An Elegant Starry Bird by Magda Streicher [email protected] Image Source: Stellarium.Org Slender and Lithe Forms Are Typically Asso- Ciated with Wild Birds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Local Radio-Galaxy Population at 20
Mon. Not. R. Astron. Soc. 000, 1–?? (2013) Printed 2 December 2013 (MN LATEX style file v2.2) The local radio-galaxy population at 20GHz Elaine M. Sadler1⋆, Ronald D. Ekers2, Elizabeth K. Mahony3, Tom Mauch4,5, Tara Murphy1,6 1Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia 2Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 3ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands 4Oxford Astrophysics, Department of Physics, Keble Road, Oxford OX1 3RH 5SKA Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405, South Africa 6School of Information Technologies, The University of Sydney, NSW 2006, Australia Accepted 0000 December 08. Received 0000 December 08; in original form 0000 December 08 ABSTRACT We have made the first detailed study of the high-frequency radio-source population in the local universe, using a sample of 202 radio sources from the Australia Telescope 20GHz (AT20G) survey identified with galaxies from the 6dF Galaxy Survey (6dFGS). The AT20G- 6dFGS galaxies have a median redshift of z=0.058 and span a wide range in radio luminosity, allowing us to make the first measurement of the local radio luminosity function at 20GHz. Our sample includes some classical FR-1 and FR-2 radio galaxies, but most of the AT20G-6dFGS galaxies host compact (FR-0) radio AGN which appear lack extended radio emission even at lower frequencies. Most of these FR-0 sources show no evidence for rela- tivistic beaming, and the FR-0 class appears to be a mixed population which includes young Compact Steep-Spectrum (CSS) and Gigahertz-Peaked Spectrum (GPS) radio galaxies. -
The Origin of the Iron Lines in NGC 7213
A&A 407, L21–L24 (2003) Astronomy DOI: 10.1051/0004-6361:20031054 & c ESO 2003 Astrophysics The origin of the iron lines in NGC 7213 S. Bianchi, G. Matt, I. Balestra, and G. C. Perola Dipartimento di Fisica, Universit`a degli Studi Roma Tre, Italy Received 20 June 2003 / Accepted 8 July 2003 Letter to the Editor Abstract. The analysis of a simultaneous XMM-Newton/BeppoSAX plus three previous BeppoSAX observations revealed that NGC 7213 is a rather peculiar Seyfert 1. No significant Compton reflection component was observed, while an iron line complex, best explained in terms of three narrow lines, is clearly apparent in the data. Due to the absence of the reflection component, the neutral iron line is likely not produced in a Compton-thick material, but current data do not allow to choose between a Compton-thin torus and the BLR. The two ionized iron lines from Fe xxv and Fe xxvi may be produced in a 23 2 photoionized gas with a column density of a few 10 cm− , in analogy with the case of NGC 5506. Key words. galaxies: individual: NGC 7213 – galaxies: Seyfert – X-rays: galaxies 1. Introduction the BeppoSAX PDS instrument. On the other hand, if the line is produced in the BLR, a much fainter Compton reflection Iron Kα emission lines are common features in Seyfert 1s. The component is expected, and the intrinsic width of the iron line profile of the line provides fundamental information on their should be the same as that of the optical broad lines. origin. If it is produced in the innermost regions of the accre- The nuclear activity of NGC 7213 (z = 0:005977) was tion disk, kinematic and relativistic effects contribute to forge discovered by the HEAO A-2 satellite (Marshall et al. -
Where Are the Distant Worlds? Star Maps
W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star. -
Planetary Nebula IC 5148 and Its Ionized Halo? D
A&A 620, A84 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833981 & © ESO 2018 Astrophysics Planetary nebula IC 5148 and its ionized halo? D. Barría1, S. Kimeswenger1,2, W. Kausch2, and D. S. Goldman3 1 Instituto de Astronomía, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile e-mail: [email protected] 2 Institut für Astro- und Teilchenphysik, Leopold–Franzens Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria 3 Astrodon Imaging, 407 Tyrolean Court. Roseville, California, 95661, USA Received 29 July 2018 / Accepted 2 October 2018 ABSTRACT Context. Many round or roundish planetary nebulae (PNe) show multiple shells and halo structures during their evolutionary stage near the maximum temperature of their central star. Controversial debate is ongoing if these structures are recombination halos, as suggested by hydrodynamic modeling efforts, or ionized material. Recently, we discovered a halo with somewhat unusual structures around the sparsely studied PN IC 5148 and present for the first time spectroscopy going out to the halo of such a PN. Aims. We investigate the spatial distribution of material and its ionization state from the center of the nebula up to the very outskirts of the halo. Methods. We obtained long-slit low resolution spectroscopy (FORS2 at VLT) of the nebula in two position angles, which we used to investigate the nebular structure and its halo in the optical range from 450 to 880 nm. In addition we used medium resolution spectra taken with X-shooter at VLT ranging from 320 nm to 2.4 µm to derive atmospheric parameters for the central star. We obtained the distance and position in the Galaxy from various methods combined with Gaia DR2 data. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
The Lore of the Stars, for Amateur Campfire Sages
obscure. Various claims have been made about Babylonian innovations and the similarity between the Greek zodiac and the stories, dating from the third millennium BCE, of Gilgamesh, a legendary Sumerian hero who encountered animals and characters similar to those of the zodiac. Some of the Babylonian constellations may have been popularized in the Greek world through the conquest of The Lore of the Stars, Alexander in the fourth century BCE. Alexander himself sent captured Babylonian texts back For Amateur Campfire Sages to Greece for his tutor Aristotle to interpret. Even earlier than this, Babylonian astronomy by Anders Hove would have been familiar to the Persians, who July 2002 occupied Greece several centuries before Alexander’s day. Although we may properly credit the Greeks with completing the Babylonian work, it is clear that the Babylonians did develop some of the symbols and constellations later adopted by the Greeks for their zodiac. Contrary to the story of the star-counter in Le Petit Prince, there aren’t unnumerable stars Cuneiform tablets using symbols similar to in the night sky, at least so far as we can see those used later for constellations may have with our own eyes. Only about a thousand are some relationship to astronomy, or they may visible. Almost all have names or Greek letter not. Far more tantalizing are the various designations as part of constellations that any- cuneiform tablets outlining astronomical one can learn to recognize. observations used by the Babylonians for Modern astronomers have divided the sky tracking the moon and developing a calendar. into 88 constellations, many of them fictitious— One of these is the MUL.APIN, which describes that is, they cover sky area, but contain no vis- the stars along the paths of the moon and ible stars. -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei Davide Lena
Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 4-2015 Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei Davide Lena Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Lena, Davide, "Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei" (2015). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei A Search for Recoiling Supermassive Black Holes Gas Kinematics in the Circumnuclear Region of Two Seyfert Galaxies Davide Lena A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D. in Astrophysical Sciences and Technology in the College of Science, School of Physics and Astronomy Rochester Institute of Technology © D. Lena April, 2015 Cover image: flux map for the [NII]λ6583 emission line in the nuclear region of the Seyfert galaxy NGC 1386. The map was derived from integral field observations performed with the Gemini Multi Object Spectrograph on the Gemini-South Observatory. Certificate of Approval Astrophysical Sciences and Technologies R·I·T College of Science Rochester, NY, USA The Ph.D. Dissertation of DAVIDE LENA has been approved by the undersigned members of the dissertation committee as satisfactory for the degree of Doctor of Philosophy in Astrophysical Sciences and Technology. -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme. -
University of Southampton Research Repository Eprints Soton
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Physics And Astronomy Fast Spectral Variability in the X-ray Emission of Accreting Black Holes by Chris J. Skipper Thesis for the degree of Doctor of Philosophy October 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Physics And Astronomy Doctor of Philosophy FAST SPECTRAL VARIABILITY IN THE X-RAY EMISSION OF ACCRETING BLACK HOLES by Chris J. Skipper The X-ray emission from accreting black holes provides the perfect probe for testing the geometry, behaviour and conditions present in the innermost regions of the accretion flow. In this thesis I use X-ray spectral analysis to investigate the properties of accret- ing black holes that extend over several orders of magnitude in accretion rate (m˙ E) and black hole mass (MBH), from the stellar mass black holes in X-ray binary systems (XRBs) to the supermassive black holes in active galactic nuclei (AGN). -
Virgil, Aeneid 11 (Pallas & Camilla) 1–224, 498–521, 532–96, 648–89, 725–835 G
Virgil, Aeneid 11 (Pallas & Camilla) 1–224, 498–521, 532–96, 648–89, 725–835 G Latin text, study aids with vocabulary, and commentary ILDENHARD INGO GILDENHARD AND JOHN HENDERSON A dead boy (Pallas) and the death of a girl (Camilla) loom over the opening and the closing part of the eleventh book of the Aeneid. Following the savage slaughter in Aeneid 10, the AND book opens in a mournful mood as the warring parti es revisit yesterday’s killing fi elds to att end to their dead. One casualty in parti cular commands att enti on: Aeneas’ protégé H Pallas, killed and despoiled by Turnus in the previous book. His death plunges his father ENDERSON Evander and his surrogate father Aeneas into heart-rending despair – and helps set up the foundati onal act of sacrifi cial brutality that caps the poem, when Aeneas seeks to avenge Pallas by slaying Turnus in wrathful fury. Turnus’ departure from the living is prefi gured by that of his ally Camilla, a maiden schooled in the marti al arts, who sets the mold for warrior princesses such as Xena and Wonder Woman. In the fi nal third of Aeneid 11, she wreaks havoc not just on the batt lefi eld but on gender stereotypes and the conventi ons of the epic genre, before she too succumbs to a premature death. In the porti ons of the book selected for discussion here, Virgil off ers some of his most emoti ve (and disturbing) meditati ons on the tragic nature of human existence – but also knows how to lighten the mood with a bit of drag. -
Professor Catriona Macleod
RRR | Cover 2015 v2 11/9/16 10:17 AM Page 1 C M Y CM MY CY CMY K Composite RRR 2015 | Features 11/12/16 1:36 PM Page 1 C M Y CM MY CY CMY K RHODES UNIVERSITY RESEARCH REPORT A publication of the Rhodes University Research Office, compiled and edited by Tarryn Gillitt, Busi Goba, Patricia Jacob, Jill Macgregor and Jaine Roberts Design & Layout: Sally Dore Research Office Director: Jaine Roberts [email protected] Tel: +27 (46) 603 8756/7572 www.ru.ac.za Cover: Rhodes University researchers Pam Maseko, Nomalanga Mkhize, Heila Lotz-Sisitka, Ruth Simbao, Anthea Garman and Catriona Macleod Cover Photos: Paul Greenway/www.3pphotography.com RESEARCH REPORT 2015 Composite RRR 2015 | Features 11/12/16 1:36 PM Page 2 C M Y CM MY CY CMY K CONTENTS 01 FOREWORD Dr Sizwe Mabizela, Vice-Chancellor 03 INTRODUCTION Dr Peter Clayton, Deputy Vice-Chancellor: Research & Development 05 TOP 30 RESEARCHERS 06 PHD GRADUATES 11 VICE-CHANCELLOR’S BOOK AWARD Professor Anthea Garman 13 VICE-CHANCELLOR’S DISTINGUISHED SENIOR RESEARCH AWARD Professor Catriona Macleod 15 VICE-CHANCELLOR’S DISTINGUISHED RESEARCH AWARD Dr Adrienne Edkins 17 SARChI CHAIRS Professor Heila Lotz-Sisitka, Professor Ruth Simbao and Dr Adrienne Edkins 23 AFRICAN LANGUAGES, SCHOOL OF LANGUAGES AND LITERATURE Associate Professor Pamela Maseko 25 DEPARTMENT OF HISTORY Dr Nomalanga Mkhize RESEARCH REPORT 2015 Composite RRR 2015 | Features 11/12/16 1:34 PM Page 3 C M Y CM MY CY CMY K RHODES RESEARCH 2015 RESEARCH REPORT DEPARTMENT PUBLICATIONS AFFILIATES, INSTITUTES AND 28 Publications from the Vice-Chancellorate