U1L2 Fossils & History of Life

Total Page:16

File Type:pdf, Size:1020Kb

U1L2 Fossils & History of Life Name __________________________________________________ Date ______________________________ U1L2 Fossils & History of Life Main Ideas Read each item. Then select the letter next to the best answer. 1. Maria was organizing a timeline of important events that occurred in the history of life. She created the diagram below in order to look for patterns in the fossil record. Based on the evidence in her diagram, which of the following shows the correct order of life forms from earliest to latest? A. simple-celled > multicellular > complex-celled B. multicellular > complex-celled > simple-celled C. simple-celled > complex-celled > multicellular D. multicellular > simple-celled > complex-celled 2. You go to the science museum with your teacher to look for an idea for a science fair exhibit. You look at the following display about fossils from Precambrian and Cambrian rock strata. The sign on the exhibit says the following: • Rock strata from the late Precambrian Era provide evidence of only a small number of different kinds of animals. • Rock strata from the early Cambrian Period provide evidence of a huge number of different kinds of animal life. Which of the following is the BEST description for what occurred during the early Cambrian Period? A. a decrease in hard bodies B. an increase in soft bodies C. a decrease in complexity D. an increase in biodiversity 3. Enrico is learning about changes in the oceans and how this may affect marine life. He comes across this diagram about marine animals over the history of life. He sees that the number of marine animal groups has changed over time from the Permian Period to the present day. He also sees that there were three mass extinctions during this time. During each mass extinction, there was a sharp drop in the number of marine animal groups. Based on the evidence in the graph, which of the following statements is true about marine animals? A. The number of marine animal groups was highest about 100 million years ago. B. The number of marine animal groups is always increasing except during a mass extinction. C. The number of marine animal groups is always decreasing except during a mass extinction. D. The number of marine animal groups was lowest about 250 million years ago. 4. Fred’s favorite animals are horses. While reading about the history of horses, Fred learns that some fossil horses are very different from the horses of today. He finds the following illustration of fossil horses. The diagram shows how big the animals may have been and what their foot bones looked like. Based on the evidence shown here, which of the following conclusions is supported by fossil evidence on the history of horses? A. Horses became larger in size, with fewer toes. B. Horses became larger in size, with more toes. C. Horses became smaller in size, with more toes. D. Horses became smaller in size, with fewer toes. 5. Carla is interested in the history of birds. She learns about how dromaeosaur dinosaurs gave rise to early birds such as Archaeopteryx, and early birds gave rise to modern birds. Based on the diagram below, which of the following statements is supported by fossil evidence on the history of birds? A. Archaeopteryx has the long bony tail seen in dromaeosaur dinosaurs, but not the teeth. B. Archaeopteryx has the teeth seen in dromaeosaur dinosaurs, but it also has feathers like those of modern birds. C. Modern birds have the wishbone seen in dromaeosaur dinosaurs, but they also have the long bony tail of Archaeopteryx. D. Modern birds have the wishbone seen in Archaeopteryx, but not the feathers and wings. 6. Many scientists are interested in studying the fossil skull of a human ancestor. For some of them, using a CT scanner to scan the fossil, then using a 3-D printer to print a model of the fossil, is an engineering solution that satisfies their criteria and constraints. Which of the following scientists would find that this engineering solution did NOT meet their criteria and constraints? A. a scientist interested in estimating the size of the ancestor’s brain B. a scientist interested in studying the shape of the ancestor’s nose C. a scientist interested in studying the fossil’s teeth to determine if any are missing or worn down D. a scientist interested in the fossil’s chemical composition to determine the age of the ancestor Think Like a Scientist Read about each scientific investigation. Then answer the questions that follow the investigation by selecting the letter next to the best answer. Investigation Professor Carmela Lee collects data on several different fossils of human relatives that have been found. She measures the volume of the braincase of each fossil and uses that value to estimate brain size. She also estimates the original body weight of the human relative. Her data is shown in the table below. 7. Based on the data in the table, which of the following fossils have the largest estimated body weight? A. Homo erectus and Homo sapiens B. Homo heidelbergensis and Homo erectus C. Homo habilis and Homo neanderthalensis D. Homo neanderthalensis and Homo heidelbergensis 8. Based on evidence in the table, which of the following can you correctly conclude? A. The fossil record shows that Homo erectus went extinct about 600,000 years ago. B. The fossil record shows that modern humans originated about 28,000 years ago. C. The fossil record shows that there were Neanderthals alive about 100,000 years ago. D. The fossil record shows that Australopithecus africanus is the earliest known fossil human relative. 9. Which of the following claims about changes in brain size in fossil human relatives is BEST supported by the evidence? A. Brain size has generally stayed the same over time. B. Brain size has changed over time, but there is no pattern to the changes. C. Brain size has generally increased in size over time, though some fossils are exceptions to this. D. Brain size has generally decreased in size over time, though some fossils are exceptions to this. Expressing Science Practices, Concepts, and Ideas Read the directions for each item carefully and use the space provided to respond. 10. You are a volunteer at a natural history museum. One day, a fifth grader looking at a Tyrannosaurus rex skeleton in the main hall asks when T. rex lived. You tell her that T. rex lived from about 70 million years ago to about 66 million years ago, when it died out during the mass extinction at the end of the Cretaceous Period. Explain to her how you know this. Use all of the words from the word bank. Write a two-paragraph essay that includes: • how scientists know that T. rex lived from about 70 million years ago to about 66 million years ago. • what a mass extinction is and how scientists know there was a mass extinction at the end of the Cretaceous Period. WORD BANK absolute dating extinct fossil fossil record mass extinction meteorite rock strata 11. During a walk on the beach, you find a jellyfish that has washed up next to several shells. You observe that jellyfish have soft bodies with no hard parts. Write a one-paragraph essay that: • makes a claim about whether the jellyfish or the shell is more likely to become a fossil. • uses reasoning with evidence to support your claim..
Recommended publications
  • Lecture 20 - the History of Life on Earth
    Lecture 20 - The History of Life on Earth Lecture 20 The History of Life on Earth Astronomy 141 – Autumn 2012 This lecture reviews the history of life on Earth. Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon Emergence of Photosynthesis and the rise of O2 in the Earth’s atmosphere. Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon Colonization of land first by plants, then by animals Emergence of primates, then hominids, then humans. A brief digression on notation: “ya” = “years ago” Introduce a simple compact notation for writing the length of time before the present day. For example: “3.5 Billion years ago” “454 Million years ago” Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago [Note: some sources use Ga and Ma] Astronomy 141 - Winter 2012 1 Lecture 20 - The History of Life on Earth The four Eons of geological time. Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen Phanerozoic: since 454 Mya: Rise of plant and animal life The Archaean Eon began with the end of heavy bombardment ~3.8 Gya. Conditions stabilized. Oceans, but no O2 in the atmosphere. Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis. Time of rapid diversification of life driven by Natural Selection.
    [Show full text]
  • Chapter 22 Notes: Introduction to Evolution
    NOTES: Ch 22 – Descent With Modification – A Darwinian View of Life Our planet is home to a huge variety of organisms! (Scientists estimate of organisms alive today!) Even more amazing is evidence of organisms that once lived on earth, but are now . Several hundred million species have come and gone during 4.5 billion years life is believed to have existed on earth So…where have they gone… why have they disappeared? EVOLUTION: the process by which have descended from . Central Idea: organisms alive today have been produced by a long process of . FITNESS: refers to traits and behaviors of organisms that enable them to survive and reproduce COMMON DESCENT: species ADAPTATION: any inherited characteristic that enhances an organism’s ability to ~based on variations that are HOW DO WE KNOW THAT EVOLUTION HAS OCCURRED (and is still happening!!!)??? Lines of evidence: 1) So many species! -at least (250,000 beetles!) 2) ADAPTATIONS ● Structural adaptations - - ● Physiological adaptations -change in - to certain toxins 3) Biogeography: - - and -Examples: 13 species of finches on the 13 Galapagos Islands -57 species of Kangaroos…all in Australia 4) Age of Earth: -Rates of motion of tectonic plates - 5) FOSSILS: -Evidence of (shells, casts, bones, teeth, imprints) -Show a -We see progressive changes based on the order they were buried in sedimentary rock: *Few many fossils / species * 6) Applied Genetics: “Artificial Selection” - (cattle, dogs, cats) -insecticide-resistant insects - 7) Homologies: resulting from common ancestry Anatomical Homologies: ● comparative anatomy reveals HOMOLOGOUS STRUCTURES ( , different functions) -EX: ! Vestigial Organs: -“Leftovers” from the evolutionary past -Structures that Embryological Homologies: ● similarities evident in Molecular/Biochemical Homologies: ● DNA is the “universal” genetic code or code of life ● Proteins ( ) Darwin & the Scientists of his time Introduction to Darwin… ● On November 24, 1859, Charles Darwin published On the Origin of Species by Means of Natural Selection.
    [Show full text]
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Darwin's “Tree of Life”
    Icons of Evolution? Why Much of What Jonathan Wells Writes about Evolution is Wrong Alan D. Gishlick, National Center for Science Education DARWIN’S “TREE OF LIFE” mon descent. Finally, he demands that text- books treat universal common ancestry as PHYLOGENETIC TREES unproven and refrain from illustrating that n biology, a phylogenetic tree, or phyloge- “theory” with misleading phylogenies. ny, is used to show the genealogic relation- Therefore, according to Wells, textbooks Iships of living things. A phylogeny is not should state that there is no evidence for com- so much evidence for evolution as much as it mon descent and that the most recent research is a codification of data about evolutionary his- refutes the concept entirely. Wells is complete- tory. According to biological evolution, organ- ly wrong on all counts, and his argument is isms share common ancestors; a phylogeny entirely based on misdirection and confusion. shows how organisms are related. The tree of He mixes up these various topics in order to life shows the path evolution took to get to the confuse the reader into thinking that when current diversity of life. It also shows that we combined, they show an endemic failure of can ascertain the genealogy of disparate living evolutionary theory. In effect, Wells plays the organisms. This is evidence for evolution only equivalent of an intellectual shell game, put- in that we can construct such trees at all. If ting so many topics into play that the “ball” of evolution had not happened or common ances- evolution gets lost. try were false, we would not be able to discov- THE CAMBRIAN EXPLOSION er hierarchical branching genealogies for ells claims that the Cambrian organisms (although textbooks do not general- Explosion “presents a serious chal- ly explain this well).
    [Show full text]
  • Species Change Over Time
    KEY CONCEPT Species change over time. BEFORE, you learned NOW, you will learn • Fossils are evidence of earlier • About early ideas and observa- life tions on evolution • More complex organisms have • How Darwin developed his developed over time theory of natural selection • Mass extinctions contributed to • How new species arise from the development of Earth’s older species history VOCABULARY THINK ABOUT evolution p. 797 How have telephones changed over time? natural selection p. 801 adaptation p. 802 Today people across the world can speciation p. 804 communicate in many different ways. One of the most common ways is over the telephone. Looking at the two pictures, can you describe how this form of communication has changed over time? Scientists explore the concept of evolution. MAIN IDEA AND DETAILS In a general sense, evolution involves a change over time. You could Make a chart for the main say that the way humans communicate has evolved. Certainly idea scientists explore the concept of evolution. telephones have changed over time. The first telephones were the size Include details about scien- of a shoebox. Today a telephone can fit in the palm of your hand and tists’ observations. can send images as well as sound. In biology,evolution refers to the process though which species change over time. The change results from a change in the genetic material of an organism and is passed from one generation to the next. Check Your Reading What is evolution? Chapter 23: History of Life 797 Early Ideas reading tip In the early 1800s, a French scientist named Jean Baptiste de Lamarck The word acquire comes was the first scientist to propose a model of how life evolves.
    [Show full text]
  • The Evolution of Life
    Study Guide # 2 - Spring, 2000 Geology 230 - Evolution of the Earth THE EVOLUTION OF LIFE Lynn S. Fichter James Madison University Topics to be covered and general objectives: During this period, we will cover the following topics in lecture: ( The record of life on earth. Are there recognizable patterns, or is it all just random and unpredictable? " An introduction to non-equilibrium thermodynamics (chaos/complexity theories). " Evolution of Moneran biochemical pathways. " Symbiosis and the origin of the Protist kingdom. " The Origin of multicellularity. " The Phanerozoic record of multicellular life. ( A sampling of the significant scientific problems in the history of life on earth. Just how much do we know and understand after more than a century of study? " The principles of non-equilibrium thermodynamics [Prigogine's Dissipative Structures and Bronowski's Stratified Stabilities]. How can life get more complex when the second law of thermodynamics says everything in the universe should be running down? " Evolutionary Theory. Many problems exist in science which are very difficult to solve, and which do not have simple solutions. Evolutionary theory is much more than Darwin's theory of natural selection. " The Gaia hypothesis for the coevolution of life and the earth. To what degree are the Earth and life related? PROCESS #1 "Any phenomenon which shows continuous change in time"; #2 "A series of actions or operations definitely conducing to an end." GEOLOGY 230 STUDY GUIDE: THE EVOLUTION OF LIFE SPRING SEMESTER, 2000 - 2 Theory-free science makes about as much sense as value-free politics. Both terms are oxymoronic. All thinking about the natural world must be informed by theory, whether or not we articulate our preferred structure of explanation to ourselves.
    [Show full text]
  • Natural Reward Drives the Advancement of Life
    Rethinking Ecology 5: 1–35 (2020) doi: 10.3897/rethinkingecology.5.58518 PERSPECTIVES http://rethinkingecology.pensoft.net Natural reward drives the advancement of life Owen M. Gilbert1 1 University of Texas at Austin, Austin, USA Corresponding author: Owen Gilbert ([email protected]) Academic editor: S. Boyer | Received 10 September 2020 | Accepted 10 November 2020 | Published 27 November 2020 Citation: Gilbert OM (2020) Natural reward drives the advancement of life. Rethinking Ecology 5: 1–35. https://doi. org/10.3897/rethinkingecology.5.58518 Abstract Throughout the history of life on earth, rare and complex innovations have periodically increased the efficiency with which abiotic free energy and biotic resources are converted to biomass and organismal diversity. Such macroevolutionary expansions have increased the total amount of abiotic free energy uti- lized by life and shaped the earth’s ecosystems. Meanwhile, Darwin’s theory of natural selection assumes a historical, worldwide state of effective resource limitation, which could not possibly be true if life evolved from one or a few original ancestors. In this paper, I analyze the self-contradiction in Darwin’s theory that comes from viewing the world and universe as effectively resource limited. I then extend evolutionary theory to include a second deterministic evolutionary force, natural reward. Natural reward operates on complex inventions produced by natural selection and is analogous to the reward for innovation in human economic systems. I hypothesize that natural reward, when combined with climate change and extinction, leads to the increased innovativeness, or what I call the advancement, of life with time. I then discuss ap- plications of the theory of natural reward to the evolution of evolvability, the apparent sudden appearance of new forms in the fossil record, and human economic evolution.
    [Show full text]
  • 9Th Grade Biology: History of Life and the Theory of Evolution April 14 – April 17 Time Allotment: 40 Minutes Per Day
    9th Grade Biology: History of Life and the Theory of Evolution April 14 – April 17 Time Allotment: 40 minutes per day Student Name: ________________________________ Period: ______ Teacher Name: Ms. Carstens 9th Biology – History of Life and the Theory of Evolution April 14 – April 17 Packet Overview Date Objective(s) Page # Monday, April 6 NO CLASS Tuesday, April 7 1. Describe Charles Darwin’s contributions to scientific thinking 2 about evolution. 2. Analyze the reasoning in Darwin’s theory of evolution by natural selection. Wednesday, April 8 1. Identify inferences on the history of life that are supported by 5 fossils and strata. 2. Explain how biogeography provides evidence that species evolve adaptations to their environments. Thursday, April 9 1. Explain how the anatoMy and developMent of organisMs provide 8 evidence of shared ancestry. Friday, April 10 1. Describe how convergent evolution and divergent evolution affect 13 species diversity. 2. CoMpare and contrast natural selection and artificial selection. Additional Notes: Greetings! As a reminder, in addition to email, you may attend my Zoom office hours to seek support for your weekly work. These sessions are intended for the purpose of answering questions, clarifying instructions, and seeking more information on the content topics for the week. If you need to attend, please join the session that corresponds with your class schedule. The times are listed below: • 1st Period – Mondays, Wednesdays from 10:00-10:50 am • 3rd Period – Mondays, Wednesdays from 1:00-1:50 pm • 4th Period – Tuesdays, Thursdays from 10:00-10:50 am • 6th Period – Tuesdays, Thursdays from 1:00-1:50 pm A minor assessment is found on pgs.
    [Show full text]
  • Paleontology and the History of Life
    36954_u01.qxd 7/11/08 2:01 PM Page 80 Paleontology and the History of Life Michael Benton And out of the ground the Lord God formed every beast of the field, and every fowl of the air; and brought them unto Adam to see what he would call them: and whatsoever Adam called every living creature, that was the name thereof. Genesis 2:19 People have always been astounded by the diversity of life, although perhaps in different ways. In prescientific times farmers saw how their crops and live- stock were merely part of a much larger richness of life, and people have al- ways striven to understand the complexity and arrangement of living things. From Aristotle to Linnaeus, scientists attempted to catalog life and to under- stand where it had come from. During the eighteenth century it became clear to all savants that the earth had been populated formerly by strange and mar- velous creatures that had since become extinct. By 1820 some rough picture of the succession of floras and faunas through geological time was beginning to emerge. Charles Darwin, during the voyage of HMS Beagle in the early 1830s, became increasingly convinced that life was more diverse than he had imagined—every island he visited sported a new crop of plants and animals. He saw the lateral (geographic) and vertical (historic) links between species and realized by 1837 that species were all linked by a great tree. The tree con- cept made it clear why species that in his time were geographically close should also be genealogically close.
    [Show full text]
  • Evidence for Evolution
    CHAPTER 3 Evidence for Evolution VOLUTIONARY BIOLOGY HAS PROFOUNDLY altered our view of nature and of ourselves. At the beginning of this book, we showed the practical application of Eevolutionary biology to agriculture, biotechnology, and medicine. More broadly, evolutionary theory underpins all our knowledge of biology, explains how organisms came to be (both describing their history and identi- fying the processes that acted), and explains why they are as they are (why organisms reproduce sexually, why they age, and so on). How- ever, arguably its most important influence has been on how we view ourselves and our place in the world. The radical scope of evolution- ary biology has for many been hard to accept, and this has led to much misunderstanding and many objections. In this chapter, we summarize the evidence for evolution, clarify some common misun- derstandings, and discuss the wider implications of evolution by natural selection. Biological evolution was widely accepted soon after the publication of On the Origin of Species in 1859 (Chapter 1.x). Charles Darwin set out “one long argument” for the “descent with modification” of all liv- ing organisms, from one or a few common ancestors. He marshaled evidence from classification of organisms, from the fossil record, from geographic distribution of organisms, and by analogy with artificial se- lection. As we saw in Chapter 1, the detailed processes that cause evo- lution remained obscure until after the laws of heredity were established in the early 20th century. By the time of the Evolutionary Synthesis,in the mid-20th century, these processes were well understood and, cru- cially, it was established that adaptation is due to natural selection (Chapter 1.x).
    [Show full text]
  • Chapter 14: the History of Life Computer Test Bank Oparin, Miller and Urey, Fox, and Others Journals the Experiments They Research
    UnitUnit 55 Unit 5 UnitUnit 55 Change Advance Planning ChangeChange Chapter 14 Through Time I Order diatomaceous earth for MiniLab 14-1. Unit Overview ThroughThrough I Order the chemicals for the In this unit, students will study Alternative Lab. I the concepts and principles of Order a live culture or pre- evolution and classification. TimeTime served slides of Oscillatoria for Chapter 14 deals with the history the Quick Demo. I of life on Earth, and some Life on Earth has a history of change Order live cultures or pre- hypotheses about how life began. served slides of bacteria and that is called evolution. An enormous Students will learn about fos- cyanobacteria for the Biology sils—what they are, how they are variety of fossils, such as those of early Journal. formed, and how they can be birds, provide evidence of evolution. Chapter 15 used to reconstruct the history of Genetic studies of populations of bacteria, I Order bacterial cultures, nutri- life on Earth. In Chapter 15, protists, plants, insects, and even humans ent agar, and other materials Darwin’s theory of evolution by for the Alternative Lab. natural selection is discussed. provide further evidence of the history The role of natural selection in Unit Projects Chapter 16 of change among organisms that live or I the evolution of new species is Obtain casts of various fossil have lived on Earth. presented. In Chapter 16, evi- hominids and ape skulls for the dence of the ancestry of humans BioLab. is explored. Chapter 17 intro- Chapter 17 duces taxonomy and the diversity UNIT CONTENTS I Obtain guidebooks that have of organisms.
    [Show full text]