Dissertation Full Document 18Dec2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 It's All Geek to Me: Translating Names Of
IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning. -
Satellite Monitoring of Coastal Marine Ecosystems a Case from the Dominican Republic
Satellite Monitoring of Coastal Marine Ecosystems: A Case from the Dominican Republic Item Type Report Authors Stoffle, Richard W.; Halmo, David Publisher University of Arizona Download date 04/10/2021 02:16:03 Link to Item http://hdl.handle.net/10150/272833 SATELLITE MONITORING OF COASTAL MARINE ECOSYSTEMS A CASE FROM THE DOMINICAN REPUBLIC Edited By Richard W. Stoffle David B. Halmo Submitted To CIESIN Consortium for International Earth Science Information Network Saginaw, Michigan Submitted From University of Arizona Environmental Research Institute of Michigan (ERIM) University of Michigan East Carolina University December, 1991 TABLE OF CONTENTS List of Tables vi List of Figures vii List of Viewgraphs viii Acknowledgments ix CHAPTER ONE EXECUTIVE SUMMARY 1 The Human Dimensions of Global Change 1 Global Change Research 3 Global Change Theory 4 Application of Global Change Information 4 CIESIN And Pilot Research 5 The Dominican Republic Pilot Project 5 The Site 5 The Research Team 7 Key Findings 7 CAPÍTULO UNO RESUMEN GENERAL 9 Las Dimensiones Humanas en el Cambio Global 9 La Investigación del Cambio Global 11 Teoría del Cambio Global 12 Aplicaciones de la Información del Cambio Global 13 CIESIN y la Investigación Piloto 13 El Proyecto Piloto en la República Dominicana 14 El Lugar 14 El Equipo de Investigación 15 Principales Resultados 15 CHAPTER TWO REMOTE SENSING APPLICATIONS IN THE COASTAL ZONE 17 Coastal Surveys with Remote Sensing 17 A Human Analogy 18 Remote Sensing Data 19 Aerial Photography 19 Landsat Data 20 GPS Data 22 Sonar -
The Reduction of Seri Indian Range and Residence in the State of Sonora, Mexico (1563-Present)
The reduction of Seri Indian range and residence in the state of Sonora, Mexico (1563-present) Item Type text; Thesis-Reproduction (electronic) Authors Bahre, Conrad J. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 15:06:07 Link to Item http://hdl.handle.net/10150/551967 THE REDUCTION OF SERI INDIAN RANGE AND RESIDENCE IN THE STATE OF SONORA, MEXICO (1536-PRESENT) by Conrad Joseph Bahre A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOGRAPHY In Partial Fulfillment of the Requirements For the Degree of MASTER OF ARTS In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 6 7 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill ment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowl edgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the inter ests of scholarship. In all other instances, however, permission must be obtained from the author. -
Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument
Schmidt, Drost, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2006-1163 Southwest Biological Science Center Open-File Report 2006-1163 November 2006 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument By Cecilia A. Schmidt, Charles A. Drost, and William L. Halvorson Open-File Report 2006-1163 November, 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 Note: This document contains information of a preliminary nature and was prepared primarily for internal use in the U.S. Geological Survey. This information is NOT intended for use in open literature prior to publication by the investigators named unless permission is obtained in writing from the investigators named and from the Station Leader. Suggested Citation Schmidt, C. A., C. A. Drost, and W. L. Halvorson 2006. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument. USGS Open-File Report 2006-1163. -
Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service
Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Rocky Mountain Research Station Daniel G. Milchunas General Technical Report RMRS-GTR-169 April 2006 Milchunas, Daniel G. 2006. Responses of plant communities to grazing in the southwestern United States. Gen. Tech. Rep. RMRS-GTR-169. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 126 p. Abstract Grazing by wild and domestic mammals can have small to large effects on plant communities, depend- ing on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant commu- nities of the southwestern U.S. in terms of plant species composition, aboveground primary productiv- ity, and root and soil attributes. Livestock grazing management and grazing systems are assessed, as are effects of small and large native mammals and feral species, when data are available. Emphasis is placed on the evolutionary history of grazing and productivity of the particular communities as deter- minants of response. After reviewing available studies for each community type, we compare changes in species composition with grazing among community types. Comparisons are also made between southwestern communities with a relatively short history of grazing and communities of the adjacent Great Plains with a long evolutionary history of grazing. Evidence for grazing as a factor in shifts from grasslands to shrublands is considered. An appendix outlines a new community classification system, which is followed in describing grazing impacts in prior sections. -
DARKLING BEETLE Or STINK BEETLE Class Order Family Genus Species Insecta Coleoptera Tenebrionidae Eleodes Spp
DARKLING BEETLE or STINK BEETLE Class Order Family Genus Species Insecta Coleoptera Tenebrionidae Eleodes spp Range: Found worldwide. 100 species in this genus in California. Habitat: Forests, grasslands, and deserts. Found under rocks and logs during the day. Niche: Herbivorous, terrestrial, nocturnal Diet: Wild: Scavenge on a wide variety of decaying and fresh plant and animal matter Zoo: Apple, monkey chow, lettuce Special Adaptations: The forewing (elytra) is fused so this beetle is flightless. They have chewing mouthparts and adults have a hard exoskeleton, smooth and black and are a little over an inch long. Antennae are thread-like, but some species’ are slightly enlarged at the terminal end and appear club-like. Darkling beetles undergo a complete metamorphosis. The eggs are laid in soil. The mealworm is the larval state of the darkling beetle and may molt 9-20 times. The adults will live 3-15 years. Compound eyes are kidney-shaped or notched rather than round. These beetles do not need to drink and can produce water metabolically; also their wings are fused to reduce water loss. Other: When disturbed, they will stand on their heads and elevate their rear end and emit a foul-smelling odor. This emission makes them unpalatable to would-be predators. Hence an alternate common name of “stink beetle”. They are sexually dimorphic. The cactus longhorn beetle mimics the darkling beetle because of the smell. Complete metamorphosis. ▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼ DERMESTID BEETLE or SKIN BEETLE Class Order Family Genus Species Insecta Coleoptera Dermestidae Dermestes maculatus Range: Worldwide distribution except Antarctica Habitat: on dead animals Niche: Scavengers, omnivorous, terrestrial Diet: Wild: dry animal or plant material such as skin or pollen, animal hair, feathers, dead insects and natural fibers Zoo: Special Adaptations: Undergo complete metamorphosis. -
UNITED STATES DEPARTMENT of the INTERIOR GEOLOGICAL SURVEY PRELIMINARY DEPOSIT-TYPE MAP of NORTHWESTERN MEXICO by Kenneth R
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PRELIMINARY DEPOSIT-TYPE MAP OF NORTHWESTERN MEXICO By Kenneth R. Leonard U.S. Geological Survey Open-File Report 89-158 This report is preliminary and has not been reviewed for conformity with Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product, firm, or industry names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Menlo Park, CA 1989 Table of Contents Page Introduction..................................................................................................... i Explanation of Data Fields.......................................................................... i-vi Table 1 Size Categories for Deposits....................................................................... vii References.................................................................................................... viii-xx Site Descriptions........................................................................................... 1-330 Appendix I List of Deposits Sorted by Deposit Type.............................................. A-1 to A-22 Appendix n Site Name Index...................................................................................... B-1 to B-10 Plate 1 Distribution of Mineral Deposits in Northwestern Mexico Insets: Figure 1. Los Gavilanes Tungsten District Figure 2. El Antimonio District Figure 3. Magdalena District Figure 4. Cananea District Preliminary Deposit-Type Map of -
Teague M. Embrey, Joslyn Curtis, Shannon E. Henke, Karin J
THIRTY NEW LOCALITIES FOR ERIOGONUM JONESII Teague M. Embrey, Joslyn Curtis, Shannon E. Henke, Karin J. Edwards, Kathryn A. Prengaman, Sarah M. Schmid, and Scott R. Abella Department of Environmental and Occupational Health, University of Nevada Las Vegas, Las Vegas, Nevada 89154-3064 This study was supported by a grant from the University of Arizona Herbarium who awarded this project through Endangered Species Act Section 6 funding from the U.S. Fish and Wildlife Service. It allowed us the opportunity to survey for the rare plant Eriogonum jonesii S. Watson. We here list thirty new localities (Table 1) and show them on a map in Figure 1, along with four previously known localities. Table 1. Location and descriptions of Eriogonum jonesii sites. Number Site Latitude Longitude of Plants Association* Geology k002 35.906372 -113.932915 25–100 Colram Sandstone k005 35.905757 -113.949709 25–100 Yucbre/Colram Sandstone k006 35.907270 -113.948802 100+ Pinmon-Yucbre/Colram Limestone k008 35.910642 -113.947143 25–100 Colram Limestone k009 35.911915 -113.948143 100+ Pinmon/Erijon/Muhpor Obscured k013 35.920640 -113.917621 100+ Junost Obscured k015 35.909009 -113.929635 100+ Pinmon-Junost/Aripur Limestone k019 35.920913 -113.938472 100+ Colram-mixed shrub Limestone s2 36.540992 -113.742610 25–100 Yucbre/Colram Sandstone s02 36.559245 -113.766156 100+ Colram/Brorub Sandstone s03 36.512562 -113.662818 100+ Encvir-Gutsar/Brorub Sandstone s04 36.498327 -113.660634 100+ Pinmon-Junost/Gutsar Sandstone s05 36.479740 -113.674438 100+ Arttri Limestone s06 36.456590 -113.787906 100+ Gutsar-Erijon/Brorub Limestone s07 36.454586 -113.787440 25–100 Colram-Gutsar Limestone t002 35.910921 -113.975536 100+ Colram-Gutsar Limestone t004 35.902869 -113.976065 200+ Yucbac-Nolmic-Gutsar Sandstone Thirty new localities for Eriogonum jonesii. -
LANDFIRE Biophysical Setting Model Biophysical Setting 1510910 Sonoran Mid-Elevation Desert Scrub
LANDFIRE Biophysical Setting Model Biophysical Setting 1510910 Sonoran Mid-Elevation Desert Scrub This BPS is lumped with: This BPS is split into multiple models: General Information Contributors (also see the Comments field) Date 10/18/2005 Modeler 1 Mike Babler [email protected] Reviewer Modeler 2 Keith Schulz keith_schulz@natureserve Reviewer .org Modeler 3 Reviewer Vegetation Type Dominant Species Map Zone Model Zone EFRA2 Upland Shrubland 15 Alaska Northern Plains ERLI6 California N-Cent.Rockies General Model Sources ISTE2 Great Basin Pacific Northwest Literature CAHO3 Great Lakes South Central Local Data GUTIE Hawaii Southeast Expert Estimate SICH Northeast S. Appalachians LATR2 Southwest Geographic Range The northern edge of the Sonoran Desert in an elevational band along the lower slopes of the Mogollon Rim/Central Highlands region. Also in the Bradshaw, Hualapai and Superstition mountains. Biophysical Site Description Between 750-1300m. Sites range from a narrow strip on steep slopes to very broad areas such as the Verde Valley. Climate is too dry for chaparral species to be abundant, and freezing temperatures during winter are too frequent and prolonged for many of the frost-sensitive species that are characteristic of Sonoran Paloverde-Mixed Cacti Desert Scrub. Substrates are generally rocky soils derived from parent materials such as limestone, granitic rocks or rhyolite. Vegetation Description The vegetation is typically composed of an open shrub layer of Larrea tridentata, Ericameria linearifolia or Eriogonum fasciculatum with taller shrub such as Canotia holacantha (limestone or granite) or Simmondsia chinensis (rhyolite). The herbaceous layer is generally sparse. Disturbance Description Fire is unusual in this BpS. Adjacency or Identification Concerns Above Sonoran Paloverde-Mixed Cacti Desert Scrub (CES302.761) and below Mogollon Chaparral (CES302.741) in elevation. -
A Visitor's Guide to El Camino Del Diablo Leg 2A: Darby Well Road to Tule Well
Cabeza Prieta Natural History Association A Visitor's Guide to El Camino del Diablo Leg 2a: Darby Well Road to Tule Well "You can't see anything from a car; you've got to get out of the ... contraption and walk, better yet crawl, on hands and knees, over sandstone and through the thornbush and cactus. When traces of blood begin to mark your trail you'll see something, maybe." Ed Abbey, Desert Solitaire Mile 0.0. 32° 21’21.5”N, 112° 49’37.5”W. Key Junction. Hwy 85 at Darby Well Road to Bates Well. Take a moment here to double check that your gas gauge reads "full," your tires have air, and the ice chest is stowed for a bumpy ride. No services from here to Yuma; 130 miles of bad road lie ahead. Reset odometer. Make sure that you have your Cabeza Prieta range permit from https://luke.isportsman.net and that you check in by phone with Goldwater-West to give them your permit number or use the website http://www.rangeaccess.com/RangeAccess.aspx. The Goldwater number is on the back of your permit, but Darby Well Road may be your last reliable phone connection. Black Mountain (3,008 feet), standing to left of the road ahead, is an eroded remnant of a basaltic volcano that once covered a much larger area. The horizontal banding is due to differences in hardness between the basalt flows and softer tuffs that have been tilted and faulted. The brown- black color tinged with red is typical oxidation and weathering for such rocks. -
List of Approved Plants
APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var. -
Arizona's Wildlife Linkages Assessment
ARIZONAARIZONA’’SS WILDLIFEWILDLIFE LINKAGESLINKAGES ASSESSMENTASSESSMENT Workgroup Prepared by: The Arizona Wildlife Linkages ARIZONA’S WILDLIFE LINKAGES ASSESSMENT 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT Arizona’s Wildlife Linkages Assessment Prepared by: The Arizona Wildlife Linkages Workgroup Siobhan E. Nordhaugen, Arizona Department of Transportation, Natural Resources Management Group Evelyn Erlandsen, Arizona Game and Fish Department, Habitat Branch Paul Beier, Northern Arizona University, School of Forestry Bruce D. Eilerts, Arizona Department of Transportation, Natural Resources Management Group Ray Schweinsburg, Arizona Game and Fish Department, Research Branch Terry Brennan, USDA Forest Service, Tonto National Forest Ted Cordery, Bureau of Land Management Norris Dodd, Arizona Game and Fish Department, Research Branch Melissa Maiefski, Arizona Department of Transportation, Environmental Planning Group Janice Przybyl, The Sky Island Alliance Steve Thomas, Federal Highway Administration Kim Vacariu, The Wildlands Project Stuart Wells, US Fish and Wildlife Service 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT First Printing Date: December, 2006 Copyright © 2006 The Arizona Wildlife Linkages Workgroup Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written consent from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written consent of the copyright holder. Additional copies may be obtained by submitting a request to: The Arizona Wildlife Linkages Workgroup E-mail: [email protected] 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT The Arizona Wildlife Linkages Workgroup Mission Statement “To identify and promote wildlife habitat connectivity using a collaborative, science based effort to provide safe passage for people and wildlife” 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT Primary Contacts: Bruce D.