Vitamin a Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Vitamin a Fact Sheet Vitamin A Fact Sheet Why does the body need vitamin A? Vitamin A helps: *To maintain vision in dim light *To keep skin smooth and healthy *To help you grow *To help keep your insides healthy (inner linings of the mouth, ears, nose, lungs, urinary and digestive tract) What foods are good sources of vitamin A? Many orange and dark green vegetables and fruits contain carotenes, natural coloring substances, or pigments. The body can change these pigments into vitamin A. The deeper the green or orange color of the vegetable or the fruit, the more carotenes (and thus vitamin A) it contains. Green Vegetables - broccoli, asparagus, spinach, kale, chard, collards and beet, mustard, turnip or dandelion greens. Orange Fruits and Vegetables - carrots, winter squash, sweet potatoes, tomatoes, pumpkin, apricots, cantaloupes, nectarines, peaches, papaya and mangoes. Watch out! - Color is not always a way to recognize foods rich in vitamin A. Oranges, lemons, grapefruits or tangerines are orange or yellow in color but do not contain much carotene. Also, yams, in contrast to sweet potatoes, have no vitamin A value. Is vitamin A stored in my body? Yes, Vitamin A is stored in the liver, so a rich source of vitamin A does not have to be included in the diet every day. However, vitamin A foods included in the diet every day help to build the body reserve. This may be needed in the case of illness or any time when vitamin A is lacking in the diet. How much vitamin A do I need every day? Recommended intake based on the Dietary Reference Intakes (DRI) for Vitamin A in micrograms (mcg) of Retinol Activity Equivalents (RAEs) per day: Males Females 1 – 3 years old 300 mcg RAE 300 mcg RAE 4 – 8 years old 400 mcg RAE 400 mcg RAE 9 – 13 years old 600 mcg RAE 600 mcg RAE 14 – 18 years old 900 mcg RAE 700 mcg RAE 19 years and over 900 mcg RAE 700 mcg RAE How much vitamin A is in formula? Phenyl-Free 1 460 mcg RAE per 100 gm dry powder Phenyl-Free 2 430 mcg RAE per 100 gm dry powder University of Washington PKU Clinic CHDD - Box 357920, Seattle, WA 98195 (206) 685-3015, Toll Free in Washington State 877-685-3015 http://depts.washington.edu/pku .
Recommended publications
  • Is There an Ideal Diet to Protect Against Iodine Deficiency?
    nutrients Review Is There an Ideal Diet to Protect against Iodine Deficiency? Iwona Krela-Ka´zmierczak 1,† , Agata Czarnywojtek 2,3,†, Kinga Skoracka 1,* , Anna Maria Rychter 1 , Alicja Ewa Ratajczak 1 , Aleksandra Szymczak-Tomczak 1, Marek Ruchała 2 and Agnieszka Dobrowolska 1 1 Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Heliodor Swiecicki Hospital, 60-355 Poznan, Poland; [email protected] (I.K.-K.); [email protected] (A.M.R.); [email protected] (A.E.R.); [email protected] (A.S.-T.); [email protected] (A.D.) 2 Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; [email protected] (A.C.); [email protected] (M.R.) 3 Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland * Correspondence: [email protected]; Tel.: +48-665-557-356 or +48-8691-343; Fax: +48-8691-686 † These authors contributed equally to this work. Abstract: Iodine deficiency is a global issue and affects around 2 billion people worldwide, with preg- nant women as a high-risk group. Iodine-deficiency prevention began in the 20th century and started with global salt iodination programmes, which aimed to improve the iodine intake status globally. Although it resulted in the effective eradication of the endemic goitre, it seems that salt iodination did not resolve all the issues. Currently, it is recommended to limit the consumption of salt, which is the main source of iodine, as a preventive measure of non-communicable diseases, such as hypertension or cancer the prevalence of which is increasing.
    [Show full text]
  • Plant-Based Nutrition Leaflet
    Calcium There are many plant-based sources of calcium. The good news for vegans is that, due to how the mineral is absorbed, vegetables can be a better source of calcium than dairy. Plant-based nutrition Our top tip for reaching your daily ‘kale-cium’ intake is to include portions of green and leafy vegetables in your diet. Calcium can also be found in fortified foods like some plant Healthy vegan living milks and tofu, oranges and dried fruits. for everyone Vitamin D helps our body to absorb and retain calcium. Therefore, a partnership of sufficient vitamin D and calcium is important in maintaining healthy bones. As well as getting healthy sun exposure, vitamin D is added to foods such as fortified soymilk, juice and breakfast cereals. Vitamin B12 All vegans need to ensure they are getting sufficient B12. Everyone over the age of 50 (whether vegan or not) requires reliable sources of vitamin B12 from fortified foods or supplements – so vegans, as usual, are just getting ahead of the game. The only reliable animal-free sources of vitamin B12 are fortified foods and B12 supplements. Vitamin B12, whether in supplements, fortified foods, or animal products, comes through micro-organisms. Look for B12-fortified foods such as plant milks, spreads, cereals and nutritional yeast (the latter is much more appetising than it sounds). The Vegan Society’s Veg1 supplement has been specifically formulated for vegans, and contains your Recommended Daily Allowance of vitamin B12. Iron It’s straightforward to obtain enough iron when you eat a rainbow of vegetables, fruits and other whole plant foods each day.
    [Show full text]
  • Guidelines on Food Fortification with Micronutrients
    GUIDELINES ON FOOD FORTIFICATION FORTIFICATION FOOD ON GUIDELINES Interest in micronutrient malnutrition has increased greatly over the last few MICRONUTRIENTS WITH years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry.
    [Show full text]
  • Vitamin and Mineral Safety 3Rd Edition (2013) Council for Responsible Nutrition (CRN)
    EXCERPTED FROM: Vitamin and Mineral Safety 3rd Edition (2013) Council for Responsible Nutrition (CRN) www.crnusa.org Vitamin B12 Introduction Vitamin B12 helps maintain the body’s nervous system and blood cells and supports the production of DNA. Vitamin B12 also helps prevents a type of anemia and has been termed the “anti-pernicious anemia dietary factor.” Vitamin B12 is also the only known physiologically important compound that contains cobalt, and therefore the various forms of vitamin B12 are known collectively as cobalamins. Vitamin B12 is a cofactor in two enzymes that are fundamental in facilitating growth in humans. In the methylcobalamin form, vitamin B12 is the direct cofactor for methionine synthetase, the enzyme that recycles homocysteine back to methionine. Here, vitamin B12 and folic acid have closely related roles in one-carbon metabolism. In the adenosylcobalamin form, vitamin B12 is the cofactor in methylmalonyl-coenzyme A mutase. Both reactions are involved in promoting the rapid growth and proliferation of bone marrow cells and ultimately red blood cells (Expert Group on Vitamins and Minerals [EVM] 2003). Vitamin B12 is essential for the function and maintenance of the central nervous system, and severe deficiency in persons with pernicious anemia produces the neurological disease of posterolateral spinal cord degeneration (Herbert and Das 1994). The direct cause of pernicious anemia, in fact, is vitamin B12 deficiency, but the underlying defect is the absence of an intrinsic factor produced by specific stomach cells and needed for intestinal absorption of vitamin B12. Without this intrinsic factor, absorption is greatly reduced or fails, and a severe and persistent deficiency develops that is not preventable by the usual dietary levels of vitamin B12.
    [Show full text]
  • Iodine Fact Sheet & References
    Iodine Fact Sheet and References What is iodine? • Essential trace mineral • Critical in the synthesis of thyroid hormones. The thyroid gland converts iodine into T3 (triiodothyronine) and T4 (thyrodine) hormones, which control metabolism throughout the body. • Excreted through urine Where do we find iodine? • Table salt (iodized salt) – Beginning in the 1920s, iodine was added to table salt and to other foods to prevent iodine deficiency. • Seafood and seaweed • Dairy and grains (amounts vary depending on source) Who’s impacted? • 2.2 billion people worldwide are at risk for Iodine Deficiency Disorders (IDDs). Of these, 30-70% have goiter and 1-10% have cretinism. • People living in the Great Lakes region (including Minnesota) may have inadequate intake due to low levels of iodine in the soil in which crops are grown. • Iodine deficiency virtually eliminated in the U.S. and many Western nations, due to iodization of salt. However: o 1970s-1990s: median U.S. urinary iodine (UI) excretion fell 50%, indicating indicate intake, and possible increased risk for moderate IDD. Experts thought this might be attributable to a decreased intake of salt; removal of iodate conditioners in store-bought breads; and an increased use of non-iodized salt in manufactured or premade convenience foods o 2001-2002 NHANES data indicated that levels had stabilized. Even so, women of reproductive age consistently had the lowest UI levels. • Women of reproductive age are an important group to monitor: o Pregnant women are vulnerable to iodine deficiency due to an increased renal clearance of iodine and transfer of iodine to fetus. o Iodine supplementation during pregnancy is often delayed, because women are unaware they are pregnant during early weeks of gestation.
    [Show full text]
  • Vitamin D and Bone Health
    1150 17th Street NW Suite 850 Washington, D.C. 200361 Bone Basics 1 (800) 231-4222 TEL ©National Osteoporosis Foundation 2013 1 (202) 223-2237 FAX www.nof.org Vitamin D and Bone Health Vitamin D plays an important role in protecting your bones. It may also help prevent other conditions including certain cancers. Your body requires vitamin D to absorb calcium. Children need vitamin D to build strong bones, and adults need it to keep bones strong and healthy. When people do not get enough vitamin D, they can lose bone. Studies show that people with low levels of vitamin D have lower bone density or bone mass. They are also more likely to break bones when they are older. Severe vitamin D deficiency is rare in the United States. It can cause a disease known as osteomalacia where the bones become soft. In children, this is known as rickets. These are both different conditions from osteoporosis. NOF Recommendations for Vitamin D The National Osteoporosis Foundation (NOF) recommends that adults under age 50 get 400-800 International Units (IU) of vitamin D every day, and that adults age 50 and older get 800-1,000 IU of vitamin D every day. Some people need more vitamin D. There are two types of vitamin D supplements. They are vitamin D2 and vitamin D3. Previous research suggested that vitamin D3 was a better choice than vitamin D2. However, more recent studies show that vitamin D3 and vitamin D2 are fairly equal for bone health. Vitamin D3 is also called cholecalciferol. Vitamin D2 is also called ergocalciferol.
    [Show full text]
  • Vitamins a and E and Carotenoids
    Fat-Soluble Vitamins & Micronutrients: Vitamins A and E and Carotenoids Vitamins A (retinol) and E (tocopherol) and the carotenoids are fat-soluble micronutrients that are found in many foods, including some vegetables, fruits, meats, and animal products. Fish-liver oils, liver, egg yolks, butter, and cream are known for their higher content of vitamin A. Nuts and seeds are particularly rich sources of vitamin E (Thomas 2006). At least 700 carotenoids—fat-soluble red and yellow pigments—are found in nature (Britton 2004). Americans consume 40–50 of these carotenoids, primarily in fruits and vegetables (Khachik 1992), and smaller amounts in poultry products, including egg yolks, and in seafoods (Boylston 2007). Six major carotenoids are found in human serum: alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, trans-lycopene, and zeaxanthin. Major carotene sources are orange-colored fruits and vegetables such as carrots, pumpkins, and mangos. Lutein and zeaxanthin are also found in dark green leafy vegetables, where any orange coloring is overshadowed by chlorophyll. Trans-Lycopene is obtained primarily from tomato and tomato products. For information on the carotenoid content of U.S. foods, see the 1998 carotenoid database created by the U.S. Department of Agriculture and the Nutrition Coordinating Center at the University of Minnesota (http://www.nal.usda.gov/fnic/foodcomp/Data/car98/car98.html). Vitamin A, found in foods that come from animal sources, is called preformed vitamin A. Some carotenoids found in colorful fruits and vegetables are called provitamin A; they are metabolized in the body to vitamin A. Among the carotenoids, beta-carotene, a retinol dimer, has the most significant provitamin A activity.
    [Show full text]
  • Failure of Vitamin B6 to Reverse the L-Dopa Effect in Patients on a Dopa Decarboxylase Inhibitor
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.34.6.682 on 1 December 1971. Downloaded from J. Neurol. Neurosurg. Psychiat., 34, 682-686 Failure of vitamin B6 to reverse the L-dopa effect in patients on a dopa decarboxylase inhibitor HAROLD L. KLAWANS, STEVEN P. RINGEL. AND DAVID M. SHENKER From the Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA SUMMARY Seven patients with Parkinsonism previously on L-dopa were placed on a regimen of L-dopa and alpha methyl dopa hydrazine (a dopa decarboxylase inhibitor). Two of these patients had previously shown marked clinical deterioration of the L-dopa improvement when given pyrid- oxine. None of the seven patients receiving alpha methyl dopa hydrazine demonstrated any change in their condition when given pyridoxine. The failure of vitamin B6 to reverse the clinical effect of L-dopa in patients receiving both L-dopa and a peripheral dopa decarboxylase inhibitor suggests that reversal of the L-dopa effect induced by vitamin B6 is due to increasing the activity of the enzyme dopa decarboxylase outside the central nervous system. guest. Protected by copyright. In patients with Parkinsonism receiving L-dopa hydrazine). These observations help to explain the (L-3, 4-dihydroxyphenylalanine), vitamin B6 has paradoxical effects of large amounts of pyridoxine recently been shown to cause a loss or reversal of in patients receiving L-dopa. the L-dopa effect (Duvoisin, Yahr, and Cote, 1969; Yahr, Duvoisin, Schear, Barrett, and Hoehn, METHODS AND RESULTS 1970). This was discovered when Duvoisin et al. (1969) gave vitamin B6 to patients receiving L-dopa Seven patients with Parkinsonism who had been on in an attempt to increase formation of dopamine L-dopa for at least one year were included in this from L-dopa within the central nervous system (CNS) study.
    [Show full text]
  • Dietary Supplements Compendium Volume 1
    2015 Dietary Supplements Compendium DSC Volume 1 General Notices and Requirements USP–NF General Chapters USP–NF Dietary Supplement Monographs USP–NF Excipient Monographs FCC General Provisions FCC Monographs FCC Identity Standards FCC Appendices Reagents, Indicators, and Solutions Reference Tables DSC217M_DSCVol1_Title_2015-01_V3.indd 1 2/2/15 12:18 PM 2 Notice and Warning Concerning U.S. Patent or Trademark Rights The inclusion in the USP Dietary Supplements Compendium of a monograph on any dietary supplement in respect to which patent or trademark rights may exist shall not be deemed, and is not intended as, a grant of, or authority to exercise, any right or privilege protected by such patent or trademark. All such rights and privileges are vested in the patent or trademark owner, and no other person may exercise the same without express permission, authority, or license secured from such patent or trademark owner. Concerning Use of the USP Dietary Supplements Compendium Attention is called to the fact that USP Dietary Supplements Compendium text is fully copyrighted. Authors and others wishing to use portions of the text should request permission to do so from the Legal Department of the United States Pharmacopeial Convention. Copyright © 2015 The United States Pharmacopeial Convention ISBN: 978-1-936424-41-2 12601 Twinbrook Parkway, Rockville, MD 20852 All rights reserved. DSC Contents iii Contents USP Dietary Supplements Compendium Volume 1 Volume 2 Members . v. Preface . v Mission and Preface . 1 Dietary Supplements Admission Evaluations . 1. General Notices and Requirements . 9 USP Dietary Supplement Verification Program . .205 USP–NF General Chapters . 25 Dietary Supplements Regulatory USP–NF Dietary Supplement Monographs .
    [Show full text]
  • Folate and Folic Acid on the Nutrition and Supplement Facts Labels
    Folate and Folic Acid on the Nutrition and Supplement Facts Labels What is folate? Folate is a B vitamin that helps your body make healthy new cells. What foods provide folate? Folate is naturally present in many foods, including vegetables (especially asparagus, brussels sprouts, and dark green leafy vegetables such as spinach and mustard greens), fruits and fruit juices (especially oranges and orange juice), beef liver, nuts (such as walnuts), and beans and peas (such as kidney beans and black-eyed peas). Asparagus Brussels Dark leafy Oranges and sprouts greens orange juice Beef Nuts (such as Beans and peas (such liver walnuts) as kidney beans and black-eyed peas) The New What’s in it for you? June 2020 — 1 What foods provide folate? (Continued) You also get folate by eating foods fortified with folic acid. Folic acid is a form of folate that can be added to foods during the manufacturing process. Foods that are fortified with folic acid include: enriched breads, flours, pastas, rice, and cornmeal; fortified corn masa flour (used to make corn tortillas and tamales, for example); and certain fortified breakfast cereals. Folic acid is also found in certain dietary supplements. Enriched Enriched Enriched Enriched Enriched Fortified corn Fortified breads flours pastas rice cornmeal masa flour breakfast cereals How much folate do I need? The amount of folate you need depends on your age, but most adults can rely on the Daily Value (DV) to find out how much folate to consume. The Daily Values (DV) are reference amounts (in grams, milligrams, or micrograms) of nutrients to consume or not to exceed each day.
    [Show full text]
  • Nutritional Value of Spirulina and Its Use in the Preparation of Some Complementary Baby Food Formulas
    Available online at http://journal-of-agroalimentary.ro Journal of Agroalimentary Processes and Journal of Agroalimentary Processes and Technologies Technologies 2014, 20(4), 330-350 Nutritional value of spirulina and its use in the preparation of some complementary baby food formulas Ashraf M. Sharoba Food Sci. Dept., Fac. of Agric., Moshtohor, Benha Univ., Egypt Received: 26 September 2014; Accepted:03 Octomber 2014 .____________________________________________________________________________________ Abstract In this study use the spirulina which is one of the blue-green algae rich in protein 62.84% and contains a high proportion of essential amino acids (38.46% of the protein) and a source of naturally rich in vitamins especially vitamin B complex such as vitamin B12 (175 µg / 10 g) and folic acid (9.92 mg / 100 g), which helps the growth and nutrition of the child brain, also rich in calcium and iron it containing (922.28 and 273.2 mg / 100 g, respectively) to protect against osteoporosis and blood diseases as well as a high percentage of natural fibers. So, the spirulina is useful and necessary for the growth of infants and very suitable for children, especially in the growth phase, the elderly and the visually appetite. It also, helps a lot in cases of general weakness, anemia and chronic constipation. Spirulina contain an selenium element (0.0393 mg/100 g) and many of the phytopigments such as chlorophyll and phycocyanin (1.56% and 14.647%), and those seen as a powerful antioxidant. Finally, spirulina called the ideal food for mankind and the World Health Organization considered its "super food" and the best food for the future because of its nutritional value is very high.
    [Show full text]
  • About Thiamine (B1) and Thiamine Deficiency
    NLOSS North London Obesity Surgery Service About Thiamine (B1) and Thiamine Deficiency What does thiamine do? Thiamine (vitamin B1) is an important nutrient for taking energy from food and turning it into energy for your brain, nerves and heart. It is needed by the body to process carbohydrates, fats, and proteins – but it is most important for how we process carbohydrates (sugars and starches). What happens if my thiamine is low/if I don’t get enough thiamine? Your body stores very little thiamine, so deficiency can happen very quickly – especially if you are not eating much or if you are vomiting for any reason. Thiamine deficiency may be called Beriberi or Wernicke’s Encephalopathy depending on how it presents. When you don’t get enough thiamine, you may first have nausea, vomiting, loss of appetite, fatigue and difficulty concentrating. You may also have weakness, sleepiness, changes in personality and memory, leg and foot cramping, burning feet, headache, constipation, and cramping. If thiamine deficiency is severe, serious problems can result including loss of hearing, permanent nerve damage, coma, permanent brain damage, heart damage, liver damage, and death. What are other symptoms? Other symptoms of thiamine deficiency include: • Blurred or double vision • Difficulty urinating • Difficulty taking/swallowing • Numb/painful hands/feet • Facial weakness • Foot drop, leg weakness • Amnesia, memory loss, dementia • Clumsiness, loss of balance, • Rapid heartbeat falling • Faintness on standing up • Loss of muscle • Leg swelling Where can I get thiamine? Thiamine is found throughout the diet, but fortified cereals, beans/peas, nuts and pork are very good sources. Other sources are also milk, cheese, fresh and dried fruit, and eggs.
    [Show full text]