Singular Fermi Liquids, at Least for the Present Case Where the Singularities Are Q-Dependent

Total Page:16

File Type:pdf, Size:1020Kb

Singular Fermi Liquids, at Least for the Present Case Where the Singularities Are Q-Dependent Singular Fermi Liquids C. M. Varmaa,b, Z. Nussinovb, and Wim van Saarloosb aBell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, U.S.A. 1 bInstituut–Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands Abstract An introductory survey of the theoretical ideas and calculations and the ex- perimental results which depart from Landau Fermi-liquids is presented. Common themes and possible routes to the singularities leading to the breakdown of Landau Fermi liquids are categorized following an elementary discussion of the theory. Sol- uble examples of Singular Fermi liquids include models of impurities in metals with special symmetries and one-dimensional interacting fermions. A review of these is followed by a discussion of Singular Fermi liquids in a wide variety of experimental situations and theoretical models. These include the effects of low-energy collective fluctuations, gauge fields due either to symmetries in the hamiltonian or possible dynamically generated symmetries, fluctuations around quantum critical points, the normal state of high temperature superconductors and the two-dimensional metallic state. For the last three systems, the principal experimental results are summarized and the outstanding theoretical issues highlighted. Contents 1 Introduction 4 1.1 Aim and scope of this paper 4 1.2 Outline of the paper 7 arXiv:cond-mat/0103393v1 [cond-mat.str-el] 19 Mar 2001 2 Landau’s Fermi-liquid 8 2.1 Essentials of Landau Fermi-liquids 8 2.2 Landau Fermi-liquid and the wave function renormalization Z 11 2.3 Understanding microscopically why Fermi-liquid Theory works 17 1 Present and permanent address Preprint submitted to Elsevier Preprint 1 February 2008 2.4 Principles of the Microscopic Derivation of Landau Theory 22 2.5 Modern derivations 27 2.6 Routes to Breakdown of Landau Theory 29 3 Local Fermi-Liquids & Local Singular Fermi-Liquids 34 3.1 The Kondo Problem 34 3.2 Fermi-liquid Phenemenology for the Kondo problem 38 3.3 Ferromagnetic Kondo problem and the anisotropic Kondo problem 39 3.4 Orthogonality Catastrophe 40 3.5 X-ray Edge singularities 41 3.6 A Spinless Model with Finite Range Interactions 43 3.7 A model for Mixed-Valence Impurity 45 3.8 Multi-channel Kondo problem 47 3.9 The Two-Kondo-Impurities Problem 51 4 SFL behavior for interacting fermions in one dimension 55 4.1 The One Dimensional Electron Gas 57 4.2 The Tomonaga-Luttinger Model 59 4.3 One-particle Spectral functions 62 4.4 Thermodynamics 63 4.5 Correlation Functions 64 4.6 The Luther-Emery Model 65 4.7 Spin charge separation 67 4.8 Spin-charge Separation in more than one-dimension? 69 4.9 Recoil and the Orthogonality Catastrophe in 1d and higher 72 4.10 Coupled One-dimensional Chains 76 4.11 Experimental observations of one-dimensional Luttinger liquid behavior 76 2 5 Singular Fermi-liquid behavior due to gauge fields 79 5.1 SFL behavior due to coupling to the electromagnetic field 79 5.2 Generalized gauge theories 82 6 Quantum Critical Points in fermionic systems 84 6.1 Quantum critical points in ferromagnets, antiferromagnets, and charge density waves 85 6.2 Quantum critical scaling 88 6.3 Experimental Examples of SFL due to Quantum-Criticality: Open Theoretical Problems 96 6.4 Special complications in heavy fermion physics 101 6.5 Effects of impurities on Quantum Critical Points 103 7 The High-Tc Problem in the Copper-Oxide Based Compounds 104 7.1 Some basic features of the high-Tc materials 105 7.2 Marginal Fermi Liquid behavior of the normal state 108 7.3 General Requirements on a Microscopic Theory 115 7.4 Microscopic Theory 117 8 The Metallic State in Two-Dimensions 123 8.1 The two-dimensional Electron Gas 124 8.2 Noninteracting Disordered Electrons: Scaling Theory of Localization 126 8.3 Interactions in Disordered Electrons 130 8.4 Finkelstein Theory 135 8.5 Compressibility, Screening length and a Mechanism for Metal- Insulator Transition 137 8.6 Experiments 138 8.7 Discussion of the Experiments in light of the theory of Interacting Disordered Electrons 144 8.8 Phase Diagram and Concluding Remarks 150 3 9 Acknowledgements 152 References 152 1 Introduction 1.1 Aim and scope of this paper In the last two decades a variety of metals have been discovered which dis- play thermodynamic and transport properties at low temperatures which are fundamentally different from those of the usual metallic systems which are well described by the Landau Fermi-liquid theory. They have often been re- ferred to as Non-Fermi-liquids. A fundamental characteristic of such systems is that the low-energy properties in a wide range of their phase diagram are dominated by singularities as a function of energy and temperature. Since these problems still relate to a liquid state of fermions and since it is not a good practice to name things after what they are not, we prefer to call them Singular Fermi-liquids (SFL). The basic notions of Fermi-liquid theory have actually been with us at an intuitive level since the time of Sommerfeld: He showed that the linear low temperature specific heat behavior of metals as well as their asymptotic low temperature resisitivity and optical conductivity could be understood by as- suming that the electrons in a metal could be thought of as a gas of non- interacting fermions, i.e., in terms of quantum mechanical particles which do not have any direct interaction but which do obey Fermi statistics. Mean- while Pauli calculated that the paramagnetic susceptibility of non-interacting electrons is independent of temperature, also in accord with experiments in metals. At the same time it was understood, at least since the work of Bloch and Wigner, that the interaction energies of the electrons in the metallic range of densities are not small compared to the kinetic energy. The rationalization for the qualitative success of the non-interacting model was provided in a mas- terly pair of papers by Landau [144,145] who initially was concerned with the properties of liquid 3He. This work introduced a new way of thinking about the properties of interacting systems which is a cornerstone of our understanding of condensed matter physics. The notion of quasiparticles and elementary ex- citations and the methodology of asking useful questions about the low-energy excitations of the system based on concepts of symmetry, without worrying about the myriad unnecessary details, is epitomized in Landau’s phenomen- logical theory of Fermi-liquids. The microscopic derivation of the theory was also soon developed. 4 Our perspective on Fermi-liquids has changed significantly in the last two decades or so. This is due both to changes in our theoretical perspective, and due to the experimental developments: on the experimental side, new materi- als have been found which exhibit Fermi-liquid behavior in the temperature dependence of their low temperature properties with the coefficients often a factor of order 103 different from the non-interacting electron values. These observations dramatically illustrate the power and range of validity of the Fermi-liquid ideas. On the other hand, new materials have been discovered whose properties are qualitatively different from the predictions of Fermi- liquid theory (FLT). The most prominently discussed of these materials are the normal phase of high-temperature superconducting materials for a range of compositions near their highest Tc. Almost every idea discussed in this review has been used to understand the high-Tc problem, but there is no consensus yet on the solution. It has of course been known for a long time that FLT breaks down in the fluctuation regime of classical phase transitions. This breakdown happens in a more substantial region of the phase diagram around the quantum critical point (QCP) where the transition temperature tends to zero as a function of some parameter, see Fig. 1. This phenomenon has been extensively investi- gated for a wide variety of magnetic transitions in metals where the transition temperature can be tuned through application of pressure or by varying the electronic density through alloying. Heavy fermion with their close competi- tion between states of magnetic order with localized moments and itinerant states due to Kondo-effects appear particularly prone to such QCP’s. Equally interesting are questions having to do with the change in properties due to impurities in systems which are near a QCP in the pure limit. The density-density correlations of itinerant disordered electrons at long wave- lengths and low energies must have a diffusive form. In two-dimensions this leads to logarithmic singularities in the effective interactions when the inter- actions are treated perturbatively. The problem of finding the ground state and low-lying excitations in this situation is unsolved. On the experimental side the discovery of the metal-insulator transition in two dimensions and the unusual properties observed in the metallic state makes this an important problem to resolve. The one-dimensional electron gas reveals logarithmic singularities in the effec- tive interactions even in a second-order perturbation calculation. A variety of mathematical techniques have been used to solve a whole class of interacting one-dimensional problems and one now knows the essentials of the correlation functions even in the most general case. An important issue is whether and how this knowledge can be used in higher dimensions. The solution of the Kondo problem and the realization that its low temper- 5 Fig. 1. Schematic phase diagram near a Quantum Critical Point. The parameter along the x-axis can be quite general, like the pressure or a ratio of coupling con- stants. Whenever the critical temperature vanishes, a QCP, indicated with a dot in the figure, is encountered.
Recommended publications
  • Kondo Effect and Mesoscopic Fluctuations
    PRAMANA c Indian Academy of Sciences Vol. 77, No. 5 — journal of November 2011 physics pp. 769–779 Kondo effect and mesoscopic fluctuations DENIS ULLMO1,∗, SÉBASTIEN BURDIN2, DONG E LIU3 and HAROLD U BARANGER3 1LPTMS, Univ. Paris Sud, CNRS, 91405 Orsay Cedex, France 2Condensed Matter Theory Group, LOMA, UMR 5798, Université de Bordeaux I, 33405 Talence, France 3Department of Physics, Duke University, Box 90305, Durham, NC 27708-0305, USA ∗Corresponding author. E-mail: [email protected] Abstract. Two important themes in nanoscale physics in the last two decades are correlations between electrons and mesoscopic fluctuations. Here we review our recent work on the intersection of these two themes. The setting is the Kondo effect, a paradigmatic example of correlated electron physics, in a nanoscale system with mesoscopic fluctuations; in particular, we consider a small quan- tum dot coupled to a finite reservoir (which itself may be a large quantum dot). We discuss three aspects of this problem. First, in the high-temperature regime, we argue that a Kondo temperature TK which takes into account the mesoscopic fluctuations is a relevant concept: for instance, physical properties are universal functions of T/TK. Secondly, when the temperature is much less than the mean level spacing due to confinement, we characterize a natural cross-over from weak to strong coupling. This strong coupling regime is itself characterized by well-defined single-particle levels, as one can see from a Nozières Fermi-liquid theory argument. Finally, using a mean-field technique, we connect the mesoscopic fluctuations of the quasiparticles in the weak coupling regime to those at strong coupling.
    [Show full text]
  • Lecture 3: Fermi-Liquid Theory 1 General Considerations Concerning Condensed Matter
    Phys 769 Selected Topics in Condensed Matter Physics Summer 2010 Lecture 3: Fermi-liquid theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 General considerations concerning condensed matter (NB: Ultracold atomic gasses need separate discussion) Assume for simplicity a single atomic species. Then we have a collection of N (typically 1023) nuclei (denoted α,β,...) and (usually) ZN electrons (denoted i,j,...) interacting ∼ via a Hamiltonian Hˆ . To a first approximation, Hˆ is the nonrelativistic limit of the full Dirac Hamiltonian, namely1 ~2 ~2 1 e2 1 Hˆ = 2 2 + NR −2m ∇i − 2M ∇α 2 4πǫ r r α 0 i j Xi X Xij | − | 1 (Ze)2 1 1 Ze2 1 + . (1) 2 4πǫ0 Rα Rβ − 2 4πǫ0 ri Rα Xαβ | − | Xiα | − | For an isolated atom, the relevant energy scale is the Rydberg (R) – Z2R. In addition, there are some relativistic effects which may need to be considered. Most important is the spin-orbit interaction: µ Hˆ = B σ (v V (r )) (2) SO − c2 i · i × ∇ i Xi (µB is the Bohr magneton, vi is the velocity, and V (ri) is the electrostatic potential at 2 3 2 ri as obtained from HˆNR). In an isolated atom this term is o(α R) for H and o(Z α R) for a heavy atom (inner-shell electrons) (produces fine structure). The (electron-electron) magnetic dipole interaction is of the same order as HˆSO. The (electron-nucleus) hyperfine interaction is down relative to Hˆ by a factor µ /µ 10−3, and the nuclear dipole-dipole SO n B ∼ interaction by a factor (µ /µ )2 10−6.
    [Show full text]
  • Mesoscopic Physics of Finite Temperature Superfluid Turbulence in He4: Models, Solutions and Prospects
    Mesoscopic physics of finite temperature superfluid turbulence in He4: models, solutions and prospects Demosthenes Kivotides University of Strathclyde Glasgow Demosthenes Kivotides Mesoscopic physics of finite temperature superfluid turbulence Prologue Quantize the Schroedinger equation to obtain a QFT of Galilean-relativistic, spin-0, bosonic, many-particle systems Corresponding field-theoretic Hamiltonian: 2 Z H^ = ~ d3xr ^y(x) · r ^(x) + 2m 1 Z d3xd3x0 ^y(x) ^y(x0)V (x; x0) ^(x0) ^(x) 2 Quantum Schroedinger field quanta [look also at soliton-like solutions of LSE (Zamboni-Rached, Becami JMP, 2012)] interact with each other via potential V LSE (V = 0) encodes matter inertia and a stress field (quantum potential) Demosthenes Kivotides Mesoscopic physics of finite temperature superfluid turbulence Prologue Motion under the quantum potential results in highly nontrivial pathlines Quantum potential effects topological defect formation in the superfluid, which are velocity-field vortices V not required for topological defect formation, but has important fluid dynamic effects, since it is the origin of fluid pressure Strongly-interacting liquid: Slater-Kirkwood potential (R = jx − x0j): V (R) = [770exp(−4:60R) − (1:49=R6)] × 10−12 erg (R in A˚). Demosthenes Kivotides Mesoscopic physics of finite temperature superfluid turbulence Prologue Breaking the rigid U(1) symmetry of quantum Schroedinger field leads to superfluidity (Nambu-Goldstone modes) The standard conservation principles lead to normal-fluid hydrodynamics The purpose of the mesoscopic model (MM) is
    [Show full text]
  • PHYSICS (PHY) Fall 2021
    PHYSICS (PHY) Fall 2021 Physics Chairperson Axel Drees, Physics Building C-104 (631) 632-8114 Graduate Program Director Matt Dawber, Physics Building P-107 (631) 632-4978 Assistant Graduate Program Director Donald J. Sheehan III, Physics Building P-110 (631) 632-8759 Degrees Awarded M.A. in Physics; M.S. in Physics in Scientific Instrumentation; Ph.D. in Physics; Ph.D. in Physics with Concentration in Astronomy; Ph.D. in Physics with Concentration in Physical Biology. Web Site https://www.stonybrook.edu/commcms/grad-physics-astronomy/ http://graduate.physics.sunysb.edu http://www.physics.sunysb.edu/Physics/ Application https://graduateadmissions.stonybrook.edu/apply/ General Description of the Graduate Program The Department of Physics and Astronomy in the College of Arts and Sciences offers courses of study and research that normally lead to the Ph.D. degree. The M.A degree is awarded either as a terminal degree, or to students on the way to the Ph.D. degree. The Master of Science in Scientific Instrumentation program is provided for those interested in instrumentation for physical research. A Master of Arts in Teaching program, from the School of Professional Development, is available for students seeking to teach physics in high schools. Students may find opportunities in various areas of physics not found in the department or in related disciplines at Stony Brook in such programs as Medical Physics, Chemical Physics, Atmospheric and Climate Modeling, Materials Science and at Cold Spring Harbor Laboratory. The entire faculty participates in teaching a rich curriculum of undergraduate, graduate, and professional development courses, including many courses on special topics of current interest.
    [Show full text]
  • Magnetic Quantum Phase Transitions in a Clean Dirac Metal
    arXiv:xxxx.xxxx Magnetic Quantum Phase Transitions in a Clean Dirac Metal D. Belitz1;2 and T. R. Kirkpatrick3 1 Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA 2 Materials Science Institute, University of Oregon, Eugene, OR 97403, USA 3 Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA (Dated: August 18, 2021) We consider clean Dirac metals where the linear band crossing is caused by a strong spin-orbit interaction, and study the quantum phase transitions from the paramagnetic phase to various mag- netic phases, including homogeneous ferromagnets, ferrimagnets, canted ferromagnets, and magnetic nematics. We show that in all of these cases the coupling of fermionic soft modes to the order param- eter generically renders the quantum phase transition first order, with certain gapless Dirac systems providing a possible exception. These results are surprising since a strong spin-orbit scattering sup- presses the mechanism that causes the first order transition in ordinary metals. The important role of chirality in generating a new mechanism for a first-order transition is stressed. I. INTRODUCTION is proportional to hd−1, and for d = 3 it is h2 ln h. This is a result of soft or massless excitations in the under- lying Dirac Fermi liquid that are rendered massive by a It has been known for a long time that the spin-orbit magnetic field. While the resulting nonanalyticity has interaction can lead to semimetals, that is, materials the same functional form as in an ordinary or Landau that in a well-defined sense are in between metals and Fermi liquid,12,13 this result came as a surprise since the 1–3 insulators.
    [Show full text]
  • Unconventional Hund Metal in a Weak Itinerant Ferromagnet
    ARTICLE https://doi.org/10.1038/s41467-020-16868-4 OPEN Unconventional Hund metal in a weak itinerant ferromagnet Xiang Chen1, Igor Krivenko 2, Matthew B. Stone 3, Alexander I. Kolesnikov 3, Thomas Wolf4, ✉ ✉ Dmitry Reznik 5, Kevin S. Bedell6, Frank Lechermann7 & Stephen D. Wilson 1 The physics of weak itinerant ferromagnets is challenging due to their small magnetic moments and the ambiguous role of local interactions governing their electronic properties, 1234567890():,; many of which violate Fermi-liquid theory. While magnetic fluctuations play an important role in the materials’ unusual electronic states, the nature of these fluctuations and the paradigms through which they arise remain debated. Here we use inelastic neutron scattering to study magnetic fluctuations in the canonical weak itinerant ferromagnet MnSi. Data reveal that short-wavelength magnons continue to propagate until a mode crossing predicted for strongly interacting quasiparticles is reached, and the local susceptibility peaks at a coher- ence energy predicted for a correlated Hund metal by first-principles many-body theory. Scattering between electrons and orbital and spin fluctuations in MnSi can be understood at the local level to generate its non-Fermi liquid character. These results provide crucial insight into the role of interorbital Hund’s exchange within the broader class of enigmatic multiband itinerant, weak ferromagnets. 1 Materials Department, University of California, Santa Barbara, CA 93106, USA. 2 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA. 3 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. 4 Institute for Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
    [Show full text]
  • First Principles Investigation Into the Atom in Jellium Model System
    First Principles Investigation into the Atom in Jellium Model System Andrew Ian Duff H. H. Wills Physics Laboratory University of Bristol A thesis submitted to the University of Bristol in accordance with the requirements of the degree of Ph.D. in the Faculty of Science Department of Physics March 2007 Word Count: 34, 000 Abstract The system of an atom immersed in jellium is solved using density functional theory (DFT), in both the local density (LDA) and self-interaction correction (SIC) approxima- tions, Hartree-Fock (HF) and variational quantum Monte Carlo (VQMC). The main aim of the thesis is to establish the quality of the LDA, SIC and HF approximations by com- paring the results obtained using these methods with the VQMC results, which we regard as a benchmark. The second aim of the thesis is to establish the suitability of an atom in jellium as a building block for constructing a theory of the full periodic solid. A hydrogen atom immersed in a finite jellium sphere is solved using the methods listed above. The immersion energy is plotted against the positive background density of the jellium, and from this curve we see that DFT over-binds the electrons as compared to VQMC. This is consistent with the general over-binding one tends to see in DFT calculations. Also, for low values of the positive background density, the SIC immersion energy gets closer to the VQMC immersion energy than does the LDA immersion energy. This is consistent with the fact that the electrons to which the SIC is applied are becoming more localised at these low background densities and therefore the SIC theory is expected to out-perform the LDA here.
    [Show full text]
  • Landau Effective Interaction Between Quasiparticles in a Bose-Einstein Condensate
    PHYSICAL REVIEW X 8, 031042 (2018) Landau Effective Interaction between Quasiparticles in a Bose-Einstein Condensate A. Camacho-Guardian* and Georg M. Bruun Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark (Received 19 December 2017; revised manuscript received 28 February 2018; published 15 August 2018) Landau’s description of the excitations in a macroscopic system in terms of quasiparticles stands out as one of the highlights in quantum physics. It provides an accurate description of otherwise prohibitively complex many-body systems and has led to the development of several key technologies. In this paper, we investigate theoretically the Landau effective interaction between quasiparticles, so-called Bose polarons, formed by impurity particles immersed in a Bose-Einstein condensate (BEC). In the limit of weak interactions between the impurities and the BEC, we derive rigorous results for the effective interaction. They show that it can be strong even for a weak impurity-boson interaction, if the transferred momentum- energy between the quasiparticles is resonant with a sound mode in the BEC. We then develop a diagrammatic scheme to calculate the effective interaction for arbitrary coupling strengths, which recovers the correct weak-coupling results. Using this scheme, we show that the Landau effective interaction, in general, is significantly stronger than that between quasiparticles in a Fermi gas, mainly because a BEC is more compressible than a Fermi gas. The interaction is particularly large near the unitarity limit of the impurity-boson scattering or when the quasiparticle momentum is close to the threshold for momentum relaxation in the BEC.
    [Show full text]
  • Attractive Fermi Polarons at Nonzero Temperatures with a Finite Impurity
    PHYSICAL REVIEW A 98, 013626 (2018) Attractive Fermi polarons at nonzero temperatures with a finite impurity concentration Hui Hu, Brendan C. Mulkerin, Jia Wang, and Xia-Ji Liu Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122, Australia (Received 29 June 2018; published 25 July 2018) We theoretically investigate how quasiparticle properties of an attractive Fermi polaron are affected by nonzero temperature and finite impurity concentration in three dimensions and in free space. By applying both non- self-consistent and self-consistent many-body T -matrix theories, we calculate the polaron energy (including decay rate), effective mass, and residue, as functions of temperature and impurity concentration. The temperature and concentration dependencies are weak on the BCS side with a negative impurity-medium scattering length. Toward the strong attraction regime across the unitary limit, we find sizable dependencies. In particular, with increasing temperature the effective mass quickly approaches the bare mass and the residue is significantly enhanced. At temperature T ∼ 0.1TF ,whereTF is the Fermi temperature of the background Fermi sea, the residual polaron-polaron interaction seems to become attractive. This leads to a notable down-shift in the polaron energy. We show that, by taking into account the temperature and impurity concentration effects, the measured polaron energy in the first Fermi polaron experiment [Schirotzek et al., Phys.Rev.Lett.102, 230402 (2009)] could be better theoretically explained. DOI: 10.1103/PhysRevA.98.013626 I. INTRODUCTION Experimentally, the first experiment on attractive Fermi polarons was carried out by the Zwierlein group at Mas- Over the past two decades, ultracold atomic gases have pro- sachusetts Institute of Technology (MIT) in 2009 using 6Li vided an ideal platform to understand the intriguing quantum many-body systems [1].
    [Show full text]
  • Electron-Electron Interactions(Pdf)
    Contents 2 Electron-electron interactions 1 2.1 Mean field theory (Hartree-Fock) ................ 3 2.1.1 Validity of Hartree-Fock theory .................. 6 2.1.2 Problem with Hartree-Fock theory ................ 9 2.2 Screening ..................................... 10 2.2.1 Elementary treatment ......................... 10 2.2.2 Kubo formula ............................... 15 2.2.3 Correlation functions .......................... 18 2.2.4 Dielectric constant ............................ 19 2.2.5 Lindhard function ............................ 21 2.2.6 Thomas-Fermi theory ......................... 24 2.2.7 Friedel oscillations ............................ 25 2.2.8 Plasmons ................................... 27 2.3 Fermi liquid theory ............................ 30 2.3.1 Particles and holes ............................ 31 2.3.2 Energy of quasiparticles. ....................... 36 2.3.3 Residual quasiparticle interactions ................ 38 2.3.4 Local energy of a quasiparticle ................... 42 2.3.5 Thermodynamic properties ..................... 44 2.3.6 Quasiparticle relaxation time and transport properties. 46 2.3.7 Effective mass m∗ of quasiparticles ................ 50 0 Reading: 1. Ch. 17, Ashcroft & Mermin 2. Chs. 5& 6, Kittel 3. For a more detailed discussion of Fermi liquid theory, see G. Baym and C. Pethick, Landau Fermi-Liquid Theory : Concepts and Ap- plications, Wiley 1991 2 Electron-electron interactions The electronic structure theory of metals, developed in the 1930’s by Bloch, Bethe, Wilson and others, assumes that electron-electron interac- tions can be neglected, and that solid-state physics consists of computing and filling the electronic bands based on knowldege of crystal symmetry and atomic valence. To a remarkably large extent, this works. In simple compounds, whether a system is an insulator or a metal can be deter- mined reliably by determining the band filling in a noninteracting cal- culation.
    [Show full text]
  • Arxiv:2006.09236V4 [Quant-Ph] 27 May 2021
    The Free Electron Gas in Cavity Quantum Electrodynamics Vasil Rokaj,1, ∗ Michael Ruggenthaler,1, y Florian G. Eich,1 and Angel Rubio1, 2, z 1Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany 2Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York NY 10010 (Dated: May 31, 2021) Cavity modification of material properties and phenomena is a novel research field largely mo- tivated by the advances in strong light-matter interactions. Despite this progress, exact solutions for extended systems strongly coupled to the photon field are not available, and both theory and experiments rely mainly on finite-system models. Therefore a paradigmatic example of an exactly solvable extended system in a cavity becomes highly desireable. To fill this gap we revisit Som- merfeld's theory of the free electron gas in cavity quantum electrodynamics (QED). We solve this system analytically in the long-wavelength limit for an arbitrary number of non-interacting elec- trons, and we demonstrate that the electron-photon ground state is a Fermi liquid which contains virtual photons. In contrast to models of finite systems, no ground state exists if the diamagentic A2 term is omitted. Further, by performing linear response we show that the cavity field induces plasmon-polariton excitations and modifies the optical and the DC conductivity of the electron gas. Our exact solution allows us to consider the thermodynamic limit for both electrons and photons by constructing an effective quantum field theory. The continuum of modes leads to a many-body renormalization of the electron mass, which modifies the fermionic quasiparticle excitations of the Fermi liquid and the Wigner-Seitz radius of the interacting electron gas.
    [Show full text]
  • Non-Fermi Liquids in Oxide Heterostructures
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Non-Fermi liquids in oxide heterostructures Permalink https://escholarship.org/uc/item/1cn238xw Journal Reports on Progress in Physics, 81(6) ISSN 0034-4885 1361-6633 Authors Stemmer, Susanne Allen, S James Publication Date 2018-06-01 DOI 10.1088/1361-6633/aabdfa Peer reviewed eScholarship.org Powered by the California Digital Library University of California Reports on Progress in Physics KEY ISSUES REVIEW Non-Fermi liquids in oxide heterostructures To cite this article: Susanne Stemmer and S James Allen 2018 Rep. Prog. Phys. 81 062502 View the article online for updates and enhancements. This content was downloaded from IP address 128.111.119.159 on 08/05/2018 at 17:09 IOP Reports on Progress in Physics Reports on Progress in Physics Rep. Prog. Phys. Rep. Prog. Phys. 81 (2018) 062502 (12pp) https://doi.org/10.1088/1361-6633/aabdfa 81 Key Issues Review 2018 Non-Fermi liquids in oxide heterostructures © 2018 IOP Publishing Ltd Susanne Stemmer1 and S James Allen2 RPPHAG 1 Materials Department, University of California, Santa Barbara, CA 93106-5050, United States of America 062502 2 Department of Physics, University of California, Santa Barbara, CA 93106-9530, United States of America S Stemmer and S J Allen E-mail: [email protected] Received 18 July 2017, revised 25 January 2018 Accepted for publication 13 April 2018 Published 8 May 2018 Printed in the UK Corresponding Editor Professor Piers Coleman ROP Abstract Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics.
    [Show full text]