Singular Fermi Liquids, at Least for the Present Case Where the Singularities Are Q-Dependent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kondo Effect and Mesoscopic Fluctuations
PRAMANA c Indian Academy of Sciences Vol. 77, No. 5 — journal of November 2011 physics pp. 769–779 Kondo effect and mesoscopic fluctuations DENIS ULLMO1,∗, SÉBASTIEN BURDIN2, DONG E LIU3 and HAROLD U BARANGER3 1LPTMS, Univ. Paris Sud, CNRS, 91405 Orsay Cedex, France 2Condensed Matter Theory Group, LOMA, UMR 5798, Université de Bordeaux I, 33405 Talence, France 3Department of Physics, Duke University, Box 90305, Durham, NC 27708-0305, USA ∗Corresponding author. E-mail: [email protected] Abstract. Two important themes in nanoscale physics in the last two decades are correlations between electrons and mesoscopic fluctuations. Here we review our recent work on the intersection of these two themes. The setting is the Kondo effect, a paradigmatic example of correlated electron physics, in a nanoscale system with mesoscopic fluctuations; in particular, we consider a small quan- tum dot coupled to a finite reservoir (which itself may be a large quantum dot). We discuss three aspects of this problem. First, in the high-temperature regime, we argue that a Kondo temperature TK which takes into account the mesoscopic fluctuations is a relevant concept: for instance, physical properties are universal functions of T/TK. Secondly, when the temperature is much less than the mean level spacing due to confinement, we characterize a natural cross-over from weak to strong coupling. This strong coupling regime is itself characterized by well-defined single-particle levels, as one can see from a Nozières Fermi-liquid theory argument. Finally, using a mean-field technique, we connect the mesoscopic fluctuations of the quasiparticles in the weak coupling regime to those at strong coupling. -
Lecture 3: Fermi-Liquid Theory 1 General Considerations Concerning Condensed Matter
Phys 769 Selected Topics in Condensed Matter Physics Summer 2010 Lecture 3: Fermi-liquid theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 General considerations concerning condensed matter (NB: Ultracold atomic gasses need separate discussion) Assume for simplicity a single atomic species. Then we have a collection of N (typically 1023) nuclei (denoted α,β,...) and (usually) ZN electrons (denoted i,j,...) interacting ∼ via a Hamiltonian Hˆ . To a first approximation, Hˆ is the nonrelativistic limit of the full Dirac Hamiltonian, namely1 ~2 ~2 1 e2 1 Hˆ = 2 2 + NR −2m ∇i − 2M ∇α 2 4πǫ r r α 0 i j Xi X Xij | − | 1 (Ze)2 1 1 Ze2 1 + . (1) 2 4πǫ0 Rα Rβ − 2 4πǫ0 ri Rα Xαβ | − | Xiα | − | For an isolated atom, the relevant energy scale is the Rydberg (R) – Z2R. In addition, there are some relativistic effects which may need to be considered. Most important is the spin-orbit interaction: µ Hˆ = B σ (v V (r )) (2) SO − c2 i · i × ∇ i Xi (µB is the Bohr magneton, vi is the velocity, and V (ri) is the electrostatic potential at 2 3 2 ri as obtained from HˆNR). In an isolated atom this term is o(α R) for H and o(Z α R) for a heavy atom (inner-shell electrons) (produces fine structure). The (electron-electron) magnetic dipole interaction is of the same order as HˆSO. The (electron-nucleus) hyperfine interaction is down relative to Hˆ by a factor µ /µ 10−3, and the nuclear dipole-dipole SO n B ∼ interaction by a factor (µ /µ )2 10−6. -
Mesoscopic Physics of Finite Temperature Superfluid Turbulence in He4: Models, Solutions and Prospects
Mesoscopic physics of finite temperature superfluid turbulence in He4: models, solutions and prospects Demosthenes Kivotides University of Strathclyde Glasgow Demosthenes Kivotides Mesoscopic physics of finite temperature superfluid turbulence Prologue Quantize the Schroedinger equation to obtain a QFT of Galilean-relativistic, spin-0, bosonic, many-particle systems Corresponding field-theoretic Hamiltonian: 2 Z H^ = ~ d3xr ^y(x) · r ^(x) + 2m 1 Z d3xd3x0 ^y(x) ^y(x0)V (x; x0) ^(x0) ^(x) 2 Quantum Schroedinger field quanta [look also at soliton-like solutions of LSE (Zamboni-Rached, Becami JMP, 2012)] interact with each other via potential V LSE (V = 0) encodes matter inertia and a stress field (quantum potential) Demosthenes Kivotides Mesoscopic physics of finite temperature superfluid turbulence Prologue Motion under the quantum potential results in highly nontrivial pathlines Quantum potential effects topological defect formation in the superfluid, which are velocity-field vortices V not required for topological defect formation, but has important fluid dynamic effects, since it is the origin of fluid pressure Strongly-interacting liquid: Slater-Kirkwood potential (R = jx − x0j): V (R) = [770exp(−4:60R) − (1:49=R6)] × 10−12 erg (R in A˚). Demosthenes Kivotides Mesoscopic physics of finite temperature superfluid turbulence Prologue Breaking the rigid U(1) symmetry of quantum Schroedinger field leads to superfluidity (Nambu-Goldstone modes) The standard conservation principles lead to normal-fluid hydrodynamics The purpose of the mesoscopic model (MM) is -
PHYSICS (PHY) Fall 2021
PHYSICS (PHY) Fall 2021 Physics Chairperson Axel Drees, Physics Building C-104 (631) 632-8114 Graduate Program Director Matt Dawber, Physics Building P-107 (631) 632-4978 Assistant Graduate Program Director Donald J. Sheehan III, Physics Building P-110 (631) 632-8759 Degrees Awarded M.A. in Physics; M.S. in Physics in Scientific Instrumentation; Ph.D. in Physics; Ph.D. in Physics with Concentration in Astronomy; Ph.D. in Physics with Concentration in Physical Biology. Web Site https://www.stonybrook.edu/commcms/grad-physics-astronomy/ http://graduate.physics.sunysb.edu http://www.physics.sunysb.edu/Physics/ Application https://graduateadmissions.stonybrook.edu/apply/ General Description of the Graduate Program The Department of Physics and Astronomy in the College of Arts and Sciences offers courses of study and research that normally lead to the Ph.D. degree. The M.A degree is awarded either as a terminal degree, or to students on the way to the Ph.D. degree. The Master of Science in Scientific Instrumentation program is provided for those interested in instrumentation for physical research. A Master of Arts in Teaching program, from the School of Professional Development, is available for students seeking to teach physics in high schools. Students may find opportunities in various areas of physics not found in the department or in related disciplines at Stony Brook in such programs as Medical Physics, Chemical Physics, Atmospheric and Climate Modeling, Materials Science and at Cold Spring Harbor Laboratory. The entire faculty participates in teaching a rich curriculum of undergraduate, graduate, and professional development courses, including many courses on special topics of current interest. -
Magnetic Quantum Phase Transitions in a Clean Dirac Metal
arXiv:xxxx.xxxx Magnetic Quantum Phase Transitions in a Clean Dirac Metal D. Belitz1;2 and T. R. Kirkpatrick3 1 Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA 2 Materials Science Institute, University of Oregon, Eugene, OR 97403, USA 3 Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA (Dated: August 18, 2021) We consider clean Dirac metals where the linear band crossing is caused by a strong spin-orbit interaction, and study the quantum phase transitions from the paramagnetic phase to various mag- netic phases, including homogeneous ferromagnets, ferrimagnets, canted ferromagnets, and magnetic nematics. We show that in all of these cases the coupling of fermionic soft modes to the order param- eter generically renders the quantum phase transition first order, with certain gapless Dirac systems providing a possible exception. These results are surprising since a strong spin-orbit scattering sup- presses the mechanism that causes the first order transition in ordinary metals. The important role of chirality in generating a new mechanism for a first-order transition is stressed. I. INTRODUCTION is proportional to hd−1, and for d = 3 it is h2 ln h. This is a result of soft or massless excitations in the under- lying Dirac Fermi liquid that are rendered massive by a It has been known for a long time that the spin-orbit magnetic field. While the resulting nonanalyticity has interaction can lead to semimetals, that is, materials the same functional form as in an ordinary or Landau that in a well-defined sense are in between metals and Fermi liquid,12,13 this result came as a surprise since the 1–3 insulators. -
Unconventional Hund Metal in a Weak Itinerant Ferromagnet
ARTICLE https://doi.org/10.1038/s41467-020-16868-4 OPEN Unconventional Hund metal in a weak itinerant ferromagnet Xiang Chen1, Igor Krivenko 2, Matthew B. Stone 3, Alexander I. Kolesnikov 3, Thomas Wolf4, ✉ ✉ Dmitry Reznik 5, Kevin S. Bedell6, Frank Lechermann7 & Stephen D. Wilson 1 The physics of weak itinerant ferromagnets is challenging due to their small magnetic moments and the ambiguous role of local interactions governing their electronic properties, 1234567890():,; many of which violate Fermi-liquid theory. While magnetic fluctuations play an important role in the materials’ unusual electronic states, the nature of these fluctuations and the paradigms through which they arise remain debated. Here we use inelastic neutron scattering to study magnetic fluctuations in the canonical weak itinerant ferromagnet MnSi. Data reveal that short-wavelength magnons continue to propagate until a mode crossing predicted for strongly interacting quasiparticles is reached, and the local susceptibility peaks at a coher- ence energy predicted for a correlated Hund metal by first-principles many-body theory. Scattering between electrons and orbital and spin fluctuations in MnSi can be understood at the local level to generate its non-Fermi liquid character. These results provide crucial insight into the role of interorbital Hund’s exchange within the broader class of enigmatic multiband itinerant, weak ferromagnets. 1 Materials Department, University of California, Santa Barbara, CA 93106, USA. 2 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA. 3 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. 4 Institute for Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. -
First Principles Investigation Into the Atom in Jellium Model System
First Principles Investigation into the Atom in Jellium Model System Andrew Ian Duff H. H. Wills Physics Laboratory University of Bristol A thesis submitted to the University of Bristol in accordance with the requirements of the degree of Ph.D. in the Faculty of Science Department of Physics March 2007 Word Count: 34, 000 Abstract The system of an atom immersed in jellium is solved using density functional theory (DFT), in both the local density (LDA) and self-interaction correction (SIC) approxima- tions, Hartree-Fock (HF) and variational quantum Monte Carlo (VQMC). The main aim of the thesis is to establish the quality of the LDA, SIC and HF approximations by com- paring the results obtained using these methods with the VQMC results, which we regard as a benchmark. The second aim of the thesis is to establish the suitability of an atom in jellium as a building block for constructing a theory of the full periodic solid. A hydrogen atom immersed in a finite jellium sphere is solved using the methods listed above. The immersion energy is plotted against the positive background density of the jellium, and from this curve we see that DFT over-binds the electrons as compared to VQMC. This is consistent with the general over-binding one tends to see in DFT calculations. Also, for low values of the positive background density, the SIC immersion energy gets closer to the VQMC immersion energy than does the LDA immersion energy. This is consistent with the fact that the electrons to which the SIC is applied are becoming more localised at these low background densities and therefore the SIC theory is expected to out-perform the LDA here. -
Landau Effective Interaction Between Quasiparticles in a Bose-Einstein Condensate
PHYSICAL REVIEW X 8, 031042 (2018) Landau Effective Interaction between Quasiparticles in a Bose-Einstein Condensate A. Camacho-Guardian* and Georg M. Bruun Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark (Received 19 December 2017; revised manuscript received 28 February 2018; published 15 August 2018) Landau’s description of the excitations in a macroscopic system in terms of quasiparticles stands out as one of the highlights in quantum physics. It provides an accurate description of otherwise prohibitively complex many-body systems and has led to the development of several key technologies. In this paper, we investigate theoretically the Landau effective interaction between quasiparticles, so-called Bose polarons, formed by impurity particles immersed in a Bose-Einstein condensate (BEC). In the limit of weak interactions between the impurities and the BEC, we derive rigorous results for the effective interaction. They show that it can be strong even for a weak impurity-boson interaction, if the transferred momentum- energy between the quasiparticles is resonant with a sound mode in the BEC. We then develop a diagrammatic scheme to calculate the effective interaction for arbitrary coupling strengths, which recovers the correct weak-coupling results. Using this scheme, we show that the Landau effective interaction, in general, is significantly stronger than that between quasiparticles in a Fermi gas, mainly because a BEC is more compressible than a Fermi gas. The interaction is particularly large near the unitarity limit of the impurity-boson scattering or when the quasiparticle momentum is close to the threshold for momentum relaxation in the BEC. -
Attractive Fermi Polarons at Nonzero Temperatures with a Finite Impurity
PHYSICAL REVIEW A 98, 013626 (2018) Attractive Fermi polarons at nonzero temperatures with a finite impurity concentration Hui Hu, Brendan C. Mulkerin, Jia Wang, and Xia-Ji Liu Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122, Australia (Received 29 June 2018; published 25 July 2018) We theoretically investigate how quasiparticle properties of an attractive Fermi polaron are affected by nonzero temperature and finite impurity concentration in three dimensions and in free space. By applying both non- self-consistent and self-consistent many-body T -matrix theories, we calculate the polaron energy (including decay rate), effective mass, and residue, as functions of temperature and impurity concentration. The temperature and concentration dependencies are weak on the BCS side with a negative impurity-medium scattering length. Toward the strong attraction regime across the unitary limit, we find sizable dependencies. In particular, with increasing temperature the effective mass quickly approaches the bare mass and the residue is significantly enhanced. At temperature T ∼ 0.1TF ,whereTF is the Fermi temperature of the background Fermi sea, the residual polaron-polaron interaction seems to become attractive. This leads to a notable down-shift in the polaron energy. We show that, by taking into account the temperature and impurity concentration effects, the measured polaron energy in the first Fermi polaron experiment [Schirotzek et al., Phys.Rev.Lett.102, 230402 (2009)] could be better theoretically explained. DOI: 10.1103/PhysRevA.98.013626 I. INTRODUCTION Experimentally, the first experiment on attractive Fermi polarons was carried out by the Zwierlein group at Mas- Over the past two decades, ultracold atomic gases have pro- sachusetts Institute of Technology (MIT) in 2009 using 6Li vided an ideal platform to understand the intriguing quantum many-body systems [1]. -
Electron-Electron Interactions(Pdf)
Contents 2 Electron-electron interactions 1 2.1 Mean field theory (Hartree-Fock) ................ 3 2.1.1 Validity of Hartree-Fock theory .................. 6 2.1.2 Problem with Hartree-Fock theory ................ 9 2.2 Screening ..................................... 10 2.2.1 Elementary treatment ......................... 10 2.2.2 Kubo formula ............................... 15 2.2.3 Correlation functions .......................... 18 2.2.4 Dielectric constant ............................ 19 2.2.5 Lindhard function ............................ 21 2.2.6 Thomas-Fermi theory ......................... 24 2.2.7 Friedel oscillations ............................ 25 2.2.8 Plasmons ................................... 27 2.3 Fermi liquid theory ............................ 30 2.3.1 Particles and holes ............................ 31 2.3.2 Energy of quasiparticles. ....................... 36 2.3.3 Residual quasiparticle interactions ................ 38 2.3.4 Local energy of a quasiparticle ................... 42 2.3.5 Thermodynamic properties ..................... 44 2.3.6 Quasiparticle relaxation time and transport properties. 46 2.3.7 Effective mass m∗ of quasiparticles ................ 50 0 Reading: 1. Ch. 17, Ashcroft & Mermin 2. Chs. 5& 6, Kittel 3. For a more detailed discussion of Fermi liquid theory, see G. Baym and C. Pethick, Landau Fermi-Liquid Theory : Concepts and Ap- plications, Wiley 1991 2 Electron-electron interactions The electronic structure theory of metals, developed in the 1930’s by Bloch, Bethe, Wilson and others, assumes that electron-electron interac- tions can be neglected, and that solid-state physics consists of computing and filling the electronic bands based on knowldege of crystal symmetry and atomic valence. To a remarkably large extent, this works. In simple compounds, whether a system is an insulator or a metal can be deter- mined reliably by determining the band filling in a noninteracting cal- culation. -
Arxiv:2006.09236V4 [Quant-Ph] 27 May 2021
The Free Electron Gas in Cavity Quantum Electrodynamics Vasil Rokaj,1, ∗ Michael Ruggenthaler,1, y Florian G. Eich,1 and Angel Rubio1, 2, z 1Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany 2Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York NY 10010 (Dated: May 31, 2021) Cavity modification of material properties and phenomena is a novel research field largely mo- tivated by the advances in strong light-matter interactions. Despite this progress, exact solutions for extended systems strongly coupled to the photon field are not available, and both theory and experiments rely mainly on finite-system models. Therefore a paradigmatic example of an exactly solvable extended system in a cavity becomes highly desireable. To fill this gap we revisit Som- merfeld's theory of the free electron gas in cavity quantum electrodynamics (QED). We solve this system analytically in the long-wavelength limit for an arbitrary number of non-interacting elec- trons, and we demonstrate that the electron-photon ground state is a Fermi liquid which contains virtual photons. In contrast to models of finite systems, no ground state exists if the diamagentic A2 term is omitted. Further, by performing linear response we show that the cavity field induces plasmon-polariton excitations and modifies the optical and the DC conductivity of the electron gas. Our exact solution allows us to consider the thermodynamic limit for both electrons and photons by constructing an effective quantum field theory. The continuum of modes leads to a many-body renormalization of the electron mass, which modifies the fermionic quasiparticle excitations of the Fermi liquid and the Wigner-Seitz radius of the interacting electron gas. -
Non-Fermi Liquids in Oxide Heterostructures
UC Santa Barbara UC Santa Barbara Previously Published Works Title Non-Fermi liquids in oxide heterostructures Permalink https://escholarship.org/uc/item/1cn238xw Journal Reports on Progress in Physics, 81(6) ISSN 0034-4885 1361-6633 Authors Stemmer, Susanne Allen, S James Publication Date 2018-06-01 DOI 10.1088/1361-6633/aabdfa Peer reviewed eScholarship.org Powered by the California Digital Library University of California Reports on Progress in Physics KEY ISSUES REVIEW Non-Fermi liquids in oxide heterostructures To cite this article: Susanne Stemmer and S James Allen 2018 Rep. Prog. Phys. 81 062502 View the article online for updates and enhancements. This content was downloaded from IP address 128.111.119.159 on 08/05/2018 at 17:09 IOP Reports on Progress in Physics Reports on Progress in Physics Rep. Prog. Phys. Rep. Prog. Phys. 81 (2018) 062502 (12pp) https://doi.org/10.1088/1361-6633/aabdfa 81 Key Issues Review 2018 Non-Fermi liquids in oxide heterostructures © 2018 IOP Publishing Ltd Susanne Stemmer1 and S James Allen2 RPPHAG 1 Materials Department, University of California, Santa Barbara, CA 93106-5050, United States of America 062502 2 Department of Physics, University of California, Santa Barbara, CA 93106-9530, United States of America S Stemmer and S J Allen E-mail: [email protected] Received 18 July 2017, revised 25 January 2018 Accepted for publication 13 April 2018 Published 8 May 2018 Printed in the UK Corresponding Editor Professor Piers Coleman ROP Abstract Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics.