchen, 85764 Neuherberg, Germany 5Interfaculty Institute for Genetics and Functional Genomics, 6Institute for Community Medicine and 7Institute of Clinical Chemistry and Laboratory Medicine, Ernst Mortiz-Arndt-University Greifswald, 17475 Greifswald, Germany 8Department of Public Health, Norwegian University of Science and Technology, 7491 Trondheim, Norway 9Department of Endocrinology, Trondheim University Hospital, 7491 Trondheim, Norway 10Department of Medical Biochemistry, Division of http://hmg.oxfordjournals.org/ Diagnostics and Intervention, Olso University Hospital, 0104 Oslo, Norway, 11Faculty of Medicine, University of Olso, 0104 Oslo, Norway, 12Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69126 Heidelberg, Germany, 13Institute of Medical Epidemiology, Biostatistics, and Informatics and 14Department of Medicine III, University Clinics Halle, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany, 15Department of Pharmacology, Ernst Mortiz-Arndt-University Greifswald, 17491 Greifswald, Germany and 16Hannover Unified Biobank, Hannover Medical School, 30625 Hannover, Germany at GSF Zentralbibliothek on July 27, 2012 Received November 22, 2011; Revised March 29, 2012; Accepted April 2, 2012 Thyroid hormones play key roles in cellular growth, development and metabolism. -
Department of Neuroscience Faculty Research Interests at the Albert Einstein
Dominick P. Purpura Department of Neuroscience Faculty Research Interests at the Albert Einstein DOBRENIS EMMONS ESKANDER COEN-CAGLI College of Medicine FISHMAN CHUA FRANCESCONI CASTILLO 2019–2020 FRENETTE BUSCHKE FRICKER GALANOPOULOU BUELOW GONÇALVES BERGMAN HALL BENNETT HÉBERT BATISTA-BRITO JORDAN BALLABH KHODAKHAH AUTRY ASCHNER AREZZO KURSHAN ALPERT AKABAS LACHMAN LAROCCA LEGATT LIPTON MEHLER MOLHOLM MOSHÉ NICOLA PEÑA PEREDA ROSS RUDOLPH SCHWARTZ SECOMBE SHARP SINGER SJULSON SOLDNER SPRAY STEINSCHNEIDER SUADICANI SUSSMAN VERSELIS WALKLEY WILSON YANG ZHENG ZUKIN Dominick P. Purpura Department of Neuroscience Faculty Research Interests at the Albert Einstein College of Medicine 2019–2020 Myles Akabas, M.D., Ph.D. 1 Peri Kurshan, Ph.D. 68 Joseph C. Arezzo, Ph.D. 6 Herbert M. Lachman, M.D. 70 Michael Aschner, Ph.D. 8 Jorge N. Larocca, Ph.D. 73 Anita E. Autry, Ph.D. 10 Alan D. Legatt, M.D., Ph.D. 75 Praveen Ballabh, M.D. 12 Michael L. Lipton, M.D., Ph.D. 77 Renata Batista-Brito, Ph.D. 14 Mark F. Mehler, M.D. 81 Michael V. L. Bennett, D.Phil. 16 Sophie Molholm, Ph.D. 83 Aviv Bergman, Ph.D. 18 Solomon L. Moshé, M.D. 89 Herman Buschke, M.D. 24 Saleem M. Nicola, Ph.D. 93 Pablo E. Castillo, M.D., Ph.D. 25 José L. Peña, M.D., Ph.D. 96 Streamson C. Chua, Jr., M.D., Ph.D. 27 Alberto E. Pereda, M.D., Ph.D. 98 Ruben Coen-Cagli, Ph.D. 29 Rachel A. Ross, M.D., Ph.D. 100 Kostantin Dobrenis, Ph.D. 31 Stephanie Rudolph, Ph.D. 102 Scott W. -
Análise Integrativa De Perfis Transcricionais De Pacientes Com
UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. -
Telomere-To-Telomere Assembly of a Complete Human X Chromosome W
https://doi.org/10.1038/s41586-020-2547-7 Accelerated Article Preview Telomere-to-telomere assembly of a W complete human X chromosome E VI Received: 30 July 2019 Karen H. Miga, Sergey Koren, Arang Rhie, Mitchell R. Vollger, Ariel Gershman, Andrey Bzikadze, Shelise Brooks, Edmund Howe, David Porubsky, GlennisE A. Logsdon, Accepted: 29 May 2020 Valerie A. Schneider, Tamara Potapova, Jonathan Wood, William Chow, Joel Armstrong, Accelerated Article Preview Published Jeanne Fredrickson, Evgenia Pak, Kristof Tigyi, Milinn Kremitzki,R Christopher Markovic, online 14 July 2020 Valerie Maduro, Amalia Dutra, Gerard G. Bouffard, Alexander M. Chang, Nancy F. Hansen, Amy B. Wilfert, Françoise Thibaud-Nissen, Anthony D. Schmitt,P Jon-Matthew Belton, Cite this article as: Miga, K. H. et al. Siddarth Selvaraj, Megan Y. Dennis, Daniela C. Soto, Ruta Sahasrabudhe, Gulhan Kaya, Telomere-to-telomere assembly of a com- Josh Quick, Nicholas J. Loman, Nadine Holmes, Matthew Loose, Urvashi Surti, plete human X chromosome. Nature Rosa ana Risques, Tina A. Graves Lindsay, RobertE Fulton, Ira Hall, Benedict Paten, https://doi.org/10.1038/s41586-020-2547-7 Kerstin Howe, Winston Timp, Alice Young, James C. Mullikin, Pavel A. Pevzner, (2020). Jennifer L. Gerton, Beth A. Sullivan, EvanL E. Eichler & Adam M. Phillippy C This is a PDF fle of a peer-reviewedI paper that has been accepted for publication. Although unedited, the Tcontent has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text andR fgures will undergo copyediting and a proof review before the paper is published in its fnal form. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.