A Review of Paleozoic and Mesozoic Animal Sounds

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Paleozoic and Mesozoic Animal Sounds Historical Biology Vol. 20, No. 4, December 2008, 255–287 REVIEW Voices of the past: a review of Paleozoic and Mesozoic animal sounds Phil Senter* Department of Natural Sciences, Fayetteville State University, 1200 Murchison Road, Fayetteville, NC 28301, USA (Received 10 March 2009; final version received 6 May 2009) Here, I present a review and synthesis of fossil and neontological evidence to find major trends in the pre-Cenozoic evolution of animal acoustic behaviour. Anatomical, ecological and phylogenetic data support the following scenario. Stridulating insects, including crickets, performed the first terrestrial twilight choruses during the Triassic. The twilight chorus was joined by water boatmen in the Lower Jurassic, anurans in the Upper Jurassic, geckoes and birds in the Lower Cretaceous, and cicadas and crocodilians in the Upper Cretaceous. Parallel evolution of defensive stridulation took place multiple times within Malacostraca, Arachnida and Coleoptera. Parallel evolution of defensive and courtship-related sound production took place in Actinopterygii, possibly as early as the Devonian. Defensive vocalisations by tetrapods probably did not appear until their predators acquired tympanic ears in the Permian. Tympanic ears appeared independently in Diadectomorpha, Seymouriamorpha, Parareptilia, Diapsida and derived Synapsida. Crocodilians and birds acquired vocal organs independently, and there is no anatomical evidence for vocal ability in bird-line archosaurs basal to the avian clade Ornithothoraces. Acoustic displays by non-avian dinosaurs were therefore probably non-vocal. Other aspects of the evolution of acoustic behaviour in these and other lineages are also discussed. Keywords: acoustic behaviour; vocalisation; hearing; Crustacea; Insecta; Orthoptera; Coleoptera; Hemiptera; Crocodylia; Aves; Mammalia Introduction far, most paleobioacoustical research has been concen- The fossil record does not include audio recordings. As a trated on the study of the evolution of hearing in tetrapod result, few researchers lose sleep over such questions as vertebrates (e.g. Reisz 1981; Allin 1986; Wu 1994; Clack whether Triceratops heard crickets chirping in the evening, and Allin 2004; Vater et al. 2004) and the evolution of whether Mesozoic treetops resounded with birdsong or sound production in the insect orders Orthoptera and Hemiptera (e.g. Sweet 1996; Rust et al. 1999; Be´thoux and frogsong, or whether the immense corpses of sauropods Nel 2002; Gorochov and Rasnitsyn 2002). However, many were surrounded by the buzzing of bottle flies. Questions other paleobioacoustical issues can be addressed with such as these seem silly at first but are nevertheless available data from fossil and neontological evidence. For worthwhile to ask for three reasons: (1) inferable acoustic example, the first appearances of fossils of sound- details must be included if the paleontologist is to producing taxa can be used to constrain the times of accomplish one of paleontology’s main goals: the origin of their characteristic sounds. Also, knowledge of reconstruction of the ancient world in as much detail as directional selection on extant animal sounds can be used possible, (2) acoustic signals are of great importance to to infer characteristics of the sounds produced by their Downloaded By: [Canadian Research Knowledge Network] At: 16:50 18 September 2009 many animals, so the reconstruction of the lifestyles of ancestors. In addition, because the functions of animal ancient organisms must take acoustic signals into sounds depend on their reception by the intended consideration, and (3) many studies have addressed recipients, information on the evolution of hearing can whether or not extinct animals could hear (e.g. Reisz be used to constrain the times of origin of certain animal 1981; Wu 1994; Clack and Allin 2004), so it is reasonable sounds. For example, one can reasonably infer that certain to ask what they heard. courtship sounds, territorial sounds and other sounds Bioacoustics, the study of animal sound production directed at conspecifics were absent in taxa that lacked and reception, is a rich field with much to offer the appropriate sensory structures. Similarly, one can also paleontologist for application to the study of sound reasonably infer that certain anti-predator sounds were production and reception in fossil animals. Such absent before the appearance of predators with appropriate application could aptly be called paleobioacoustics. Thus sensory structures. Much information pertinent to the *Email: [email protected] ISSN 0891-2963 print/ISSN 1029-2381 online q 2008 Taylor & Francis DOI: 10.1080/08912960903033327 http://www.informaworld.com 256 P. Senter reconstruction of ancient acoustic behaviour has been published, but before now no attempt has been made to pool available information to illuminate broad trends in such behaviour across large geologic time spans. Here, I present a review of the available literature so as to perform such a synthesis for the Paleozoic and Mesozoic Eras. Major themes in the evolution of aerial sound production and reception Sound reception Most invertebrates are aquatic, and several lineages have independently evolved sense organs that perceive water displacement (Budelmann 1992a,b; Coffin et al. 2004). However, it is difficult to say whether most possess a true sense of hearing, both because the definition of ‘hearing’ varies among researchers and because in aquatic environ- ments the distinctions between sound, vibration and water flow are blurred (Budelmann 1992b). In any case, among extant invertebrates acoustic communication is unknown outside Arthropoda, and there is no reason to believe that the case was different among extinct invertebrates. Airborne sound reception is typically accomplished with tympanic ears. In such ears airborne sounds cause vibrations in a thin membrane, the tympanum (Figure 1), internal to which is an air-filled chamber; mechanoreceptors that are linked to the tympanum detect its movement in response to sounds (Wever 1978; Yager 1999; Kardong 2006). Among insects, tympanic ears have appeared independently in Cicadidae (cicadas), Corixidae (water boatmen), Tachinidae (tachinid flies), Sarcophagidae (flesh flies), Neuroptera (lacewings), Mantodea (mantises), Cicindelidae (tiger beetles), Scarabaeidae (scarab beetles), and several times within Orthoptera (crickets and grasshoppers) and Lepidoptera (moths and butterflies) (Yager 1999; Flook et al. 2000; Robert and Hoy 2000; Cˇ okl et al. 2006) (Figure 2). Tympanic ears in cicadas, water boatmen and crickets are associated with intraspecific acoustic communication Downloaded By: [Canadian Research Knowledge Network] At: 16:50 18 September 2009 (Bailey 1991; Gerhardt and Huber 2002; Cˇ okl et al. 2006). Those of tachinid and flesh flies are used to find their cricket hosts when the latter stridulate (Yager 1999; Robert and Hoy 2000). The tympanic ears of lepidopterans, lacewings, mantises, beetles and grasshoppers are tuned to frequencies Figure 1. Sound production (A–D) and reception (E–H) produced by echolocating bats (Mammalia: Chiroptera), the devices of extant animals. (A) Left cheliped of male ghost crab sounds of which stimulate evasive behaviours in these (Ocypode quadrata), ventral view, showing sound-producing stridulatory structures. (B) Male cicada (Pomponia intermedia) insects (Bailey 1991; Yager 1999; Flook et al. 2000). Such with wings and operculum (exoskeletal covering of tymbal) ears are an evolutionary response to predation by bats removed to show sound-producing tymbal. (C) Sagittally (Bailey 1991; Flook et al. 2000) and, like bats, were sectioned larynx of late-term fetal pig (Sus scrofa) in medial therefore absent before the Cenozoic. Courtship sounds of view, showing sound-producing laryngeal vocal cord and grasshoppers and lepidopterans are secondary and appeared laryngeal cartilages mentioned in text, with edges of airway outlined with broken line. (D) Female katydid (Siliquofera after the advent of tympanic hearing in those taxa (Yager grandis), showing tibial tympanum for reception of airborne 1999), and were therefore absent before the Cenozoic. sound. (E) Head of toad (Bufo americanus), left dorsolateral In addition to receptors attuned to frequencies used in view, showing tympanum for reception of airborne sound. (F) intraspecific communication, some cricket ears also have a Skull of turtle (Trachemys scripta), showing posterior skull Historical Biology 257 Figure 2. Phylogeny of insect orders, after Grimaldi and Engel (2005) showing distribution of sound production and tympanic ears (Dumortier 1963b; Aiken 1985; Yager 1999; Virant-Doberlet and Cˇ okl 2004; Drosopoulos and Claridge 2006). Large symbols indicate wide taxonomic distribution within an order, and small symbols indicate limited taxonomic distribution. Filled circles and squares indicate occurrence within a family or families with known pre-Cenozoic fossil records. A, expulsion of air through spiracles; B, loud flight buzzing; P, percussion of body parts against substrate; S, stridulation; T, tymbals; t, tympanic ears; W, wing fluttering. Downloaded By: [Canadian Research Knowledge Network] At: 16:50 18 September 2009 small number of acoustic receptors for much higher In tetrapod vertebrates with tympanic ears, a bony frequencies produced by echolocating bats (Imaizumi and connection transmits vibrations from the tympanum to the Pollack 1999) (Figure 3), a secondary innovation that inner ear, where resulting fluid vibrations stimulate presumably
Recommended publications
  • Marino-Perez Et Al Layout 1
    Vestnik zoologii, 45(5): e-13—e-19, 2011 Ýêîëîãèÿ DOI 10.2478/v10058-011-0027-0 UDC 593.176 MORPHOMETRIC VARIATIONS OF DISCOPHRYA ELONGATA (CILIOPHORA, SUCTOREA) ATTACHED TO TWO DIFFERENT SPECIES OF AQUATIC TRUE BUGS (HEMIPTERA, PROSORRHYNCHA, NEPOMORPHA) R. Mariño-Pérez1, R. Mayén-Estrada1, R. Macip-Ríos2, I. V. Dovgal3 1 Laboratorio de Protozoología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México 2 Laboratorio de Herpetología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México 3 Schmalhausen Institute of Zoology, B. Chmielnicky str., 15, Kyiv, 01601 Ukraine E-mail: [email protected] Received 27 January 2011 Accepted 30 March 2011 Morphometric Variations of Discophrya elongata (Ciliophora, Suctorea) Attached to Two Different Species of Aquatic True Bugs (Hemiptera, Prosorrhyncha, Nepomorpha). Mariño-Pérez R., Mayén-Estrada R., Macip-Ríos R., Dovgal I. V. – Morphometric variation in Discophrya elongata living as epibionts of two species of aquatic true bugs, Corisella edulis and Notonecta unifasciata, collected from the same pond in Mexico are discussed. Factors that may be responsible for observed variability, especially hydrodynam- ic loads and long-term modifications, also are identified and discussed. Key words: Discophrya elongata, suctorian, variability, host, hydrodynamic loads, long-term modifi- cations. Èçìåí÷èâîñòü Discophrya elongata (Ciliophora, Suctorea) ïðè ïîñåëåíèè íà äâóõ ðàçíûõ âèäàõ âîäíûõ êëîïîâ (Hemiptera, Prosorrhyncha, Nepomorpha). Ìàðèíî-Ïåðåñ Ð., Ìàéåí-Ýñòðàäà Ð., Ìàcèï-Ðèîñ Ð., Äîâãàëü È. Â. –  ñòàòüå îáñóæäàåòñÿ èçìåí÷èâîñòü ðàçìåðíûõ õàðàêòåðèñòèê ïîëèìîðôíîãî âèäà ñóêòîðèé Discophrya elongata ïðè ïîñåëåíèè íà äâóõ âèäàõ âîäíûõ êëîïîâ Corisella edulis è Notonecta unifasciata èç îäíîãî ìåñòîîáèòàíèÿ – ïðóäà â Ìåêñèêå.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • Hug the Bug. for Love of True Bugs. Festschrift Zum 70. Geburtstag Von
    HUG THE Bug For love of True Bugs Festschrift zum 70. Geburtstag von Ernst Heiss Wissenschaftliche Redaktion: W. RABITSCH Impressum Kataloge der Oberösterreichischen Landesmuseen N. S. 50 Katalog / Publication: Denisia 19 ISSN 1608-8700 Zugleich Kataloge der Oberösterreichischen Landesmuseen, N.S. 50 ISBN-10: 3-85474-161-8/ ISBN-13: 978-3-85474-161-9 Erscheinungsdatum / Date of delivery: 12. Oktober 2006 Medieninhaber und Herausgeber / Copyright: Land Oberösterrreich, Biologiezentrum der Oberösterreichische Landesmuseen, J.-W.-Klein-Str. 73, 4040 Linz, Austria Url: http://www.biologiezentrum.at E-Mail: [email protected] Wissenschaftliche Redaktion / Scientific editor: Dr. Wolfgang Rabitsch Redaktionelle Betreuung / Editorial assistance: Fritz Gusenleitner Layout, Druckorganisation / Layout, printing organisation: Eva Rührnößl Umschlag-, Plakatgestaltung / Cover, placard: Eva Rührnößl Druck / Printing: Plöchl-Druck, Werndlstraße 2, 4240 Freistadt, Austria Bestellung / Ordering: http://www.biologiezentrum.at/biowww/de/biblio/index.html oder / or [email protected] Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der en- gen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Medieninhabers unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen sowie die Einspeicherung und Verarbeitung in elektronischen Systemen. Für den Inhalt der Abhandlungen sind die Verfasser verant- wortlich. Schriftentausch erwünscht! All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any me- ans without prior permission from the publisher. We are interested on an exchange of publications. Umschlagfoto / Cover: Feuerwanze / Firebug Pyrrhocoris apterus (LINNAEUS 1758). Photo: W. Rabitsch, Layout: E. Rührnößl. Zitiervorschlag für das Buch / The complete book may be referenced as follows: RABITSCH W. (Ed.
    [Show full text]
  • The Ear in Mammal-Like Reptiles and Early Mammals
    Acta Palaeontologica Polonica Vol. 28, No. 1-2 pp, 147-158 Warszawa, 1983 Second Symposium on Mesozoic T erre stial Ecosystems, Jadwisin 1981 KENNETH A. KERMACK and FRANCES MUSSETT THE EAR IN MAMMAL-LIKE REPTILES AND EARLY MAMMALS KERMACK, K . A. a nd MUSS ETT, F.: The ear in mammal-like r eptiles an d early mammals. Acta Palaeont. P olonica , 28, 1-2, 147-158, 1983. Th e early m embers of the Theropsida lacked a tympanic membrane. In the later theropslds, the Therapsid a, a tym p an ic membrane develop ed from thc skin on the lateral side of th e lower jaw. The tympanum is not homologous In the Therapsida and ' t he Sauropslda. The ther apsid ea r w as a poor receiver of airborne sound, both In hi gh frequency r esp onse and In the r ange of frequencies encompassed. With the radiation of the Sauropsida in the Triassic the large therapsids became extinct, the small therap si ds evolv ed In to the mammal s and became nocturnal. High frequency hearin g w as essen tial for the nocturn al mode of life; quadrate and arttcutar became diss ociated from the jaw hinge to become the m ammali an au di tory ossi cles . I n the Theria the cochlea became coil ed. The spiral cochlea could n ot have existed until there w as a middle ear w ith the n ec essary h ig h f re q uency r esp onse. This m ay n ot have been until the Cretace ous.
    [Show full text]
  • Noise Annoys Not Mouriamorphs Filled a Niche THESE Days, Our Ears Are Too Sensitive for That Made Their Preserva­ Their Own Good
    NEWS AND VIEWS DAEDALUS--------~ An orthodox interpret­ ation might be that sey­ Noise annoys not mouriamorphs filled a niche THESE days, our ears are too sensitive for that made their preserva­ their own good. Primitive tribes, with only tion unlikely until the begin­ natural sounds to listen to, retain their ning of the acute hearing into late age. Modern Permian, at which point civilization, however, batters our ears into taphonomic circumstances early deafness. They have a natural changed and they were protection mechanism, but it badly needs suddenly abundantly pre­ upgrading. served, both in Euramerica It uses two tiny muscles, the tensor and in those plates newly tympani and the stapedius, which reduce accreting to Euramerica in the ear's sensitivity by stiffening the the Lower Permian. How­ joints of its transmission bones. They are ever, with tetrapods also tensed automatically by loud noise. They FIG. 2 Discosauriscus, a small, probably larval seymouri­ diversifying in East Gond­ worked well in prehistoric times, when amorph from the Lower Permian of the Czech Republic. Cal­ wana in the Early Carbonif­ most noises built up slowly. But they ibrated scale bar, 5 cm. (Science Museum of Minnesota; erous, it is equally possible photograph by A. M.) cannot react fast enough to modern that seymouriamorphs first bangs and crashes, and sustained uproar apparently centred on equatorial appeared there and, instead of spreading fatigues them. Daedalus wants to warn Euramerica, was largely a process of westwards, spread or hopped north across them of noise in advance. ecological niche-hopping within a s ingle the chain of North China, Tarim and A sound wave launched upwards into continent.
    [Show full text]
  • Hemiptera: Heteroptera: Pentatomoidea
    VIVIANA CAUDURO MATESCO SISTEMÁTICA DE THYREOCORIDAE AMYOT & SERVILLE (HEMIPTERA: HETEROPTERA: PENTATOMOIDEA): REVISÃO DE ALKINDUS DISTANT, MORFOLOGIA DO OVO DE DUAS ESPÉCIES DE GALGUPHA AMYOT & SERVILLE E ANÁLISE CLADÍSTICA DE CORIMELAENA WHITE, COM CONSIDERAÇÕES SOBRE A FILOGENIA DE THYREOCORIDAE, E MORFOLOGIA DO OVO DE 16 ESPÉCIES DE PENTATOMIDAE COMO EXEMPLO DO USO DE CARACTERES DE IMATUROS EM FILOGENIAS Tese apresentada ao Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do Título de Doutor em Biologia Animal. Área de concentração: Biologia Comparada Orientadora: Profa. Dra. Jocelia Grazia Co-Orientador: Prof. Dr. Cristiano F. Schwertner UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE 2014 “Sistemática de Thyreocoridae Amyot & Serville (Hemiptera: Heteroptera: Pentatomoidea): revisão de Alkindus Distant, morfologia do ovo de duas espécies de Galgupha Amyot & Serville e análise cladística de Corimelaena White, com considerações sobre a filogenia de Thyreocoridae, e morfologia do ovo de 16 espécies de Pentatomidae como exemplo de uso de caracteres de imaturos em filogenias” VIVIANA CAUDURO MATESCO Tese apresentada como parte dos requisitos para obtenção de grau de Doutor em Biologia Animal, área de concentração Biologia Comparada. ________________________________________ Prof. Dr. Augusto Ferrari (UFRGS) ________________________________________ Dra. Caroline Greve (CNPq ex-bolsista PDJ) ________________________________________ Prof. Dr. Cláudio José Barros de Carvalho (UFPR) ________________________________________ Profa. Dra. Jocelia Grazia (Orientadora) Porto Alegre, 05 de fevereiro de 2014. AGRADECIMENTOS À minha orientadora, Profa. Dra. Jocelia Grazia, pelos ensinamentos e por todas as oportunidades que me deu durante os treze anos em que estive no Laboratório de Entomologia Sistemática. Ao meu co-orientador, Prof.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • A Stable Phylogenomic Classification of Travunioidea (Arachnida, Opiliones, Laniatores) Based on Sequence Capture of Ultraconserved Elements
    A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Derkarabetian, Shahan, James Starrett, Nobuo Tsurusaki, Darrell Ubick, Stephanie Castillo, and Marshal Hedin. 2018. “A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.” ZooKeys (760): 1-36. doi:10.3897/zookeys.760.24937. http://dx.doi.org/10.3897/zookeys.760.24937. Published Version doi:10.3897/zookeys.760.24937 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298544 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A peer-reviewed open-access journal ZooKeys 760: 1–36 (2018) A stable phylogenomic classification of Travunioidea... 1 doi: 10.3897/zookeys.760.24937 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements Shahan Derkarabetian1,2,7 , James Starrett3, Nobuo Tsurusaki4, Darrell Ubick5, Stephanie Castillo6, Marshal Hedin1 1 Department of Biology, San Diego State University, San
    [Show full text]
  • Origin and Phylogenetic Relationships of Living Amphibians
    Points of View Syst. Biol. 51(2):364–369, 2002 Tetrapod Phylogeny, Amphibian Origins, and the Denition of the Name Tetrapoda MICHEL LAURIN Equip´ e “Formations squelettiques” UMR CNRS 8570, Case 7077, Universite´ Paris 7, 75005 Paris, France; E-mail: [email protected] The most detailed, computer-generated Ahlberg and Milner, 1994) or did not include phylogeny of early amphibians has been amphibians (Gauthier et al., 1988), thus published recently (Anderson, 2001). The precluding identication of the dichotomy study was based on an analysis of 182 os- between amphibians and reptiliomorphs teological characters and 49 taxa, including (the clade that includes amniotes and the 41 “lepospondyls,” 7 other Paleozoic taxa extinct taxa that are more closely related representing other major groups (seymouri- to amniotes than to lissamphibians). The amorphs, embolomeres, temnospondyls, latest phylogeny (Anderson, 2001) suggests Downloaded By: [University of Tennessee] At: 00:39 18 January 2008 etc.), and a single lissamphibian (the oldest that despite initial skepticism (Coates et al., known apodan, the Jurassic taxon Eocae- 2000), the new pattern of stegocephalian cilia). The publication of this phylogeny is relationships appears to be well supported welcome, but several points raised in that and relatively stable, at least as it pertains to paper deserve to be discussed further. Espe- the relationships between major taxa such cially problematic are the views Anderson as Temnospondyli, Embolomeri, Seymouri- expressed about the polyphyletic origin of amorpha, Amniota, and the paraphyletic extant amphibians and about the application group informally called lepospondyls of phylogenetic nomenclature. (Figs. 1a, 1b). TETRAPOD PHYLOGENY Anderson (2001) found that the lep- Origin of Extant Amphibians ospondyls are more closely related to This brings us to the more difcult ques- amniotes than to seymouriamorphs and em- tion of amphibian origins.
    [Show full text]
  • The Skull O Neurocranium, Form and Function O Dermatocranium, Form
    Lesson 15 ◊ Lesson Outline: ♦ The Skull o Neurocranium, Form and Function o Dermatocranium, Form and Function o Splanchnocranium, Form and Function • Evolution and Design of Jaws • Fate of the Splanchnocranium ♦ Trends ◊ Objectives: At the end of this lesson, you should be able to: ♦ Describe the structure and function of the neurocranium ♦ Describe the structure and function of the dermatocranium ♦ Describe the origin of the splanchnocranium and discuss the various structures that have evolved from it. ♦ Describe the structure and function of the various structures that have been derived from the splanchnocranium ♦ Discuss various types of jaw suspension and the significance of the differences in each type ◊ References: ♦ Chapter: 9: 162-198 ◊ Reading for Next Lesson: ♦ Chapter: 9: 162-198 The Skull: From an anatomical perspective, the skull is composed of three parts based on the origins of the various components that make up the final product. These are the: Neurocranium (Chondocranium) Dermatocranium Splanchnocranium Each part is distinguished by its ontogenetic and phylogenetic origins although all three work together to produce the skull. The first two are considered part of the Cranial Skeleton. The latter is considered as a separate Visceral Skeleton in our textbook. Many other morphologists include the visceral skeleton as part of the cranial skeleton. This is a complex group of elements that are derived from the ancestral skeleton of the branchial arches and that ultimately gives rise to the jaws and the skeleton of the gill
    [Show full text]
  • Anatomically Modern Carboniferous Harvestmen Demonstrate Early Cladogenesis and Stasis in Opiliones
    ARTICLE Received 14 Feb 2011 | Accepted 27 Jul 2011 | Published 23 Aug 2011 DOI: 10.1038/ncomms1458 Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones Russell J. Garwood1, Jason A. Dunlop2, Gonzalo Giribet3 & Mark D. Sutton1 Harvestmen, the third most-diverse arachnid order, are an ancient group found on all continental landmasses, except Antarctica. However, a terrestrial mode of life and leathery, poorly mineralized exoskeleton makes preservation unlikely, and their fossil record is limited. The few Palaeozoic species discovered to date appear surprisingly modern, but are too poorly preserved to allow unequivocal taxonomic placement. Here, we use high-resolution X-ray micro-tomography to describe two new harvestmen from the Carboniferous (~305 Myr) of France. The resulting computer models allow the first phylogenetic analysis of any Palaeozoic Opiliones, explicitly resolving both specimens as members of different extant lineages, and providing corroboration for molecular estimates of an early Palaeozoic radiation within the order. Furthermore, remarkable similarities between these fossils and extant harvestmen implies extensive morphological stasis in the order. Compared with other arachnids—and terrestrial arthropods generally—harvestmen are amongst the first groups to evolve fully modern body plans. 1 Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK. 2 Museum für Naturkunde at the Humboldt University Berlin, D-10115 Berlin, Germany. 3 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. Correspondence and requests for materials should be addressed to R.J.G. (email: [email protected]) and for phylogenetic analysis, G.G. (email: [email protected]).
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE AMY C. HENRICI Collection Manager Section of Vertebrate Paleontology Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh, Pennsylvania 15213-4080, USA Phone:(412)622-1915 Email: [email protected] BACKGROUND Birthdate: 24 September 1957. Birthplace: Pittsburgh. Citizenship: USA. EDUCATION B.A. 1979, Hiram College, Ohio (Biology) M.S. 1989, University of Pittsburgh, Pennsylvania (Geology) CAREER Carnegie Museum of Natural History (CMNH) Laboratory Technician, Section of Vertebrate Paleontology, 1979 Research Assistant, Section of Vertebrate Paleontology, 1980 Curatorial Assistant, Section of Vertebrate Paleontology, 1980-1984 Scientific Preparator, Section of Paleobotany, 1985-1986 Scientific Preparator, Section of Vertebrate Paleontology, 1985-2002 Acting Collection Manager/Scientific Preparator, 2003-2004 Collection Manager, 2005-present PALEONTOLOGICAL FIELD EXPERIENCE Late Pennsylvanian through Early Permian of Colorado, New Mexico and Utah (fish, amphibians and reptiles) Early Permian of Germany, Bromacker quarry (amphibians and reptiles) Triassic of New Mexico, Coelophysis quarry (Coelophysis and other reptiles) Upper Jurassic of Colorado (mammals and herps) Tertiary of Montana, Nevada, and Wyoming (mammals and herps) Pleistocene of West Virginia (mammals and herps) Lake sediment cores and lake sediment surface samples, Wyoming (pollen and seeds) PROFESSIONAL APPOINTMENTS Associate Editor, Society of Vertebrate Paleontology, 1998-2000. Research Associate in the Science Division, New Mexico Museum of Natural History and Science, 2007-present. PROFESSIONAL ASSOCIATIONS Society of Vertebrate Paleontology Paleontological Society LECTURES and TUTORIALS (Invited and public) 1994. Middle Eocene frogs from central Wyoming: ontogeny and taphonomy. California State University, San Bernardino 1994. Mechanical preparation of vertebrate fossils. California State University, San Bernardino 1994. Mechanical preparation of vertebrate fossils. University of Chicago 2001.
    [Show full text]