Probing Luttinger Liquid Plasmons in Single Walled Carbon Nanotubes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 3: Fermi-Liquid Theory 1 General Considerations Concerning Condensed Matter
Phys 769 Selected Topics in Condensed Matter Physics Summer 2010 Lecture 3: Fermi-liquid theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 General considerations concerning condensed matter (NB: Ultracold atomic gasses need separate discussion) Assume for simplicity a single atomic species. Then we have a collection of N (typically 1023) nuclei (denoted α,β,...) and (usually) ZN electrons (denoted i,j,...) interacting ∼ via a Hamiltonian Hˆ . To a first approximation, Hˆ is the nonrelativistic limit of the full Dirac Hamiltonian, namely1 ~2 ~2 1 e2 1 Hˆ = 2 2 + NR −2m ∇i − 2M ∇α 2 4πǫ r r α 0 i j Xi X Xij | − | 1 (Ze)2 1 1 Ze2 1 + . (1) 2 4πǫ0 Rα Rβ − 2 4πǫ0 ri Rα Xαβ | − | Xiα | − | For an isolated atom, the relevant energy scale is the Rydberg (R) – Z2R. In addition, there are some relativistic effects which may need to be considered. Most important is the spin-orbit interaction: µ Hˆ = B σ (v V (r )) (2) SO − c2 i · i × ∇ i Xi (µB is the Bohr magneton, vi is the velocity, and V (ri) is the electrostatic potential at 2 3 2 ri as obtained from HˆNR). In an isolated atom this term is o(α R) for H and o(Z α R) for a heavy atom (inner-shell electrons) (produces fine structure). The (electron-electron) magnetic dipole interaction is of the same order as HˆSO. The (electron-nucleus) hyperfine interaction is down relative to Hˆ by a factor µ /µ 10−3, and the nuclear dipole-dipole SO n B ∼ interaction by a factor (µ /µ )2 10−6. -
Bosonization of 1-Dimensional Luttinger Liquid
Bosonization of 1-Dimensional Luttinger Liquid Di Zhou December 13, 2011 Abstract Due to the special dimensionality of one-dimensional Fermi system, Fermi Liquid Theory breaks down and we must find a new way to solve this problem. Here I will have a brief review of one-dimensional Luttinger Liquid, and introduce the process of Bosonization for 1- Dimensional Fermionic system. At the end of this paper, I will discuss the emergent state of charge density wave (CDW) and spin density wave (SDW) separation phenomena. 1 Introduction 3-Dimensional Fermi liquid theory is mostly related to a picture of quasi-particles when we adiabatically switch on interactions, to obtain particle-hole excitations. These quasi-particles are directly related to the original fermions. Of course they also obey the Fermi-Dirac Statis- tics. Based on the free Fermi gas picture, the interaction term: (i) it renormalizes the free Hamiltonians of the quasi-particles such as the effective mass, and the thermodynamic properties; (ii) it introduces new collective modes. The existence of quasi-particles results in a fi- nite jump of the momentum distribution function n(k) at the Fermi surface, corresponding to a finite residue of the quasi-particle pole in the electrons' Green function. 1-Dimensional Fermi liquids are very special because they keep a Fermi surface (by definition of the points where the momentum distribution or its derivatives have singularities) enclosing the same k-space vol- ume as that of free fermions, in agreement with Luttingers theorem. 1 1-Dimensional electrons spontaneously open a gap at the Fermi surface when they are coupled adiabatically to phonons with wave vector 2kF . -
A Glimpse of a Luttinger Liquid IGOR A. ZALIZNYAK Physics Department
1 A glimpse of a Luttinger liquid IGOR A. ZALIZNYAK Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA email: [email protected] The concept of a Luttinger liquid has recently been established as a fundamental paradigm vital to our understanding of the properties of one-dimensional quantum systems, leading to a number of theoretical breakthroughs. Now theoretical predictions have been put to test by the comprehensive experimental study. Our everyday life experience is that of living in a three-dimensional world. Phenomena in a world with only one spatial dimension may appear an esoteric subject, and for a long time it was perceived as such. This has now changed as our knowledge of matter’s inner atomic structure has evolved. It appears that in many real-life materials a chain-like pattern of overlapping atomic orbitals leaves electrons belonging on these orbitals with only one dimension where they can freely travel. The same is obviously true for polymers and long biological macro-molecules such as proteins or RNA. Finally, with the nano-patterned microchips and nano-wires heading into consumer electronics, the question “how do electrons behave in one dimension?” is no longer a theoretical playground but something that a curious mind might ask when thinking of how his or her computer works. One-dimensional problems being mathematically simpler, a number of exact solutions describing “model” one-dimensional systems were known to theorists for years. Outstanding progress, however, has only recently been achieved with the advent of conformal field theory 1,2. It unifies the bits and pieces of existing knowledge like the pieces of a jigsaw puzzle and predicts remarkable universal critical behaviour for one-dimensional systems 3,4. -
Chapter 1 LUTTINGER LIQUIDS: the BASIC CONCEPTS
Chapter 1 LUTTINGER LIQUIDS: THE BASIC CONCEPTS K.Schonhammer¨ Institut fur¨ Theoretische Physik, Universitat¨ Gottingen,¨ Bunsenstr. 9, D-37073 Gottingen,¨ Germany Abstract This chapter reviews the theoretical description of interacting fermions in one dimension. The Luttinger liquid concept is elucidated using the Tomonaga- Luttinger model as well as integrable lattice models. Weakly coupled chains and the attempts to experimentally verify the theoretical predictions are dis- cussed. Keywords Luttinger liquids, Tomonaga model, bosonization, anomalous power laws, break- down of Fermi liquid theory, spin-charge separation, spectral functions, coupled chains, quasi-one-dimensional conductors 1. Introduction In this chapter we attempt a simple selfcontained introduction to the main ideas and important computational tools for the description of interacting fermi- ons in one spatial dimension. The reader is expected to have some knowledge of the method of second quantization. As in section 3 we describe a constructive approach to the important concept of bosonization, no quantum field-theoretical background is required. After mainly focusing on the Tomonaga-Luttinger 1 2 model in sections 2 and 3 we present results for integrable lattice models in section 4. In order to make contact to more realistic systems the coupling of strictly ¢¡ systems as well as to the surrounding is addressed in section 5. The attempts to experimentally verify typical Luttinger liquid features like anoma- lous power laws in various correlation functions are only shortly discussed as this is treated in other chapters of this book. 2. Luttinger liquids - a short history of the ideas As an introduction the basic steps towards the general concept of Luttinger liquids are presented in historical order. -
Pairing in Luttinger Liquids and Quantum Hall States
PHYSICAL REVIEW X 7, 031009 (2017) Pairing in Luttinger Liquids and Quantum Hall States Charles L. Kane,1 Ady Stern,2 and Bertrand I. Halperin3 1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 2Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel 3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 8 February 2017; published 18 July 2017) We study spinless electrons in a single-channel quantum wire interacting through attractive interaction, and the quantum Hall states that may be constructed by an array of such wires. For a single wire, the electrons may form two phases, the Luttinger liquid and the strongly paired phase. The Luttinger liquid is gapless to one- and two-electron excitations, while the strongly paired state is gapped to the former and gapless to the latter. In contrast to the case in which the wire is proximity coupled to an external superconductor, for an isolated wire there is no separate phase of a topological, weakly paired superconductor. Rather, this phase is adiabatically connected to the Luttinger liquid phase. The properties of the one-dimensional topological superconductor emerge when the number of channels in the wire becomes large. The quantum Hall states that may be formed by an array of single-channel wires depend on the Landau-level filling factors. For odd- denominator fillings ν ¼ 1=ð2n þ 1Þ, wires at the Luttinger phase form Laughlin states, while wires in the strongly paired phase form a bosonic fractional quantum Hall state of strongly bound pairs at a filling of 1=ð8n þ 4Þ. -
Tunneling Conductance of Long-Range Coulomb Interacting Luttinger Liquid
Tunneling conductance of long-range Coulomb interacting Luttinger liquid DinhDuy Vu,1 An´ıbal Iucci,1, 2, 3 and S. Das Sarma1 1Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA 2Instituto de F´ısica La Plata - CONICET, Diag 113 y 64 (1900) La Plata, Argentina 3Departamento de F´ısica, Universidad Nacional de La Plata, cc 67, 1900 La Plata, Argentina. The theoretical model of the short-range interacting Luttinger liquid predicts a power-law scaling of the density of states and the momentum distribution function around the Fermi surface, which can be readily tested through tunneling experiments. However, some physical systems have long- range interaction, most notably the Coulomb interaction, leading to significantly different behaviors from the short-range interacting system. In this paper, we revisit the tunneling theory for the one- dimensional electrons interacting via the long-range Coulomb force. We show that even though in a small dynamic range of temperature and bias voltage, the tunneling conductance may appear to have a power-law decay similar to short-range interacting systems, the effective exponent is scale- dependent and slowly increases with decreasing energy. This factor may lead to the sample-to-sample variation in the measured tunneling exponents. We also discuss the crossover to a free Fermi gas at high energy and the effect of the finite size. Our work demonstrates that experimental tunneling measurements in one-dimensional electron systems should be interpreted with great caution when the system is a Coulomb Luttinger liquid. I. INTRODUCTION This power-law tunneling behavior is considered a signa- ture of the Luttinger liquid since in Fermi liquids, G is simply a constant for small values of T and V (as long Luttinger liquids emerge from interacting one- 0 as k T; eV E , where E is the Fermi energy). -
Unconventional Hund Metal in a Weak Itinerant Ferromagnet
ARTICLE https://doi.org/10.1038/s41467-020-16868-4 OPEN Unconventional Hund metal in a weak itinerant ferromagnet Xiang Chen1, Igor Krivenko 2, Matthew B. Stone 3, Alexander I. Kolesnikov 3, Thomas Wolf4, ✉ ✉ Dmitry Reznik 5, Kevin S. Bedell6, Frank Lechermann7 & Stephen D. Wilson 1 The physics of weak itinerant ferromagnets is challenging due to their small magnetic moments and the ambiguous role of local interactions governing their electronic properties, 1234567890():,; many of which violate Fermi-liquid theory. While magnetic fluctuations play an important role in the materials’ unusual electronic states, the nature of these fluctuations and the paradigms through which they arise remain debated. Here we use inelastic neutron scattering to study magnetic fluctuations in the canonical weak itinerant ferromagnet MnSi. Data reveal that short-wavelength magnons continue to propagate until a mode crossing predicted for strongly interacting quasiparticles is reached, and the local susceptibility peaks at a coher- ence energy predicted for a correlated Hund metal by first-principles many-body theory. Scattering between electrons and orbital and spin fluctuations in MnSi can be understood at the local level to generate its non-Fermi liquid character. These results provide crucial insight into the role of interorbital Hund’s exchange within the broader class of enigmatic multiband itinerant, weak ferromagnets. 1 Materials Department, University of California, Santa Barbara, CA 93106, USA. 2 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA. 3 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. 4 Institute for Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. -
Landau Effective Interaction Between Quasiparticles in a Bose-Einstein Condensate
PHYSICAL REVIEW X 8, 031042 (2018) Landau Effective Interaction between Quasiparticles in a Bose-Einstein Condensate A. Camacho-Guardian* and Georg M. Bruun Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark (Received 19 December 2017; revised manuscript received 28 February 2018; published 15 August 2018) Landau’s description of the excitations in a macroscopic system in terms of quasiparticles stands out as one of the highlights in quantum physics. It provides an accurate description of otherwise prohibitively complex many-body systems and has led to the development of several key technologies. In this paper, we investigate theoretically the Landau effective interaction between quasiparticles, so-called Bose polarons, formed by impurity particles immersed in a Bose-Einstein condensate (BEC). In the limit of weak interactions between the impurities and the BEC, we derive rigorous results for the effective interaction. They show that it can be strong even for a weak impurity-boson interaction, if the transferred momentum- energy between the quasiparticles is resonant with a sound mode in the BEC. We then develop a diagrammatic scheme to calculate the effective interaction for arbitrary coupling strengths, which recovers the correct weak-coupling results. Using this scheme, we show that the Landau effective interaction, in general, is significantly stronger than that between quasiparticles in a Fermi gas, mainly because a BEC is more compressible than a Fermi gas. The interaction is particularly large near the unitarity limit of the impurity-boson scattering or when the quasiparticle momentum is close to the threshold for momentum relaxation in the BEC. -
Attractive Fermi Polarons at Nonzero Temperatures with a Finite Impurity
PHYSICAL REVIEW A 98, 013626 (2018) Attractive Fermi polarons at nonzero temperatures with a finite impurity concentration Hui Hu, Brendan C. Mulkerin, Jia Wang, and Xia-Ji Liu Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122, Australia (Received 29 June 2018; published 25 July 2018) We theoretically investigate how quasiparticle properties of an attractive Fermi polaron are affected by nonzero temperature and finite impurity concentration in three dimensions and in free space. By applying both non- self-consistent and self-consistent many-body T -matrix theories, we calculate the polaron energy (including decay rate), effective mass, and residue, as functions of temperature and impurity concentration. The temperature and concentration dependencies are weak on the BCS side with a negative impurity-medium scattering length. Toward the strong attraction regime across the unitary limit, we find sizable dependencies. In particular, with increasing temperature the effective mass quickly approaches the bare mass and the residue is significantly enhanced. At temperature T ∼ 0.1TF ,whereTF is the Fermi temperature of the background Fermi sea, the residual polaron-polaron interaction seems to become attractive. This leads to a notable down-shift in the polaron energy. We show that, by taking into account the temperature and impurity concentration effects, the measured polaron energy in the first Fermi polaron experiment [Schirotzek et al., Phys.Rev.Lett.102, 230402 (2009)] could be better theoretically explained. DOI: 10.1103/PhysRevA.98.013626 I. INTRODUCTION Experimentally, the first experiment on attractive Fermi polarons was carried out by the Zwierlein group at Mas- Over the past two decades, ultracold atomic gases have pro- sachusetts Institute of Technology (MIT) in 2009 using 6Li vided an ideal platform to understand the intriguing quantum many-body systems [1]. -
Electron-Electron Interactions(Pdf)
Contents 2 Electron-electron interactions 1 2.1 Mean field theory (Hartree-Fock) ................ 3 2.1.1 Validity of Hartree-Fock theory .................. 6 2.1.2 Problem with Hartree-Fock theory ................ 9 2.2 Screening ..................................... 10 2.2.1 Elementary treatment ......................... 10 2.2.2 Kubo formula ............................... 15 2.2.3 Correlation functions .......................... 18 2.2.4 Dielectric constant ............................ 19 2.2.5 Lindhard function ............................ 21 2.2.6 Thomas-Fermi theory ......................... 24 2.2.7 Friedel oscillations ............................ 25 2.2.8 Plasmons ................................... 27 2.3 Fermi liquid theory ............................ 30 2.3.1 Particles and holes ............................ 31 2.3.2 Energy of quasiparticles. ....................... 36 2.3.3 Residual quasiparticle interactions ................ 38 2.3.4 Local energy of a quasiparticle ................... 42 2.3.5 Thermodynamic properties ..................... 44 2.3.6 Quasiparticle relaxation time and transport properties. 46 2.3.7 Effective mass m∗ of quasiparticles ................ 50 0 Reading: 1. Ch. 17, Ashcroft & Mermin 2. Chs. 5& 6, Kittel 3. For a more detailed discussion of Fermi liquid theory, see G. Baym and C. Pethick, Landau Fermi-Liquid Theory : Concepts and Ap- plications, Wiley 1991 2 Electron-electron interactions The electronic structure theory of metals, developed in the 1930’s by Bloch, Bethe, Wilson and others, assumes that electron-electron interac- tions can be neglected, and that solid-state physics consists of computing and filling the electronic bands based on knowldege of crystal symmetry and atomic valence. To a remarkably large extent, this works. In simple compounds, whether a system is an insulator or a metal can be deter- mined reliably by determining the band filling in a noninteracting cal- culation. -
Joaquin M. Luttinger 1923–1997
Joaquin M. Luttinger 1923–1997 A Biographical Memoir by Walter Kohn ©2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. JOAQUIN MAZDAK LUTTINGER December 2, 1923–April 6, 1997 Elected to the NAS, 1976 The brilliant mathematical and theoretical physicist Joaquin M. Luttinger died at the age of 73 years in the city of his birth, New York, which he deeply loved throughout his life. He had been in good spirits a few days earlier when he said to Walter Kohn (WK), his longtime collaborator and friend, that he was dying a happy man thanks to the loving care during his last illness by his former wife, Abigail Thomas, and by his stepdaughter, Jennifer Waddell. Luttinger’s work was marked by his exceptional ability to illuminate physical properties and phenomena through Visual Archives. Emilio Segrè Photograph courtesy the use of appropriate and beautiful mathematics. His writings and lectures were widely appreciated for their clarity and fine literary quality. With Luttinger’s death, an By Walter Kohn influential voice that helped shape the scientific discourse of his time, especially in condensed-matter physics, was stilled, but many of his ideas live on. For example, his famous 1963 paper on condensed one-dimensional fermion systems, now known as Tomonaga-Luttinger liquids,1, 2 or simply Luttinger liquids, continues to have a strong influence on research on 1-D electronic dynamics. In the 1950s and ’60s, Luttinger also was one of the great figures who helped construct the present canon of classic many-body theory while at the same time laying founda- tions for present-day revisions. -
Exciton Dynamics in Carbon Nanotubes: from the Luttinger Liquid to Harmonic Oscillators
Exciton Dynamics in Carbon Nanotubes: From the Luttinger Liquid to Harmonic Oscillators M. C. Sweeney and J. D. Eaves Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA We show that the absorption spectrum in semiconducting nanotubes can be determined using the bosonization technique combined with mean-field theory and a harmonic approximation. Our results indicate that a multiple band semiconducting nanotube reduces to a system of weakly coupled harmonic oscillators. Additionally, the quasiparticle nature of the electron and hole that comprise an optical exciton emerges naturally from the bosonized model. PACS numbers: 78.67.Ch, 71.10.Pm Many of the properties of single-walled carbon nan- lation length and lie outside this quasiparticle paradigm otubes (SWNTs) are deeply rooted in the physics of [3, 14, 15]. These fluctuations are described naturally strongly interacting electrons in low spatial dimensions within Luttinger liquid (LL) theory [16, 17]. Here too, [1]. In SWNTs, the low-energy fluctuations in the elec- some of the predicted transport properties have been re- tron density are dominated by one-dimensional excita- ported in experiments [18, 19]. The LL approach has tions of the electrons in the π-energy bands. SWNTs can also been applied to study transport in semiconducting transport electrons like a nearly ideal one-dimensional SWNTs [20], but only recently been applied to study op- conductor, but more like molecules than solid-state ma- tical excitations in SWNTs [21]. terials, display sharp lines in their absorption spectra In this letter we analyze optical excitations and re- [2,3]. These two faces: part solid-state and part molecu- laxation dynamics in SWNTs by applying Luttinger liq- lar, make SWNTs unique nanoscale systems.