WO 2011/050470 Al

Total Page:16

File Type:pdf, Size:1020Kb

WO 2011/050470 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... , . _ . 5 May 2011 (05.05.2011) WO 2011/050470 Al (51) International Patent Classification: Master University, 1200 Main Street West, MDCL 5029, C12N 5/071 (2010.01) C12Q 1/02 (2006.01) Hamilton, Ontario L8N 3Z5 (CA). RAMPALLI-DESH- A61K 35/12 (2006.01) C12Q 1/68 (2006.01) PANDE, Shravanti [IN/CA]; Stem Cell and Cancer Re C12N 15/00 (2006.01) C12N 15/867 (2006.01) search Institute, McMaster University, 1200 Main Street West, MDCL5029, Hamilton, Ontario L8N 3Z5 (CA). (21) International Application Number: MUNOZ RISUENO, Ruth [ES/CA]; Stem Cell and PCT/CA20 10/00 1708 Cancer Research Institute, McMaster University, 1200 (22) International Filing Date: Main Street West, MDCL5029, Hamilton, Ontario L8N 29 October 2010 (29.10.2010) 3Z5 (CA). VIJAYARAGAVAN, Kausalia [CA/ES]; Stem Cell and Cancer Research Institute, McMaster Uni (25) Filing Language: English versity, 1200 Main Street West, MDCL5029, Hamilton, (26) Publication Language: English Ontario L8N 3Z5 (CA). (30) Priority Data: (74) Agent: BERESKIN & PARR LLP/S.E.N.C.R.L., 61/256,1 70 29 October 2009 (29.10.2009) US S.R.L.; 40 King Street West, 40th Floor, Toronto, On tario M5H 3Y2 (CA). (71) Applicant (for all designated States except US): MC¬ MASTER UNIVERSITY [CA/CA]; McMaster Industry (81) Designated States (unless otherwise indicated, for every Liaison Office (MILO), McMaster Innovation Park, 175 kind of national protection available): AE, AG, AL, AM, Longwood Road South, Room 305, Hamilton, Ontario AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, L8P 0A1 (CA). CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (72) Inventors; and HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (75) Inventors/ Applicants (for US only): BHATIA, Mickie KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, [CA/CA]; Stem Cell and Cancer Research Institute, Mc ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, Master University, 1200 Main Street West, MDCL5029, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, Hamilton, Ontario L8N 3Z5 (CA). SZABO, Eva SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, [CA/CA]; Stem Cell and Cancer Research Institute, Mc TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. [Continued on next page] (54) Title: GENERATING INDUCED PLURIPOTENT STEM CELLS AND PROGENITOR CELLS FROM FIBROBLASTS (57) Abstract: The present disclosure provides a method of generating progenitor cells, such as hematopoietic or neural progenitor cells, from fibroblasts, such as dermal fibroblasts, compris ing providing fibroblasts that express or are treated with a POU domain containing gene or protein and culturing the cells under conditions that allow production of progenitor cells, with out traversing the pluripotent state. Also pro vided is a method of isolating a subpopulation of fibroblasts with reprogramming potential comprising providing fibroblasts that express an Oct-4-reporter and isolating cells that are positive for the reporter. Further provided is a method of generating reprogrammed fibroblast- derived induced pluripotent stem cells. Also provided are uses and assays of the cells pro duced by the methods of the disclosure. w o 2011/050470 Ai II II II I III I1 1 llll II II II II III II I II (84) Designated States (unless otherwise indicated, for every — of inventorship (Rule 4.1 7(iv)) kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, Published: ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, — with international search report (Art. 21(3)) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, — before the expiration of the time limit for amending the LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, claims and to be republished in the event of receipt of SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, amendments (Rule 48.2(h)) GW, ML, MR, NE, SN, TD, TG). — with sequence listing part of description (Rule 5.2(a)) Declarations under Rule 4.17: — as to applicant's entitlement to apply for and be granted a patent (Rule 4.1 7(H)) Title: GENERATING INDUCED PLURIPOTENT STEM CELLS AND PROGENITOR CELLS FROM FIBROBLASTS Cross Reference to Related Applications [0001] This application claims the benefit of priority of copending U.S. provisional application 61/256,170 filed on October 29, 2009, the contents of which are incorporated herein by reference in their entirety. Field of the disclosure [0002] The disclosure relates to reprogramming of fibroblasts. In particular, the disclosure relates to methods of generating progenitor cells and induced pluripotent stems cells derived from fibroblasts and the cells produced by the methods. Background of the disclosure [0003] Several groups have demonstrated the ability to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs) following transduction with Oct-4 together with other factors (Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yu et al., 2007). For example, dermal fibroblasts can be reprogrammed to a pluripotent state by ectopic expression of a cocktail of pluripotent factors including Oct-4 (POU5F1), Sox-2, Klf-4, c- Myc, Nanog, and Lin28 (Takahashi et al., 2007; Yu et al., 2007), With the exception of Oct4, further studies indicated that the majority of these factors could be eliminated by use of unique stem/progenitor cells (Heng et al.; Aasen et al. 2008; Eminli et al. 2008; Eminli et al. 2009; Kim et al. 2009) or, alternatively, by addition of chemicals targeting the epigenome of dermal fibroblast sources (Shi et al. 2008; Lyssiotis et al. 2009). These studies demonstrate there are several approaches and methods for generation of iPSCs, however, the cellular and molecular mechanisms underlying reprogramming to the pluripotent state remain largely unknown (Jaenisch and Young, 2008). Although iPSCs can be differentiated towards the blood fate, the resulting hematopoietic cells preferentially generate primitive blood cells that utilize embryonic programs. Moreover, the methods remain inefficient, making it difficult to contemplate transplantation or modeling hematological diseases (Lengerke and Daley, 2010). Characterization of these processes is further complicated by cellular intermediates that fail to establish a stable piuripotent state, potentially due to the inability to achieve the correct combination, stoichiometry, or expression levels of reprogramming factors ideal for complete pluripotency induction (Chan et al., 2009; Kanawaty and Henderson, 2009; Lin et al., 2009; Mikkelsen et al., 2008). Consistent with this idea, intermediate cells derived from fibroblasts have been shown to co- express genes associated with several differentiated lineages (neurons, epidermis, and mesoderm) (Kanawaty and Henderson, 2009; Mikkelsen et al., 2008), nevertheless the exact identity and differentiation potential of these cell types remain elusive. This creates the possibility that under unique conditions the fibroblasts expressing a small subset of transcription factors can be induced to differentiate towards specified lineages without achieving pluripotency, as recently been demonstrated by converting fibroblasts into specific cell types such as neurons, cardiomyocytes, and macrophage-like cells (Feng et al., 2008; leda et al., 2010; Vierbuchen et al., 2010). While these studies have examined fibroblast conversion in the murine model, this concept remains to be extrapolated for human applications. [0004] Previous studies have shown that proteins containing POU domains, such as Oct-4, along with Oct-2 (POU2F2) and Oct- (POU2F1) bind similar DNA target motifs (Kang et al., 2009). Whilst both Oct-2 and Oct- 1 play a role in hematopoietic development (Brunner et al., 2003; Emslie et al., 2008; Pfisterer et al., 1996), Oct-4 is yet to be implicated in this process. Nonetheless, recent studies have predicted that Oct-4 possesses the capacity to bind to the promoters of the hematopoietic genes Runxl and CD45, thus potentially regulating their expression (Kwon et al., 2006; Sridharan et al., 2009). Despite the similarities in binding and regulation, the exact functional role of individual Oct family members appears to be cell context specific (Kang et al., 2009; Pardo et al., 2010). [0005] The ability to generate piuripotent stem cells from human dermal fibroblasts allows for generation of complex genetic disease models, and provides an unprecedented source for autologous transplantation without concern of immune rejection (Takahashi and Yamanaka 2006; Hanna et al. 2007; Yu et al. 2007; Okita et al. 2008; Park et al. 2008; Park et al. 2008b; Soldner et al. 2009). [0006] Although a variety of somatic cell types can be reprogrammed, the vast majority of studies aimed at characterizing the mechanisms that govern the reprogramming process utilize fibroblasts (Takahashi and Yamanaka 2006; Takahashi et al. 2007; Wernig et al. 2007; Yu et al. 2007; Aoi et al. 2008; Brambrink et al. 2008; Eminli et al. 2008; Hanna et al. 2008; Huangfu et al. 2008; Lowry et al. 2008; Stadtfeld et al. 2008; Zhou et al. 2008; Carey et al. 2009; Feng et al. 2009; Gonzalez et al. 2009; Guo et al. 2009; Kaji et al. 2009; Utikal et al. 2009; Woltjen et al. 2009; Yusa et al. 2009; Zhou et al. 2009). As such, the current understanding of the molecular mechanisms and cellular nature of reprogramming is nearly exclusively derived from fibroblast-based reprogramming. Fibroblasts can be generated from multiple tissue sites including dermal skin, however, little is known about the origins and composition of fibroblasts used experimentally. [0007] Cellular reprogramming to the pluripotent state was originally demonstrated using in vitro cultured mammalian fibroblasts (Takahashi and Yamanaka 2006).
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Meta-Analyses of Expression Profiling Data in the Postmortem
    META-ANALYSES OF EXPRESSION PROFILING DATA IN THE POSTMORTEM HUMAN BRAIN by Meeta Mistry B.Sc., McMaster University, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Bioinformatics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2012 © Meeta Mistry, 2012 Abstract Schizophrenia is a severe psychiatric illness for which the precise etiology remains unknown. Studies using postmortem human brain have become increasingly important in schizophrenia research, providing an opportunity to directly investigate the diseased brain tissue. Gene expression profiling technologies have been used by a number of groups to explore the postmortem human brain and seek genes which show changes in expression correlated with schizophrenia. While this has been a valuable means of generating hypotheses, there is a general lack of consensus in the findings across studies. Expression profiling of postmortem human brain tissue is difficult due to the effect of various factors that can confound the data. The first aim of this thesis was to use control postmortem human cortex for identification of expression changes associated with several factors, specifically: age, sex, brain pH and postmortem interval. I conducted a meta-analysis across the control arm of eleven microarray datasets (representing over 400 subjects), and identified a signature of genes associated with each factor. These genes provide critical information towards the identification of problematic genes when investigating postmortem human brain in schizophrenia and other neuropsychiatric illnesses. The second aim of this thesis was to evaluate gene expression patterns in the prefrontal cortex associated with schizophrenia by exploring two methods of analysis: differential expression and coexpression.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Identification of Transcriptomic Differences Between Lower
    International Journal of Molecular Sciences Article Identification of Transcriptomic Differences between Lower Extremities Arterial Disease, Abdominal Aortic Aneurysm and Chronic Venous Disease in Peripheral Blood Mononuclear Cells Specimens Daniel P. Zalewski 1,*,† , Karol P. Ruszel 2,†, Andrzej St˛epniewski 3, Dariusz Gałkowski 4, Jacek Bogucki 5 , Przemysław Kołodziej 6 , Jolanta Szyma ´nska 7 , Bartosz J. Płachno 8 , Tomasz Zubilewicz 9 , Marcin Feldo 9,‡ , Janusz Kocki 2,‡ and Anna Bogucka-Kocka 1,‡ 1 Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chod´zkiSt., 20-093 Lublin, Poland; [email protected] 2 Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; [email protected] (K.P.R.); [email protected] (J.K.) 3 Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Gł˛ebokaSt., 20-612 Lublin, Poland; [email protected] 4 Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA; [email protected] 5 Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chod´zkiSt., Citation: Zalewski, D.P.; Ruszel, K.P.; 20-093 Lublin, Poland; [email protected] St˛epniewski,A.; Gałkowski, D.; 6 Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Bogucki, J.; Kołodziej, P.; Szyma´nska, Lublin, 4a Chod´zkiSt., 20-093 Lublin, Poland; [email protected] J.; Płachno, B.J.; Zubilewicz, T.; Feldo, 7 Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, M.; et al.
    [Show full text]
  • The Plasma Peptides of Alzheimer's Disease
    Florentinus‑Mefailoski et al. Clin Proteom (2021) 18:17 https://doi.org/10.1186/s12014‑021‑09320‑2 Clinical Proteomics RESEARCH Open Access The plasma peptides of Alzheimer’s disease Angelique Florentinus‑Mefailoski1, Peter Bowden1, Philip Scheltens2, Joep Killestein3, Charlotte Teunissen4 and John G. Marshall1,5* Abstract Background: A practical strategy to discover proteins specifc to Alzheimer’s dementia (AD) may be to compare the plasma peptides and proteins from patients with dementia to normal controls and patients with neurological condi‑ tions like multiple sclerosis or other diseases. The aim was a proof of principle for a method to discover proteins and/ or peptides of plasma that show greater observation frequency and/or precursor intensity in AD. The endogenous tryptic peptides of Alzheimer’s were compared to normals, multiple sclerosis, ovarian cancer, breast cancer, female normal, sepsis, ICU Control, heart attack, along with their institution‑matched controls, and normal samples collected directly onto ice. Methods: Endogenous tryptic peptides were extracted from blinded, individual AD and control EDTA plasma sam‑ ples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were ft to fully tryptic peptides within proteins identi‑ fed using the X!TANDEM algorithm. Observation frequency of the identifed proteins was counted using SEQUEST algorithm. The proteins with apparently increased observation frequency in AD versus AD Control were revealed graphically and subsequently tested by Chi Square analysis. The proteins specifc to AD plasma by Chi Square with FDR correction were analyzed by the STRING algorithm.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0304845 A1 Loboda Et Al
    US 201403.04845A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0304845 A1 Loboda et al. (43) Pub. Date: Oct. 9, 2014 54) ALZHEMIERS DISEASE SIGNATURE Publicationublication ClassificatiClassification MARKERS AND METHODS OF USE (51) Int. Cl. (71) Applicant: MERCKSHARP & DOHME CORP, CI2O I/68 (2006.01) Rahway, NJ (US) AOIK 67/027 (2006.01) (52) U.S. Cl. (72) Inventors: SIES yet.sS); CPC .......... CI2O I/6883 (2013.01); A0IK 67/0275 Icnaei NepoZnyn, Yeadon, (2013.01) le.East,Italia; David J. Stone, Wyncote, USPC .............. 800/12:536/23.5:536/23.2:506/17 (US); Keith Tanis, Quakertown, PA (US); William J. Ray, Juniper, FL (US) (57) ABSTRACT (21) Appl. No.: 14/354,622 Methods, biomarkers, and expression signatures are dis 1-1. closed for assessing the disease progression of Alzheimer's (22) PCT Filed: Oct. 26, 2012 disease (AD). In one embodiment, BioAge (biological age), NdStress (neurodegenerative stress), Alz (Alzheimer), and (86). PCT No.: PCT/US12A62218 Inflame (inflammation) are used as biomarkers of AD pro S371 (c)(1), gression. In another aspect, the invention comprises a gene (2), (4) Date: Apr. 28, 2014 signature for evaluating disease progression. In still another Related U.S. Application Data abiliticises in (60) Provisional application No. 61/553,400, filed on Oct. used to identify animal models for use in the development and 31, 2011. evaluation of therapeutics for the treatment of AD. Patent Application Publication Oct. 9, 2014 Sheet 1 of 16 US 2014/0304845 A1 Y : : O O O O O O O O D O v v CN On cy Patent Application Publication Oct.
    [Show full text]
  • Sprouty Proteins, Masterminds of Receptor Tyrosine Kinase Signaling
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Angiogenesis (2008) 11:53–62 DOI 10.1007/s10456-008-9089-1 ORIGINAL PAPER Sprouty proteins, masterminds of receptor tyrosine kinase signaling Miguel A. Cabrita Æ Gerhard Christofori Received: 14 December 2007 / Accepted: 7 January 2008 / Published online: 25 January 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Angiogenesis relies on endothelial cells prop- Abbreviations erly processing signals from growth factors provided in Ang Angiopoietin both an autocrine and a paracrine manner. These mitogens c-Cbl Cellular homologue of Casitas B-lineage bind to their cognate receptor tyrosine kinases (RTKs) on lymphoma proto-oncogene product the cell surface, thereby activating a myriad of complex EGF Epidermal growth factor intracellular signaling pathways whose outputs include cell EGFR EGF receptor growth, migration, and morphogenesis. Understanding how eNOS Endothelial nitric oxide synthase these cascades are precisely controlled will provide insight ERK Extracellular signal-regulated kinase into physiological and pathological angiogenesis. The FGF Fibroblast growth factor Sprouty (Spry) family of proteins is a highly conserved FGFR FGF receptor group of negative feedback loop modulators of growth GDNF Glial-derived neurotrophic factor factor-mediated mitogen-activated protein kinase (MAPK) Grb2 Growth factor receptor-bound protein 2 activation originally described in Drosophila. There are HMVEC Human microvascular endothelial cell four mammalian orthologs (Spry1-4) whose modulation of Hrs Hepatocyte growth factor-regulated tyrosine RTK-induced signaling pathways is growth factor – and kinase substrate cell context – dependant. Endothelial cells are a group of HUVEC Human umbilical vein endothelial cell highly differentiated cell types necessary for defining the MAPK Mitogen-activated protein kinase mammalian vasculature.
    [Show full text]
  • T Cell Depending on the Differentiation State of the Dual
    Dual Effects of Sprouty1 on TCR Signaling Depending on the Differentiation State of the T Cell This information is current as Heonsik Choi, Sung-Yup Cho, Ronald H. Schwartz and of September 29, 2021. Kyungho Choi J Immunol 2006; 176:6034-6045; ; doi: 10.4049/jimmunol.176.10.6034 http://www.jimmunol.org/content/176/10/6034 Downloaded from References This article cites 63 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/176/10/6034.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Dual Effects of Sprouty1 on TCR Signaling Depending on the Differentiation State of the T Cell1 Heonsik Choi,* Sung-Yup Cho,† Ronald H. Schwartz,* and Kyungho Choi2* Sprouty (Spry) is known to be a negative feedback inhibitor of growth factor receptor signaling through inhibition of the Ras/ MAPK pathway.
    [Show full text]
  • Transcriptomic and Epigenomic Characterization of the Developing Bat Wing
    ARTICLES OPEN Transcriptomic and epigenomic characterization of the developing bat wing Walter L Eckalbar1,2,9, Stephen A Schlebusch3,9, Mandy K Mason3, Zoe Gill3, Ash V Parker3, Betty M Booker1,2, Sierra Nishizaki1,2, Christiane Muswamba-Nday3, Elizabeth Terhune4,5, Kimberly A Nevonen4, Nadja Makki1,2, Tara Friedrich2,6, Julia E VanderMeer1,2, Katherine S Pollard2,6,7, Lucia Carbone4,8, Jeff D Wall2,7, Nicola Illing3 & Nadav Ahituv1,2 Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac and H3K27me3) analyses on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several long noncoding RNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb and hindlimb, and across different stages. ChIP-seq analysis identified thousands of regions that are differentially modified in forelimb and hindlimb. Comparative genomics found 2,796 bat-accelerated regions within H3K27ac peaks, several of which cluster near limb-associated genes. Pathway analyses highlighted multiple ribosomal proteins and known limb patterning signaling pathways as differentially regulated and implicated increased forelimb mesenchymal condensation in differential growth. In combination, our work outlines multiple genetic components that likely contribute to bat wing formation, providing insights into this morphological innovation. The order Chiroptera, commonly known as bats, is the only group of To characterize the genetic differences that underlie divergence in mammals to have evolved the capability of flight.
    [Show full text]