Low Energy Electrodynamics in Solids June 28 - July 8, 2021 Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Low Energy Electrodynamics in Solids June 28 - July 8, 2021 Table of Contents LEES 2021 International Conference on Low Energy Electrodynamics in Solids June 28 - July 8, 2021 Table of Contents Code of Conduct ................................................................................................................................. 3 Support Organizations ......................................................................................................................4-6 Program................................................................................................................................................7 Abstracts ............................................................................................................................................ 15 • Monday, June 28 .......................................................................................................................... 15 • Tuesday, June 29 .......................................................................................................................... 22 • Wednesday, June 30 .................................................................................................................... 30 • Thursday, July 1 ............................................................................................................................ 36 • Monday, July 5 ............................................................................................................................. 42 • Tuesday, July 6.............................................................................................................................. 50 • Wednesday, July 7 ........................................................................................................................ 57 • Thursday, July 8 ............................................................................................................................ 64 2 Code of Conduct The organizers of the LEES 2020 conference are fully committed to it being an inclusive event, and as organizers we will do everything in our power to make it a safe, productive, and welcoming space to all attendees. All participants, including , but not limited to, attendees, speakers, volunteers, exhibitors, -fac ulty, staff, students, service providers, and others are expected to abide by the LEES code of Conduct. The mission of the LEES conference is to provide a forum for interdisciplinary research on low energy electrodynamics in solids and in exotic condensed phases. The discussions generated may arouse debate and strong disagreements may occur. Our goal is to encourage the discussion while maintaining respect for others. All participants are expected to: • Treat each other with respect • Communicate openly with respect, critiquing ideas rather then individuals • Alert LEES organizers or staff if you see a dangerous situation or someone in distress Unacceptable behavior includes but is not limited to: • Harassment, intimidation, or discrimination of anyone in any form • Verbal abuse in any form • Unwelcome sexual advances or comments • Intimidating or hostile comments or conduct Consequences: Anyone requested to stop unacceptable behavior is expected to comply immediately. LEES staff (or their designee) or security/local police may take any action deemed necessary and appropriate, including im- mediate removal from the meeting without warning or refund. All unacceptable behavior should be reported to the conference chair (Kenneth S. Burch), Staff, (Andrea Wherry) or members of the local organizing committee. Incidents may be reported via email or via the chat function in zoom. 3 Supported By Thank you to the companies and organizations that have made LEES possible. 4 Supported By TeraHertz Modern Quality Control and Failure Analysis Quality Control Confirm the identity and quality of both raw materials as well as finished products. Also offers the possibility of examining coatings and layer thicknesses. Failure Analysis Determine the chemical reason behind product failure: Identify contaminations and detect wrong compositions. Surface Analysis Check technical cleanliness and analyze microscopic contaminants. Identify inclusions and pollutants to draw conclusions about the causes of failure. Reverse Engineering Investigate competitor´s products and obtain valuable information about the materials used. Contact us for more details: www.bruker.com/optics Spectroscopy Innovation with Integrity 5 Supported By GigaHertz MegaHertz 6 Program - Monday, June 28 *All times on the Program are Eastern Standard Time Novel Magnets Chair: Kamaras Katalin 10:00 AM Evan Constable Vibronic processes in the quantum spin ice candidate Tb2Ti2O7 10:30 AM Rolando Valdes Aguilar Magnetic dynamics of honeycomb antiferromagnets 11:00 AM Natalia Drichko Time reversal and lattice symmetry breaking in Nd2Ir2O7 observed by Raman scattering spectroscopy 11:20 AM Itzik Kapon Magnetic field tuning of the valley population in the Weyl semi-metal phase of Nd$_2$Ir$_2$O$_7$ 11:40 AM Break 12:30 PM Poster Session 1 Berend Zwartsenberg Spin-orbit coupling effects in Sr2IrO4 Carina Belvin Revealing the soft electronic modes involved in magnetite’s Verwey transition Giorgio Sangiovanni Design and realization of topological Dirac fermions on a triangular lattice Kirill Amelin Experimental observation of E8 particles in Ising-chain compounds Martin Dressel Dielectric Catastrophe at the Mott Transition Nimi Bachar Unconventional free charge in the correlated Weyl semimetal Nd2Ir2O7 Severino Adler From Mott to Dirac Fermions via Van der Waals Stacking Shiming Lei Magnetic skyrmions in non-Gd based centrosymmetric magnet Valentina Brosco Rashba-metal to Mott-insulator transition - spectral signatures Wibke Bronsch Time- and Angle-Resolved Photoemission Study on Bulk VSe2 Yuanyuan Xu Importance of dynamic lattice effects for crystal field excitations in quantum spin ice candidate Pr2Zr2O7 2:00 PM Long Break New Results in Mott Systems Chair: Dmitri Basov 7:00 PM Jie Shan Electrons in 2D semiconductor moiré superlattices 7:30 PM Yiping Wang Modulation Doping via a 2D Crystalline Acceptor 8:00 PM Masahiro Sato Nonlinear Optical Responses in Quantum Spin Liquids 8:20 PM Shuqiu Wang Scattering Interference Signature of a Pair Density Wave State in the Cuprate Pseudogap Phase 8:40 PM Break 7 Tuesday, June 29 Novel Optics in 2D Materials Chair: Marc Scheffler 10:00 AM Ingrid Barcelos Probing Polaritons in 2D Materials with Synchrotron Infrared Nanospectroscopy 10:30 AM Hanan Herzig Sheinfux Bound in the continuum modes in indirectly-patterned hyperbolic media 11:00 AM Jeremy Levy Gate-Tunable Optical Nonlinearities and Extinction in Graphene/LaAlO3/ SrTiO3 Nanostructures 11:30 AM Alexey Kuzmenko Infrared nanoscopy of polaritons in functional oxides and interfaces 11:50 AM Break 12:30 PM Poster Session 2 Amalia Coldea Anomalous magnetotransport of the nematic FeSe and related chalcogenides Claudio Giannetti Non-thermal metallic phase emerging from nanoscale complexity in a photo-excited Mott material Daniele Nicoletti Radiating Stripes Ivan Fotev Ultrafast Pump-Probe Spectroscopy of BaFe2As2 under High Pressures Jean-Côme Philippe Orbital dichotomy of Fermi liquid properties in Sr2RuO4 probed by Raman spectroscopy Jonathan B. Curtis Spectroscopic signatures of time-reversal symmetry breaking superconductivity Marco Marciani Resistivity anisotropy in nematic FeSe from multiorbital Boltzmann equation Michele Buzzi Photo-molecular high temperature superconductivity Min-Cheol Lee Ultrafast strain modulation of superconductivity in cuprate heterostructures Roberta Citro Topological superconductivity by orbital confinement in oxide nanowires 2:00 PM Long Break Unconventional Superconductivity 1 Chair: Setsuko Tajima 7:00 PM Johnpierre Paglione Exotic superconductivity in nearly ferromagnetic UTe2 7:30 PM Peter D. Johnson Time Reversal Symmetry Breaking in the FeTe1-xSex family of high Tc superconductors 8:00 PM Ryan Day The Three-Dimensional Electronic Structure of LiFeAs: Strong-coupling Superconductivity and Topology in the Iron Pnictides 8:20 PM Masamichi Nakajima Effects of electronic correlations and nematicity in FeSe1-xTex studied by optical spectroscopy 8:40 PM Break 8 Wednesday, June 30 Optics in Quantum Matter 1 Chair: Andrea Perucchi 10:30 AM Tommaso Cea Plasmons, phonons and superconductivity in twisted bilayer graphene 11:00 AM Milan Orlita Suppressed Auger scattering and tunable light emission of Landau- quantized massless Kane electrons 11:20 AM Prineha Narang Predicting Correlated Light-Matter Interactions 11:50 AM Méasson Marie-Aude Collective mode of the Hidden Order State in URu2Si2: Degeneracy and Symmetry 12:10 PM Long Break Magnetic Topological Systems Chair: N. Peter Armitage 7:00 PM Ilya Sochnikov Microscopy of tunable magnetic domains in noncentrosymmetric ferromagnetic Weyl semimetal 7:30 PM Shingo Toyoda Nonreciprocal second harmonic generation in a magnetoelectric CuB2O4 7:50 PM Changyoung Kim Sign-tunable anomalous Hall effect induced by two-dimensional symmetry- protected nodal structures in ferromagnetic perovskite oxide thin films 8:20 PM Artem Strashko Crescent states in charge-imbalanced polariton condensates 8:40 PM Break 9:00 PM Poster Session 3 Changmin Lee Observation of a phase transition within the domain walls of the magnetic Weyl semimetal Co3Sn2S2 Gael Grissonnanche T-linear resistivity from an isotropic Planckian scattering rate Jae Hoon Kim Terahertz Electrodynamics of Superconducting Nb Films in External Magnetic Field Kazuya Shinjo Effect of phase string on single-hole
Recommended publications
  • Lecture 3: Fermi-Liquid Theory 1 General Considerations Concerning Condensed Matter
    Phys 769 Selected Topics in Condensed Matter Physics Summer 2010 Lecture 3: Fermi-liquid theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 General considerations concerning condensed matter (NB: Ultracold atomic gasses need separate discussion) Assume for simplicity a single atomic species. Then we have a collection of N (typically 1023) nuclei (denoted α,β,...) and (usually) ZN electrons (denoted i,j,...) interacting ∼ via a Hamiltonian Hˆ . To a first approximation, Hˆ is the nonrelativistic limit of the full Dirac Hamiltonian, namely1 ~2 ~2 1 e2 1 Hˆ = 2 2 + NR −2m ∇i − 2M ∇α 2 4πǫ r r α 0 i j Xi X Xij | − | 1 (Ze)2 1 1 Ze2 1 + . (1) 2 4πǫ0 Rα Rβ − 2 4πǫ0 ri Rα Xαβ | − | Xiα | − | For an isolated atom, the relevant energy scale is the Rydberg (R) – Z2R. In addition, there are some relativistic effects which may need to be considered. Most important is the spin-orbit interaction: µ Hˆ = B σ (v V (r )) (2) SO − c2 i · i × ∇ i Xi (µB is the Bohr magneton, vi is the velocity, and V (ri) is the electrostatic potential at 2 3 2 ri as obtained from HˆNR). In an isolated atom this term is o(α R) for H and o(Z α R) for a heavy atom (inner-shell electrons) (produces fine structure). The (electron-electron) magnetic dipole interaction is of the same order as HˆSO. The (electron-nucleus) hyperfine interaction is down relative to Hˆ by a factor µ /µ 10−3, and the nuclear dipole-dipole SO n B ∼ interaction by a factor (µ /µ )2 10−6.
    [Show full text]
  • Quantum Fluctuations Across the Superconductor-Insulator Transition
    Quantum Fluctuations Across the Superconductor-Insulator Transition Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hasan Khan, B.S. Graduate Program in Physics The Ohio State University 2019 Dissertation Committee: Nandini Trivedi, Advisor Yuan-Ming Lu Rolando Vald´esAguilar Richard J. Furnstahl c Copyright by Hasan Khan 2019 Abstract Superconductivity has been at the heart of research into quantum phenomena since its discovery over a century ago. More recently efforts have been made to un- derstand the nature of the quantum phase transition (QPT) that separates the super- conducting and insulating phases in certain 2D materials at zero temperature. This superconductor-insulator transition (SIT) has been theoretically and experimentally proven to be driven by quantum fluctuations of the superconducting phase instead of the breakup of Cooper pairs. In this thesis we present a study of quantum fluctua- tions across the SIT and how they can be imaged in both theoretical simulations and experimental measurements. We begin with an overview of the field from a historical perspective, describing the development of the theory of SITs driven by experiments on thin films. We present the Josephson junction array (JJA) model as a paradigm to investigate the quantum phase fluctuation-driven SIT using quantum Monte Carlo (QMC) techniques. We explore the manifestation of quantum fluctuations across the SIT in three different local measurements: the diamagnetic susceptibility χ(r), two-particle den- sity of states P (r;!), and compressibility κ(r), revealed through their local maps and calculated via QMC.
    [Show full text]
  • Bose-Einstein Condensation in Bacusi2o6
    Institute of Physics Publishing Journal of Physics: Conference Series 51 (2006) 9–14 doi:10.1088/1742-6596/51/1/002 Yamada Conference LX on Research in High Magnetic Fields Bose-Einstein condensation in BaCuSi2O6 1N Harrison, 2,3S E Sebastian, 1C D Batista, 1MJaime,4L Balicas, 1P A Sharma, 5N Kawashima and 2IRFisher 1MST-NHMFL, Los Alamos National Laboratory, Los Alamos, NM 87545 2Department of Applied Physics, Geballe Laboratory for Advanced Materials, Stanford University, California 94305-4045 4National High Magnetic Field Laboratory, Tallahassee, FL 32310 5Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan Abstract. BaCuSi2O6 is a model spin dimer system in which a BEC QCP is realised. Universal BEC power law scaling is experimentally observed, with 3d critical behaviour above 0.5 K, but a crossover to 2d BEC critical scaling down to 30 mK. Here we briefly review and expand on the results presented in the recent Nature paper [8]. 1. Spin dimer systems Spin dimer materials have attracted considerable attention recently due to the realisation of Bose-Einstein condensate (BEC) physics in these systems [1, 2, 3, 4, 5, 6, 7, 8, 9]. The ground state of these systems comprises singlets with gapped triplet excitations. In an applied magnetic field, Zeeman splitting of the triplet levels lowers the energy of the lowest triplet, such that above critical field Hc1, a finite concentration of triplets is populated in the ground state. The ground state above Hc1 is an ordered XY antiferromagnet, separated from the disordered quantum paramagnet below Hc1 by a BEC quantum critical point (QCP) at 0 K.
    [Show full text]
  • Unconventional Hund Metal in a Weak Itinerant Ferromagnet
    ARTICLE https://doi.org/10.1038/s41467-020-16868-4 OPEN Unconventional Hund metal in a weak itinerant ferromagnet Xiang Chen1, Igor Krivenko 2, Matthew B. Stone 3, Alexander I. Kolesnikov 3, Thomas Wolf4, ✉ ✉ Dmitry Reznik 5, Kevin S. Bedell6, Frank Lechermann7 & Stephen D. Wilson 1 The physics of weak itinerant ferromagnets is challenging due to their small magnetic moments and the ambiguous role of local interactions governing their electronic properties, 1234567890():,; many of which violate Fermi-liquid theory. While magnetic fluctuations play an important role in the materials’ unusual electronic states, the nature of these fluctuations and the paradigms through which they arise remain debated. Here we use inelastic neutron scattering to study magnetic fluctuations in the canonical weak itinerant ferromagnet MnSi. Data reveal that short-wavelength magnons continue to propagate until a mode crossing predicted for strongly interacting quasiparticles is reached, and the local susceptibility peaks at a coher- ence energy predicted for a correlated Hund metal by first-principles many-body theory. Scattering between electrons and orbital and spin fluctuations in MnSi can be understood at the local level to generate its non-Fermi liquid character. These results provide crucial insight into the role of interorbital Hund’s exchange within the broader class of enigmatic multiband itinerant, weak ferromagnets. 1 Materials Department, University of California, Santa Barbara, CA 93106, USA. 2 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA. 3 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. 4 Institute for Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
    [Show full text]
  • Landau Effective Interaction Between Quasiparticles in a Bose-Einstein Condensate
    PHYSICAL REVIEW X 8, 031042 (2018) Landau Effective Interaction between Quasiparticles in a Bose-Einstein Condensate A. Camacho-Guardian* and Georg M. Bruun Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark (Received 19 December 2017; revised manuscript received 28 February 2018; published 15 August 2018) Landau’s description of the excitations in a macroscopic system in terms of quasiparticles stands out as one of the highlights in quantum physics. It provides an accurate description of otherwise prohibitively complex many-body systems and has led to the development of several key technologies. In this paper, we investigate theoretically the Landau effective interaction between quasiparticles, so-called Bose polarons, formed by impurity particles immersed in a Bose-Einstein condensate (BEC). In the limit of weak interactions between the impurities and the BEC, we derive rigorous results for the effective interaction. They show that it can be strong even for a weak impurity-boson interaction, if the transferred momentum- energy between the quasiparticles is resonant with a sound mode in the BEC. We then develop a diagrammatic scheme to calculate the effective interaction for arbitrary coupling strengths, which recovers the correct weak-coupling results. Using this scheme, we show that the Landau effective interaction, in general, is significantly stronger than that between quasiparticles in a Fermi gas, mainly because a BEC is more compressible than a Fermi gas. The interaction is particularly large near the unitarity limit of the impurity-boson scattering or when the quasiparticle momentum is close to the threshold for momentum relaxation in the BEC.
    [Show full text]
  • Attractive Fermi Polarons at Nonzero Temperatures with a Finite Impurity
    PHYSICAL REVIEW A 98, 013626 (2018) Attractive Fermi polarons at nonzero temperatures with a finite impurity concentration Hui Hu, Brendan C. Mulkerin, Jia Wang, and Xia-Ji Liu Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122, Australia (Received 29 June 2018; published 25 July 2018) We theoretically investigate how quasiparticle properties of an attractive Fermi polaron are affected by nonzero temperature and finite impurity concentration in three dimensions and in free space. By applying both non- self-consistent and self-consistent many-body T -matrix theories, we calculate the polaron energy (including decay rate), effective mass, and residue, as functions of temperature and impurity concentration. The temperature and concentration dependencies are weak on the BCS side with a negative impurity-medium scattering length. Toward the strong attraction regime across the unitary limit, we find sizable dependencies. In particular, with increasing temperature the effective mass quickly approaches the bare mass and the residue is significantly enhanced. At temperature T ∼ 0.1TF ,whereTF is the Fermi temperature of the background Fermi sea, the residual polaron-polaron interaction seems to become attractive. This leads to a notable down-shift in the polaron energy. We show that, by taking into account the temperature and impurity concentration effects, the measured polaron energy in the first Fermi polaron experiment [Schirotzek et al., Phys.Rev.Lett.102, 230402 (2009)] could be better theoretically explained. DOI: 10.1103/PhysRevA.98.013626 I. INTRODUCTION Experimentally, the first experiment on attractive Fermi polarons was carried out by the Zwierlein group at Mas- Over the past two decades, ultracold atomic gases have pro- sachusetts Institute of Technology (MIT) in 2009 using 6Li vided an ideal platform to understand the intriguing quantum many-body systems [1].
    [Show full text]
  • Electron-Electron Interactions(Pdf)
    Contents 2 Electron-electron interactions 1 2.1 Mean field theory (Hartree-Fock) ................ 3 2.1.1 Validity of Hartree-Fock theory .................. 6 2.1.2 Problem with Hartree-Fock theory ................ 9 2.2 Screening ..................................... 10 2.2.1 Elementary treatment ......................... 10 2.2.2 Kubo formula ............................... 15 2.2.3 Correlation functions .......................... 18 2.2.4 Dielectric constant ............................ 19 2.2.5 Lindhard function ............................ 21 2.2.6 Thomas-Fermi theory ......................... 24 2.2.7 Friedel oscillations ............................ 25 2.2.8 Plasmons ................................... 27 2.3 Fermi liquid theory ............................ 30 2.3.1 Particles and holes ............................ 31 2.3.2 Energy of quasiparticles. ....................... 36 2.3.3 Residual quasiparticle interactions ................ 38 2.3.4 Local energy of a quasiparticle ................... 42 2.3.5 Thermodynamic properties ..................... 44 2.3.6 Quasiparticle relaxation time and transport properties. 46 2.3.7 Effective mass m∗ of quasiparticles ................ 50 0 Reading: 1. Ch. 17, Ashcroft & Mermin 2. Chs. 5& 6, Kittel 3. For a more detailed discussion of Fermi liquid theory, see G. Baym and C. Pethick, Landau Fermi-Liquid Theory : Concepts and Ap- plications, Wiley 1991 2 Electron-electron interactions The electronic structure theory of metals, developed in the 1930’s by Bloch, Bethe, Wilson and others, assumes that electron-electron interac- tions can be neglected, and that solid-state physics consists of computing and filling the electronic bands based on knowldege of crystal symmetry and atomic valence. To a remarkably large extent, this works. In simple compounds, whether a system is an insulator or a metal can be deter- mined reliably by determining the band filling in a noninteracting cal- culation.
    [Show full text]
  • Matthias Vojta Subir Sachdev Quantum Phase Transitions in D
    Quantum phase transitions in d-wave superconductors •C. Buragohain Matthias Vojta •Y. Zhang •A. Polkovnikov Subir Sachdev Transparencies on-line at http://pantheon.yale.edu/~subir Phys. Rev Lett. 83, 3916 (1999) Science 286, 2479 (1999) Phys. Rev. B 61, 15152 (2000) Phys. Rev. B 62, Sep 1 (2000) cond-mat/0005250 (review article) cond-mat/0007170 Yale University Quantum Phase Transitions Cambridge University Press Elementary excitations of a d-wave superconductor (A) S=0 Cooper pairs, phase fluctuations Negligible below Tc except near a T=0 superconductor-insulator transition. (B) S=1/2 Fermionic quasiparticles Ψ π π h : strongly paired fermions near ( ,0), (0, ) ∆ have an energy gap h ~ 30-40 meV Ψ 1,2 : gapless fermions near the nodes of the superconducting gap at (±±KK , ) with K =0.391π (C) S=1 Bosonic, resonant collective mode Represented by φ α , a vector Γ field measuring the strength of pure antiferromagnetic spin S(Q,ω) fluctuations near Q ≈ (,)ππ Damping is small at T=0 Γ≈ = pure 0 at T 0 (Theory generalizes to the cases with Γ≠ incommensurate Q and pure 0 ) ∆ ω res Constraints from momentum conservation π Ψ h Ψ 2 Ψ 1 φ Ψ α Ψ 0 h h Q φα Ψ 1 Ψ Q 2 Ψ −π h −π 0 π Ψ φ φ h : strongly coupled to α , but do not damp α ∆ ∆ as long as res < 2 h Ψ φ 1,2 : decoupled from α I. Zero temperature broadening of resonant collective mode φ α by impurities: comparison with neutron scattering experiments of Fong et al Phys.
    [Show full text]
  • Non-Fermi Liquids in Oxide Heterostructures
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Non-Fermi liquids in oxide heterostructures Permalink https://escholarship.org/uc/item/1cn238xw Journal Reports on Progress in Physics, 81(6) ISSN 0034-4885 1361-6633 Authors Stemmer, Susanne Allen, S James Publication Date 2018-06-01 DOI 10.1088/1361-6633/aabdfa Peer reviewed eScholarship.org Powered by the California Digital Library University of California Reports on Progress in Physics KEY ISSUES REVIEW Non-Fermi liquids in oxide heterostructures To cite this article: Susanne Stemmer and S James Allen 2018 Rep. Prog. Phys. 81 062502 View the article online for updates and enhancements. This content was downloaded from IP address 128.111.119.159 on 08/05/2018 at 17:09 IOP Reports on Progress in Physics Reports on Progress in Physics Rep. Prog. Phys. Rep. Prog. Phys. 81 (2018) 062502 (12pp) https://doi.org/10.1088/1361-6633/aabdfa 81 Key Issues Review 2018 Non-Fermi liquids in oxide heterostructures © 2018 IOP Publishing Ltd Susanne Stemmer1 and S James Allen2 RPPHAG 1 Materials Department, University of California, Santa Barbara, CA 93106-5050, United States of America 062502 2 Department of Physics, University of California, Santa Barbara, CA 93106-9530, United States of America S Stemmer and S J Allen E-mail: [email protected] Received 18 July 2017, revised 25 January 2018 Accepted for publication 13 April 2018 Published 8 May 2018 Printed in the UK Corresponding Editor Professor Piers Coleman ROP Abstract Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics.
    [Show full text]
  • Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film Wte2
    Lawrence Berkeley National Laboratory Recent Work Title Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2. Permalink https://escholarship.org/uc/item/1642v6qf Journal Scientific reports, 8(1) ISSN 2045-2322 Authors Asaba, Tomoya Wang, Yongjie Li, Gang et al. Publication Date 2018-04-25 DOI 10.1038/s41598-018-24736-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2 Received: 13 December 2017 Tomoya Asaba1, Yongjie Wang 2, Gang Li 1, Ziji Xiang1, Colin Tinsman1, Lu Chen1, Accepted: 5 April 2018 Shangnan Zhou1, Songrui Zhao2, David Laleyan2, Yi Li3, Zetian Mi2 & Lu Li 1 Published: xx xx xxxx In conventional superconductors an external magnetic feld generally suppresses superconductivity. This results from a simple thermodynamic competition of the superconducting and magnetic free energies. In this study, we report the unconventional features in the superconducting epitaxial thin flm tungsten telluride (WTe2). Measuring the electrical transport properties of Molecular Beam Epitaxy (MBE) grown WTe2 thin flms with a high precision rotation stage, we map the upper critical feld Hc2 at diferent temperatures T. We observe the superconducting transition temperature Tc is enhanced by in-plane magnetic felds. The upper critical feld Hc2 is observed to establish an unconventional non- monotonic dependence on temperature. We suggest that this unconventional feature is due to the lifting of inversion symmetry, which leads to the enhancement of Hc2 in Ising superconductors. Superconductivity generally competes with magnetic felds. Based on thermodynamics, an applied magnetic feld usually suppresses superconductivity by destroying the underlying electron pairing in the superconducting state1.
    [Show full text]
  • Wte2): an Atomic Layered Semimetal
    The Pennsylvania State University The Graduate School Department of Materials Science and Engineering TUNGSTEN DITELLURIDE (WTE2): AN ATOMIC LAYERED SEMIMETAL A Thesis in Materials Science and Engineering by Chia-Hui Lee 2015 Chia-Hui Lee Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2015 ii The thesis of Chia-Hui Lee was reviewed and approved* by the following: Joshua A. Robinson Professor of Materials Science and Engineering Thesis Advisor Thomas E. Mallouk Head of the Chemistry Department Evan Pugh University Professor of Chemistry, Physics, Biochemistry and Molecular Biology Mauricio Terrones Professor of Physics, Chemistry and Materials Science & Engineering Suzanne Mohney Professor of Materials Science and Engineering and Electrical Engineering Chair, Intercollege Graduate Degree Program in Materials Science and Engineering *Signatures are on file in the Graduate School iii ABSTRACT Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical and electronic properties that make it attractive for a variety of electronic applications. Although WTe2 has been studied for decades, its structure and electronic properties have only recently been correctly described. We explored WTe2 synthesis via chemical vapor transport (CVT) method for bulk crystal, and chemical vapor deposition (CVD) routes for thin film material. We employed both experimental and theoretical techniques to investigate its structural, physical and electronic properties of WTe2, and verify that WTe2 has its minimum energy configuration in a distorted 1T structure (Td structure), which results in metallic-like behavior. Our findings confirmed the metallic nature of WTe2, introduce new information about the Raman modes of Td-WTe2, and demonstrate that Td- WTe2 is readily oxidized via environmental exposure.
    [Show full text]
  • View PDF Version
    Nanoscale Advances View Article Online REVIEW View Journal | View Issue In-plane anisotropic electronics based on low- symmetry 2D materials: progress and prospects Cite this: Nanoscale Adv., 2020, 2,109 Siwen Zhao, a Baojuan Dong,bc Huide Wang,a Hanwen Wang,bc Yupeng Zhang, a Zheng Vitto Han*bc and Han Zhang *a Low-symmetry layered materials such as black phosphorus (BP) have been revived recently due to their high intrinsic mobility and in-plane anisotropic properties, which can be used in anisotropic electronic and optoelectronic devices. Since the anisotropic properties have a close relationship with their anisotropic structural characters, especially for materials with low-symmetry, exploring new low- symmetry layered materials and investigating their anisotropic properties have inspired numerous research efforts. In this paper, we review the recent experimental progresses on low-symmetry layered Received 4th October 2019 materials and their corresponding anisotropic electrical transport, magneto-transport, optoelectronic, Accepted 30th October 2019 thermoelectric, ferroelectric, and piezoelectric properties. The boom of new low-symmetry layered DOI: 10.1039/c9na00623k materials with high anisotropy could open up considerable possibilities for next-generation anisotropic Creative Commons Attribution 3.0 Unported Licence. rsc.li/nanoscale-advances multifunctional electronic devices. 1. Introduction energy band structure and can be regarded as a process of lowering the dimensionality of the carrier transport. Therefore, Two dimensional (2D) layered materials with strong in-plane the electrical, optical, thermal, and phonon properties of these covalent bonds and weak out-of-plane van der Waals interac- anisotropic materials are diverse along the different in-plane tions span a very broad range of solids and exhibit extraordinary crystal directions.
    [Show full text]