Drivers and Uncertainties of Future Global Marine Primary Production in Marine Ecosystem Models

Total Page:16

File Type:pdf, Size:1020Kb

Drivers and Uncertainties of Future Global Marine Primary Production in Marine Ecosystem Models Biogeosciences, 12, 6955–6984, 2015 www.biogeosciences.net/12/6955/2015/ doi:10.5194/bg-12-6955-2015 © Author(s) 2015. CC Attribution 3.0 License. Drivers and uncertainties of future global marine primary production in marine ecosystem models C. Laufkötter1,16, M. Vogt1, N. Gruber1, M. Aita-Noguchi7, O. Aumont2, L. Bopp3, E. Buitenhuis4, S. C. Doney5, J. Dunne6, T. Hashioka7, J. Hauck8, T. Hirata9, J. John6, C. Le Quéré14, I. D. Lima5, H. Nakano13, R. Seferian15, I. Totterdell10, M. Vichi11,12, and C. Völker8 1Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland 2Laboratoire de Physique des Oceans, Centre IRD de Bretagne, Plouzane, France 3Laboratoire des sciences du climat et de l’Environnement (LSCE), IPSL, CEA-UVSQ-CNRS,UMR8212, Gif-sur-Yvette, France 4Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK 5Woods Hole Oceanographic Institution, Department of Marine Chemistry & Geochemistry, Woods Hole MA, USA 6NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA 7Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan 8Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 9Faculty of Environmental Earth Science, Hokkaido University, Japan 10Met Office, Exeter, UK 11Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy 12Department of Oceanography, University of Cape Town (UCT), South Africa 13Meteorological Research Institute, Tsukuba, Ibaraki, Japan 14Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK 15CNRM-GAME, Centre National de Recherche Météorologique, Groupe d’Étude de l’Atmosphère Météorologique, Météo-France/CNRS, 42 Avenue Gaspard Coriolis, 31100 Toulouse, France 16NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey, USA Correspondence to: C. Laufkötter ([email protected]) Received: 19 December 2014 – Published in Biogeosciences Discuss.: 27 February 2015 Revised: 24 September 2015 – Accepted: 22 October 2015 – Published: 7 December 2015 Abstract. Past model studies have projected a global de- between −25 and C40 %. Of the seven models diagnosing a crease in marine net primary production (NPP) over the 21st net decrease in NPP in the low latitudes, only three simulate century, but these studies focused on the multi-model mean this to be a consequence of the classical interpretation, i.e., rather than on the large inter-model differences. Here, we a stronger nutrient limitation due to increased stratification analyze model-simulated changes in NPP for the 21st cen- leading to reduced phytoplankton growth. In the other four, tury under IPCC’s high-emission scenario RCP8.5. We use warming-induced increases in phytoplankton growth outbal- a suite of nine coupled carbon–climate Earth system models ance the stronger nutrient limitation. However, temperature- with embedded marine ecosystem models and focus on the driven increases in grazing and other loss processes cause spread between the different models and the underlying rea- a net decrease in phytoplankton biomass and reduce NPP sons. Globally, NPP decreases in five out of the nine models despite higher growth rates. One model projects a strong over the course of the 21st century, while three show no sig- increase in NPP in the low latitudes, caused by an inten- nificant trend and one even simulates an increase. The largest sification of the microbial loop, while NPP in the remain- model spread occurs in the low latitudes (between 30◦ S and ing model changes by less than 0.5 %. While models con- 30◦ N), with individual models simulating relative changes sistently project increases NPP in the Southern Ocean, the Published by Copernicus Publications on behalf of the European Geosciences Union. 6956 C. Laufkötter et al.: Drivers of future marine primary production regional inter-model range is also very substantial. In most The past century provides very little experimental con- models, this increase in NPP is driven by temperature, but straint on the impact of long-term climate change on ma- it is also modulated by changes in light, macronutrients and rine productivity, largely because of the lack of long-term iron as well as grazing. Overall, current projections of future (> 50 years) observations. Using a combination of in situ ob- changes in global marine NPP are subject to large uncertain- servations of chlorophyll and of ocean transparency, Boyce ties and necessitate a dedicated and sustained effort to im- et al.(2010) suggested a substantial decrease in phytoplank- prove the models and the concepts and data that guide their ton biomass over the last 50 years, implying a very strong development. response of phytoplankton to ocean warming. This result has been met with a lot of scepticism (e.g., Rykaczewski and Dunne, 2011), especially because an independent assess- ment of long-term trends in ocean color by Wernand et al. 1 Introduction (2013) implied no overall global trend. Smaller decreases in NPP (−6 % over 50 years) were suggested by a hindcast By producing organic matter, marine phytoplankton form the simulation, where a marine ecosystem model coupled to an base of the marine food web, control the amount of food ocean general circulation model was forced with observed available for higher trophic levels, and drive the majority atmospheric variability and changes over the last 50 years of the ocean’s biogeochemical cycles, particularly that of (Laufkötter et al., 2013). The satellite observations since late carbon. The net formation rate of organic carbon by phy- 1997 suggest a negative correlation between sea surface tem- toplankton, i.e., net primary production (NPP), is a key de- perature and NPP (Behrenfeld et al., 2006), but the observa- terminant for the export of organic carbon from the surface tion period is clearly too short to distinguish natural fluctu- ocean, thereby governing how ocean biology impacts the ations from an anthropogenically driven trend in global ma- ocean–atmosphere exchange of CO2 (Falkowski et al., 2003; rine NPP (Henson et al., 2011; Antoine et al., 2005; Gregg, Sarmiento and Gruber, 2006). Accurate projections of future 2003). patterns of NPP may be crucial not only to estimate the po- Far less work has been done regarding future trends in the tential impacts of climate change on marine ecosystems and biomass of specific plankton functional types (PFTs), despite fishery yields but also to properly assess the evolution of the their importance in shaping ecosystem structure and function ocean carbon sink under anthropogenic climate change. (Le Quéré et al., 2005). Experiments have revealed a nega- Several authors have analyzed trends in future NPP and the tive relationship between warmer waters and phytoplankton underlying drivers, using models of strongly varying com- cell size, suggesting that future warming may tend to favor plexity and spatial resolution with regard to both the physical small phytoplankton (Morán et al., 2010). Moreover, using and the ecosystem components and also investigating differ- year-to-year variability associated with the North Atlantic ent climate change scenarios. In the majority of these studies, Oscillation and the Southern Annular Mode, Alvain et al. global marine NPP was projected to decrease in response to (2013) found that more stagnant conditions and warmer tem- future climate change (Bopp et al., 2001; Boyd and Doney, peratures tend to disfavor diatoms, suggesting that diatoms 2002; Steinacher et al., 2010; Bopp et al., 2013; Marinov will become less prevalent in the future. The few model- et al., 2013; Cabré et al., 2014). The main mechanism sug- ing studies available support this view, i.e., they reported gested to explain this decrease in NPP was a decrease in the global decreases in the diatom fraction and a shift towards upward supply of nutrients in the low latitudes because of in- smaller size classes (Bopp et al., 2005; Marinov et al., 2010, creased vertical stratification (Bopp et al., 2001; Steinacher 2013; Dutkiewicz et al., 2013). In these models, this shift was et al., 2010) and reduced upwelling. Lower nutrient availabil- driven by increased nutrient limitation that affected diatoms ity then resulted in a decrease in phytoplankton growth and more strongly than small phytoplankton. therefore reduced NPP. While published studies emphasized the role of changes However, a few studies produced contradicting results, i.e., in bottom–up factors in explaining the changes in NPP, top– they reported increases in global NPP as climate change pro- down control by zooplankton grazing may also drive future gresses over the 21st century (Sarmiento et al., 2004; Schmit- changes in total NPP or phytoplankton composition. This tner et al., 2008). Taucher and Oschlies(2011) showed that mechanism is intriguing, since top–down control was re- in the case of the model used by Schmittner et al.(2008), the cently identified as one of the main drivers of phytoplank- simulated increase in NPP is caused by the warmer temper- ton competition during blooms in several ecosystem mod- atures enhancing phytoplankton growth and overcoming the els (Hashioka et al., 2013; Prowe et al., 2011). Further, top– suppression of their growth owing to stronger nutrient stress. down control affects the onset of the spring bloom (Behren- However, this result cannot be easily
Recommended publications
  • A New Type of Plankton Food Web Functioning in Coastal Waters Revealed by Coupling Monte Carlo Markov Chain Linear Inverse Metho
    A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, Aurélie Chaalali, Olivier Pringault, Asma Sakka Hlaili To cite this version: Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, et al.. A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis. Ecological Indicators, Elsevier, 2019, 104, pp.67-85. 10.1016/j.ecolind.2019.04.077. hal-02146355 HAL Id: hal-02146355 https://hal.archives-ouvertes.fr/hal-02146355 Submitted on 3 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 A new type of plankton food web functioning in coastal waters revealed by coupling 2 Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis 3 4 5 Marouan Meddeba,b*, Nathalie Niquilc, Boutheïna Gramia,d, Kaouther Mejria,b, Matilda 6 Haraldssonc, Aurélie Chaalalic,e,f, Olivier Pringaultg, Asma Sakka Hlailia,b 7 8 aUniversité de Carthage, Faculté des Sciences de Bizerte, Laboratoire de phytoplanctonologie 9 7021 Zarzouna, Bizerte, Tunisie.
    [Show full text]
  • 7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
    7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH).
    [Show full text]
  • Crustacean Zooplankton in Lake Constance from 1920 to 1995: Response to Eutrophication and Re-Oligotrophication
    Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53, p. 255-274, December 1998 Lake Constance, Characterization of an ecosystem in transition Crustacean zooplankton in Lake Constance from 1920 to 1995: Response to eutrophication and re-oligotrophication Dietmar Straile and Waiter Geller with 9 figures Abstract: During the first three quarters ofthis century, the trophic state ofLake Constance changed from oligotrophic to meso-/eutrophic conditions. The response ofcrustaceans to the eutrophication process is studied by comparing biomasses ofcrustacean zooplankton from recent years, i.e. from 1979-1995, with data from the early 1920s (AUERBACH et a1. 1924, 1926) and the 1950s (MUCKLE & MUCKLE­ ROTTENGATTER 1976). This comparison revealed a several-fold increase in crustacean biomass. The relative biomass increase was more pronounced from the early 1920s to the 1950s than from the 1950s to the 1980s. Most important changes ofthe species inventory included the invasion of Cyclops vicinus and Daphnia galeata and the extinction of Heterocope borealis and Diaphanosoma brachyurum during the 1950s and early 1960s. All species which did not become extinct increased their biomass during eutrophication. This increase in biomass differed between species and throughout the season which re­ sulted in changes in relative biomass between species. Daphnids were able to enlarge their seasonal window ofrelative dominance from 3 months during the 1920s (June to August) to 7 months during the 1980s (May to November). On an annual average, this resulted in a shift from a copepod dominated lake (biomass ratio cladocerans/copepods = 0.4 during 1920/24) to a cladoceran dominated lake (biomass ratio cladocerans/copepods = 1.5 during 1979/95).
    [Show full text]
  • Bacterial Production and Respiration
    Organic matter production % 0 Dissolved Particulate 5 > Organic Organic Matter Matter Heterotrophic Bacterial Grazing Growth ~1-10% of net organic DOM does not matter What happens to the 90-99% of sink, but can be production is physically exported to organic matter production that does deep sea not get exported as particles? transported Export •Labile DOC turnover over time scales of hours to days. •Semi-labile DOC turnover on time scales of weeks to months. •Refractory DOC cycles over on time scales ranging from decadal to multi- decadal…perhaps longer •So what consumes labile and semi-labile DOC? How much carbon passes through the microbial loop? Phytoplankton Heterotrophic bacteria ?? Dissolved organic Herbivores ?? matter Higher trophic levels Protozoa (zooplankton, fish, etc.) ?? • Very difficult to directly measure the flux of carbon from primary producers into the microbial loop. – The microbial loop is mostly run on labile (recently produced organic matter) - - very low concentrations (nM) turning over rapidly against a high background pool (µM). – Unclear exactly which types of organic compounds support bacterial growth. Bacterial Production •Step 1: Determine how much carbon is consumed by bacteria for production of new biomass. •Bacterial production (BP) is the rate that bacterial biomass is created. It represents the amount of Heterotrophic material that is transformed from a nonliving pool bacteria (DOC) to a living pool (bacterial biomass). •Mathematically P = µB ?? µ = specific growth rate (time-1) B = bacterial biomass (mg C L-1) P= bacterial production (mg C L-1 d-1) Dissolved organic •Note that µ = P/B matter •Thus, P has units of mg C L-1 d-1 Bacterial production provides one measurement of carbon flow into the microbial loop How doe we measure bacterial production? Production (∆ biomass/time) (mg C L-1 d-1) • 3H-thymidine • 3H or 14C-leucine Note: these are NOT direct measures of biomass production (i.e.
    [Show full text]
  • GLOBAL PRIMARY PRODUCTION and EVAPOTRANSPIRATION by Steven W
    15 GLOBAL PRIMARY PRODUCTION AND EVAPOTRANSPIRATION by Steven W. Running and Maosheng Zhao DATA PRODUCTS Moderate Resolution Imaging Spectroradiometer Terrestrial primary production provides the energy to (MODIS) sensor, these variables are calculated maintain the structure and functions of ecosystems, every eight days in near real time at 1 km resolution. and supplies goods (e.g. food, fuel, wood and fi bre) MODIS GPP, NPP and ET data are available at the for human society. Gross primary production (GPP) EOS data gateway (see link below). is the amount of carbon fi xed by photosynthesis, To correct for contamination in the global and net primary production (NPP) is the amount of refl ectance data due to severe cloudiness or aerosols carbon converted into biomass after subtracting in the near real time products, these datasets are the cost of plant respiration. The water loss through reprocessed at the end of each year to build more exchange of trace gas CO2 by leaf stomata during stable, permanent datasets. These end-of-year photosynthesis plus evaporation from soil and versions of MODIS GPP, NPP and ET are available at plants is evapotranspiration (ET). ET computes the NTSG, University of Montana (see link below). water lost by a land surface, so it is consequently a component of the water balance in a region, and RESULTS FOR 2000–2006 is therefore relevant for drought monitoring and Figure 1 shows the seven-year average MODIS water management, providing an assessment of NPP for vegetated land on earth at 1 km spatial the water potentially available for human society.
    [Show full text]
  • Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
    sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean.
    [Show full text]
  • Fertilizing the Ocean with Iron Is This a Viable Way to Help Reduce Carbon Dioxide Levels in the Atmosphere?
    380 Fertilizing the Ocean with Iron Is this a viable way to help reduce carbon dioxide levels in the atmosphere? 360 ive me half a tanker of iron, and I’ll give you an ice Twenty years on, Martin’s line is still viewed alternately age” may rank as the catchiest line ever uttered by a as a boast or a quip—an opportunity too good to pass up or a biogeochemist.“G The man responsible was the late John Martin, misguided remedy doomed to backfire. Yet over the same pe- former director of the Moss Landing Marine Laboratory, who riod, unrelenting increases in carbon emissions and mount- discovered that sprinkling iron dust in the right ocean waters ing evidence of climate change have taken the debate beyond could trigger plankton blooms the size of a small city. In turn, academic circles and into the free market. the billions of cells produced might absorb enough heat-trap- Today, policymakers, investors, economists, environ- ping carbon dioxide to cool the Earth’s warming atmosphere. mentalists, and lawyers are taking notice of the idea. A few Never mind that Martin companies are planning new, was only half serious when larger experiments. The ab- 340 he made the remark (in his Ocean Iron Fertilization sence of clear regulations for “best Dr. Strangelove accent,” either conducting experiments he later recalled) at an infor- An argument for: Faced with the huge at sea or trading the results mal seminar at Woods Hole consequences of climate change, iron’s in “carbon offset” markets Oceanographic Institution outsized ability to put carbon into the oceans complicates the picture.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • SSWIMS: Plankton
    Unit Six SSWIMS/Plankton Unit VI Science Standards with Integrative Marine Science-SSWIMS On the cutting edge… This program is brought to you by SSWIMS, a thematic, interdisciplinary teacher training program based on the California State Science Content Standards. SSWIMS is provided by the University of California Los Angeles in collaboration with the Los Angeles County school districts, including the Los Angeles Unified School District. SSWIMS is funded by a major grant from the National Science Foundation. Plankton Lesson Objectives: Students will be able to do the following: • Determine a basis for plankton classification • Differentiate between various plankton groups • Compare and contrast plankton adaptations for buoyancy Key concepts: phytoplankton, zooplankton, density, diatoms, dinoflagellates, holoplankton, meroplankton Plankton Introduction “Plankton” is from a Greek word for food chains. They are autotrophs, “wanderer.” It is a making their own food, using the collective term for process of photosynthesis. The the various animal plankton or zooplankton eat organisms that drift or food for energy. These swim weakly in the heterotrophs feed on the open water of the sea or microscopic freshwater lakes and ponds. These world of the weak swimmers, carried about by sea and currents, range in size from the transfer tiniest microscopic organisms to energy up much larger animals such as the food jellyfish. pyramid to fishes, marine mammals, and humans. Plankton can be divided into two large groups: planktonic plants and Scientists are interested in studying planktonic animals. The plant plankton, because they are the basis plankton or phytoplankton are the for food webs in both marine and producers of ocean and freshwater freshwater ecosystems.
    [Show full text]
  • Phytoplankton Primary Production and Its Utilization by the Pelagic Community in the Coastal Zone of the Gulf of Gdahsk (Southern Baltic)
    MARINE ECOLOGY PROGRESS SERIES Vol. 148: 169-186. 1997 Published March 20 Mar Ecol Prog Ser l Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdahsk (southern Baltic) Zbigniew Witekl-*,Stanislaw Ochockil, Modesta ~aciejowska~, Marianna Pastuszakl, Jan ~akonieczny',Beata podgorska2, Janina M. ~ownacka', Tomasz Mackiewiczl, Magdalena Wrzesinska-Kwiecieh' 'Sea Fisheries Institute, ul. Koltqtaja 1, 81-332 Gdynia, Poland 'Marine Biology Center, Polish Academy of Sciences, ul. SW. Wojciecha S,81-347 Gdynia, Poland ABSTRACT In th~sstudy we estimated the amount and fate of phytoplankton primary product~onin the coastal zone of the Gulf of Gdansk, Poland, an area exposed to nutnent enrichment from the Vis- tuld R~verand nearby inunlcipal agglomeration The ~nvestigat~onswere carned out at 2 sites dur~ng 5 months in 1993 (February, April, May, August and October). A prolonged bloom pei-iod occurred in the coastal zone, as compared to the open Gulf and the open sea waters. From Aprll until October most values of gross primary production in the near-surface layer were in the range 100 to 500 mgC m-'' d1 Phytoplankton net exudate release constituted on average 5% of the gross prlmai-y production, total exudate release was estimated to be about 2 times h~gher.Bacterial production in the growth season was relatively low (the mean value ly~ngbetween 5 and 9%of gloss primary production), nevertheless, the microbial community (bactena and protozoans) ut~l~zeda large proportion of primary production (from about 50% in April and May to 16'%, in October).
    [Show full text]
  • Algae and Lakes Algae Are Primitive, Usually Microscopic, Organisms Found in Every Lake
    Algae and Lakes Algae are primitive, usually microscopic, organisms found in every lake. Like green plants, most algae have pigments that allow them to create energy from sunlight through the process of photosynthesis. Algae use this energy and nutrients such as nitrogen and phosphorus to grow and reproduce. Algae form the base of the food web in lakes. Small animals called zooplankton feed on algae. In Drawings from IFAS, Center for Aquatic Plants, turn, zooplankton become food for fish. Algae University of Florida, 1990; and U.S. Soil Conservation Service, Water Quality Indicators Guide: Surface Waters, also produce some of the oxygen found in lake 1989. water and in the atmosphere What types of algae live in my lake? There are thousands of species of freshwater algae living in lakes around the world. Most species of algae in Snohomish County lakes are free-floating, collectively known as phytoplankton. There are also many species of algae that attach to rocks, docks, and aquatic plants, called periphyton. There are three main groups of algae—the green algae (Chlorophyta), the golden brown algae (Chrysophyta) which also includes a large group called diatoms, and A typical microscopic view of algae found in local lakes the blue-green algae (Cyanobacteria)—as well as several smaller groups (euglenoids, cryptomonads, and dinoflagellates). Under the microscope, many algae have beautiful shapes and colors. Algae are important for healthy lakes. Without algae, your lake would likely be devoid of fish and other wildlife. Most algae are inconspicuous and do not cause problems. Unfortunately, a few types of algae can cause water quality problems in lakes.
    [Show full text]
  • Plankton Biomass and Food Web Structure
    Plankton Biomass and Food Web Structure Matthew Church OCN 621 Spring 2009 Food Web Structure is Central to Elemental Cycling “Microsystems” In every liter of seawater there are all the organisms for a complete, functional ecosystem. These organisms form the fabric of life in the sea - the other organisms are embroidery on this fabric. Important things to know about ocean ecosystems • Population size and biomass (biogenic carbon): provides information on energy available to support the food web • Growth, production, metabolism: turnover of material through the food web and insight into physiology. • Controls on growth and population size In a “typical” liter of seawater… •Fish None • Zooplankton 10 • Diatoms 1,000 • Dinoflagellates 10,000 • Nanoflagellates 1,000,000 • Cyanobacteria 100,000,000 • Prokaryotes 1,000,000,000 • Viruses 10,000,000,000 High abundance does not necessarily equate to high biomass. Size is important. 1011 1010 Viruses 109 Bacteria 108 Cyanobacteria 107 106 Protists 105 104 103 102 101 Phytoplankton 100 Abudance (number per liter)Abudance 10-1 Zooplankton 10-2 0.01 0.1 1 10 100 1000 Size (µm) Why are pelagic organisms so small? Consider a spherical cell: SA = 3.1 µm2 SA= 4πr2 r = 0.50 µm V = 0.52 µm3 SA : V = 15.7 V= 4/3 πr3 SA = 12.6 µm2 r = 1.0 V = 4.2 µm3 SA : V = 3.0 The smaller the cell, the larger the SA:V Greater SA:V increases their ability to absorb nutrients from a dilute solution. This may allow smaller cells to out compete larger cells for limiting nutrients.
    [Show full text]