Defining the Seasons

Total Page:16

File Type:pdf, Size:1020Kb

Defining the Seasons NOV 2018– APR 2019 BROUGHT TO YOU BY THE ALASKA CENTER FOR CLIMATE ASSESSMENT AND POLICY IN PARTNERSHIP WITH THE ALASKA CLIMATE RESEARCH CENTER, SEARCH SEA ICE OUTLOOK, NATIONAL CENTERS FOR ENVIRONMENTAL PREDICTION, AND THE NATIONAL WEATHER SERVICE DEFINING THE SEASONS By Brian Brettschneider, International Arctic Research Center (IARC), UAF What is a season? If you look at a calendar, the seasons start on December 21, March 20, June 21, and September 22. These are more properly called astronomical seasons. Climatologists traditionally use whole calendar months to describe the seasons—December to February, March to May, June to August, and September to November. These are called climatological seasons. Most natural scientists use these month-based season definitions. The groupings are based solely on the artificial construct of calendars developed many years ago. How useful are these distinctions today? Is there a better way to split the year into fall, winter, spring, and summer seasons? Surprisingly little research has been done using climatological data to fine tune the definition of the seasons at the local scale. When I looked into it a few years ago, I only found a single paper in the peer-reviewed literature that specifically looked at reshuffling the dates where the seasons begin—and it only attempted to assess whether the 90–92 days seasons actually line up with the calendar months. They showed that they were actually not that far off. More recently, Boustead et al. (2015) used an elaborate rubric to define the winter season using temperature, snowfall, and snow depth—the Accumulated Winter Season Severity Index (AWSSI), which we discussed in the Winter 2015-16 issue of the Alaska Climate Dispatch. The AWSSI definition of winter is expansive, to capture the maximum length of wintry conditions. THE DATA The Global Historical Climatology Network version 4 (GHCNv4) database of monthly climate temperatures has the data required to evaluate seasonality. Here comes an important point. Climate normals are based on monthly temperatures. This seems counterintuitive. Why not use daily data if we have it? The answer is that daily data are chaotic and messy. In addition, many stations collect data at irregular schedules that make daily estimates difficult but provide good information at the monthly level. Up through the 1971–2000 climate period, the National Centers for Environmental Information (NCEI), formerly the National Climate Data Center (NCDC), used a cubic spline fit of monthly average temperature to interpolate For many Alaskans, winter can be defined as ski season. daily climate normals. In the 1981–2010 climate period, they modified the Photo courtesy Tina Buxbaum. procedure somewhat using a methodology that is explained in some detail but in a way that is not replicable. For this analysis, we used 1981–2010 monthly temperature data and applied the cubic spline technique that NCEI used in prior In this issue climate normal periods. The daily values produced are not very different than the non-replicable NCEI published values. With that caveat, we used these data Defining the Seasons .................................... 1–5 to explore two approaches to identifying the seasons in the U.S., with a focus on Climate and Weather Summary ...............6–8 Alaska. Extreme March ..................................................9 Dangerous Ice ............................................10 –11 Sea Ice .......................................................... 12–14 ACCAP News ...................................................14 IMPROVING THE ABILITY OF ALASKANS TO RESPOND TO A CHANGING CLIMATE ALASKA CLIMATE DISPATCH • NOV 2018-APR 2019 DEFINING THE SEASONS 2 APPROACH 1: USE 90-DAY COLD SEASON AND 92-DAY WARM SEASON BUT ADJUST START/STOP DATES The December 1 to February 28 time period is 90 days long (ignoring Leap Days). Is this really the coldest 90 days of the year? Correspondingly, the June 1 to August 31 time period is 92 days long. Is this really the warmest 92 days of the year? To answer the question, daily normal temperatures were computed for every U.S./Canada station in the GHCN v4 data set (7,636 stations). For each of those stations, a 365-daily normal time series using the cubic spline technique was generated. Then the coldest 90 days and the warmest 92 days of the year were flagged. The seasons are therefore defined as: • Winter: coldest 90 days • Summer: warmest 92 days • Spring: time period between winter and summer Figure 1. Coldest 90-day period of the year using daily climate normals. (undetermined length) • Fall: time period between summer and winter (undetermined length) The length of winter and summer are fixed, and the combined length of spring and fall are fixed—but the length of spring and fall as individual seasons vary from place to place. Figures 1–4 show the dates of winter and summer, and the lengths of spring and fall using this approach. Figure 2. Warmest 92-day period of the year using daily climate normals. Another way to define summer is boating season. National Park Service photo by W. Hill, Lake Clark National Park and Preserve. ALASKA CLIMATE DISPATCH • NOV 2018-APR 2019 DEFINING THE SEASONS 3 APPROACH 2: IDENTIFY THE COLDEST AND WARMEST QUARTERS OF THE ANNUAL TEMPERATURE RANGE AND CALL THOSE WINTER AND SUMMER Instead of retaining the length of climatological seasons to mimic the length of calendar months, why not define some temperature thresholds for the warm and cold seasons and let the chips fall where they may? This is an idea the Rick Thoman with the Alaska Center for Climate Assessment and Policy (ACCAP) came up with. He suggested that if you took the annual range of normal temperatures (highest minus lowest), those days that are in the top 1/4 of that range are summer days, those days in the lowest 1/4 of that range are winter days, and the intervening days are either spring or fall days. Figure 5 shows an example using Fairbanks’ 1981–2010 Figure 3. Length of spring as defined by the period between the coldest 90-day period and the normal daily temperature. warmest 92-day period using daily climate normals. Figure 5. Diagram showing the top and bottom quarters of the annual temperature distribution. This produces a much different distribution of season lengths. Most places "hover" near the warmest and coldest portions of the year for more than 90 or 92 days. For example, the annual maximum normal for Fairbanks is 63.7°F. The Figure 4. Length of fall as defined by the period between the warmest 92-day period and the coldest 90-day period using daily climate normals. annual minimum normal is -8.7°F. The range is therefore 72.4°F. Any days warmer than 45.6°F are considered summer, and any days below 9.4°F are considered winter. Remember, these are climate normal days—not actual temperature days. The transitions between those periods is considered spring and fall. For Fairbanks, this approach yields a winter length of 131 days, a summer length of (coincidentally) 131 days, a spring ALASKA CLIMATE DISPATCH • NOV 2018-APR 2019 DEFINING THE SEASONS 4 length of 54 days, and a fall length of 49 days. Note the dramatically longer lengths of summer and winter compared to the 90- and 92-day lengths from the previous section. Because both the start date and the lengths of summer and winter vary using this methodology, we cannot have a single figure (like Figures 1 & 2) that gives all the necessary information about those seasons; therefore, only the start dates and lengths of summer and winter are shown in Figures 6–9. ANALYSIS There are many factors that determine the climate of a region. Latitude and proximity to water are dominant factors that determine annual temperature regime. Looking beyond temperature, the transition from winter to summer, and summer back to winter have more nuanced factors that determine when those changes take place. SUMMER Figure 6. Start date of the warmest quarter of the annual temperature range. Nowhere else in North America does summer start earlier than the eastern interior of Alaska. The gray areas in Figure 2 and 6 include the region from Fairbanks eastward to the Yukon Territory. Why is this? Several factors work together to make summer early in interior Alaska. First, by mid-May, there are 24 hours of daylight + twilight north of the Alaska Range. This allows for near continuous solar radiation. April and May are also the driest, sunniest months of the year across most of Alaska. Finally, we need to think of the warmest 92 days as not only dependent on the start date, but on the end date as well. By mid-August, southwesterly flow across the interior brings clouds and rain, causing a rather quick drop in temperatures during a time of year when most other places are still near their seasonal peak. The August coolness forces the peak summer temperatures to be earlier in the season. Even as the temperatures drop in August, it is still in the top ¼ of the annual temperature distribution. This has the effect of keeping interior Alaska in the summer category when seasons are defined by the annual temperature range. Figure 7 shows that most of Alaska has a summer length of Figure 7. Number of days in the warmest quarter of the annual temperature range. 118 to 135 days using this quartile definition—rather longer than most of the western Lower 48! In northern and western Alaska, snow cover usually lasts until well into May. This keeps temperatures from rising much early in the season. In southern Alaska, the proximity to water also delays the seasonal warm up when compared to the interior. By the time the clouds and rains of August and September arrive, the summer season in Alaska ends nearly everywhere at about the same time.
Recommended publications
  • Climate Divisions for Alaska Based on Objective Methods Peter A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Drought Mitigation Center Faculty Publications Drought -- National Drought Mitigation Center 2012 Climate Divisions for Alaska Based on Objective Methods Peter A. Bieniek University of Alaska Fairbanks, [email protected] Uma S. Bhatt University of Alaska Fairbanks Richard L. Thoman NOAA/National Weather Service/Weather Forecast Officea F irbanks Heather Angeloff University of Alaska Fairbanks James Partain NOAA/National Weather Service/Alaska Region See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/droughtfacpub Part of the Climate Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Hydrology Commons, Other Earth Sciences Commons, and the Water Resource Management Commons Bieniek, Peter A.; Bhatt, Uma S.; Thoman, Richard L.; Angeloff, Heather; Partain, James; Papineau, John; Fritsch, Frederick; Holloway, Eric; Walsh, John E.; Daly, Christopher; Shulski, Martha; Hufford, Gary; Hill, David F.; Calos, Stavros; and Gens, Rudiger, "Climate Divisions for Alaska Based on Objective Methods" (2012). Drought Mitigation Center Faculty Publications. 15. http://digitalcommons.unl.edu/droughtfacpub/15 This Article is brought to you for free and open access by the Drought -- National Drought Mitigation Center at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Drought Mitigation Center Faculty Publications by an authorized administrator
    [Show full text]
  • Climate Change Impacts in Anchorage
    MARCH 2016 STRENGTHENING RESILIENCE CLIMATE CHANGE IMPACTS IN ANCHORAGE Located in Southcentral Alaska, Anchorage is the most losses from extreme events, and threats to the health and populated area of the state and its economic hub, home safety of their employees. The business community in to about 300,000 people, or about half of the state’s resi- Anchorage can work together with city and state agen- dents.1 Energy production is the main driver of the state’s cies, along with other stakeholders to evaluate potential economy, although minerals, seafood, tourism, and agri- risks and take steps toward enhancing the community’s culture also contribute. Many oil and gas companies are resilience. headquartered in Anchorage.2 Anchorage is the state’s primary transportation, communications, trade, service, TEMPERATURE and finance center. The local economy is driven mostly by oil and gas, the military, transportation, and the tour- As a state, Alaska has warmed at more than twice the rate ism industry. The Port of Anchorage serves as the state’s of the rest of the United States, with state-wide average shipping hub. annual temperature increasing by 3°F and average winter temperature increasing by 6°F over the past 60 years.4 Anchorage is a diverse community, with minority groups representing 34 percent of its population and Temperature changes in Anchorage have been similar showing significant growth in these groups (including to the statewide average, with average annual tempera- Asian, Hawaiian, Pacific Islander, Native groups, African ture increasing by 3.2°F and winter temperatures increas- American, and other races).
    [Show full text]
  • MONTHLY WEATHER REVIEW Editor, ALFRED J
    MONTHLY WEATHER REVIEW Editor, ALFRED J. HENRY ~ ____~~~~ ~ . ~ __ VOL. 58,No. 3 1930 CLOSEDMAY 3, 1930 W. B. No. 1012 MARCH, ISSUED MAY31, 1930 ____ THE CLIMATES OF ALASKA By EDITHM. FITTON [C‘lark University School of Geography] CONTENTS for Sitka, the Russian capital. Other nations, chiefly Introduction_____---_---------------------------------. the English and Americans, early sent ships of espIoration I. Factirs controlling Alaskan climates- - - - - -.-. - :g into Alaskan waters, and there are ecatt.ered meteoro- 11. Climatic elements- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ST logical records available for various points where these Sunshine, cloudiness, and fog-- -_--__-----__--- 87 vessels winte,red along Alaskan shores (7, P. 137). Temperature- - - - - __ _____ - - - - - - - - - _____ - _____ 59 Alter the United States purchased Alaska, the United Length of frostless season.. - - - - - - - - - __ - - - - -.- - - States Army surgeons kept weather records in connection Winds and pressure _____._____________________:: January and July _-___-----.--________________91 with the post hospitals. “In 1878 and 1579, soon after Precipitation - - - -.- - - - - - - - - - - - - - - - - - - - - - - - - - - 93 the orga,nization of the United Stat,e,s Weather Bureau, SnowfaU_____________________~_________-_____96 first under the Signal Corps of t’heArmy, later as a’bureau Days with precipitatioil- - - - - - - - - - - - - - - - - - - - - - - 111. Seasonal conditions in the cliniatic provinces-_ - - - - 9”; of the nePartlne11t of &Ticulture, a feltrfirst-class observ- I A. Pacific coast and islsnds (marine) - - - - -_- - - - 98 ing stations, together mth several volunt,ary stations of I B. Pacific coast and islands (rain shadow)------ 99 lamer order, were established in Masl<a” (1, p, 133). 11. Bering Sea coast and islands (semi-ice marine) - 99 1917 appropriationof $l~,~~operlilit,ted the estab- 111. Arctic coast (ice-marine) - - - - - - - - - - - - - __ - - - an IV.
    [Show full text]
  • A Century of Climate Change for Fairbanks, Alaska Gerd Wendler University of Alaska, Fairbanks, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 2009 A Century of Climate Change for Fairbanks, Alaska Gerd Wendler University of Alaska, Fairbanks, [email protected] Martha Shulski University of Nebraska–Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Part of the Climate Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Meteorology Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons Wendler, Gerd and Shulski, Martha, "A Century of Climate Change for Fairbanks, Alaska" (2009). Papers in Natural Resources. 563. http://digitalcommons.unl.edu/natrespapers/563 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ARCTIC VOL. 62, NO. 3 (SEPTEMBER 2009) P. 295-300 A Century of Climate Change for Fairbanks, Alaska GERD WENDLER1'2 and MARTHA SHULSKI1 (Received 16 June 2008; accepted in revised form 21 November 2008) ABSTRACT. Climatological observations are available for Fairbanks, Interior Alaska, for up to 100 years. This is a unique data set for Alaska, insofar as it is of relatively high quality and without major breaks. Applying the best linear fit, we conclude that the mean annual temperature rose from -3.6°C to -2.2°C over the century, an increase of 1.4°C (compared to 0.8°C worldwide).
    [Show full text]
  • 2018 Alaska Climate Summary
    Alaska Climate Research Center Geophysical Institute, University of Alaska Annual Report for 2018 prepared for The American Association of State Climatologists The Alaska Climate Research Center (ACRC) is part of the Geophysical Institute, University of Alaska Fairbanks. Historically, the ACRC has shared tasks with the Alaska State Climate Center, and we are excited to report that both centers are currently in the process to merge. The main tasks and objectives of the Alaska State Climate Center have been renewed within the 2018 Alaska State Statutes via Title 14, Chapter 40, Section 085. Specific information can be found about this statute at http://www.legis.state.ak.us/basis/statutes.asp#14.40.085. Funding support for the ACRC comes from the Geophysical Institute and externally funded research projects. Key Personnel: Martin Stuefer, Director ACRC, Research Associate Professor Lea Hartl, Post Doctoral Researcher ACRC Jason Grimes, Research Technician ACRC Gerd Wendler, previous Director, ACRC, Professor Emeritus Blake Moore, Programmer Telayna Gordon, Research Technician Purpose: The purpose of the center is threefold: • Dissemination of climatological information and data. • Research on climate variability and climate change in Alaska and Polar Regions, and • Education and engagement with our stakeholders. Dissemination: For nearly three decades we have made climatological data available to the public, private, and government agencies, and to researchers around the world. Over the course of a year, winter is the busiest season for public inquiries to the Alaska Climate Research Center, probably due to the very cold temperatures (down to -40°F and colder) and ice fog, which makes driving difficult, if not dangerous.
    [Show full text]
  • 2017 Alaska Climate Summary
    Alaska Climate Research Center Geophysical Institute, University of Alaska 2017 Alaska Climate Summary Temperature Annual Temperature at the First Order Stations 2017 was warmer than the climatological mean of the reference period 1981-2010 (referred to as normal in this report). With the exception of Juneau (departure of -0.7 °F), all other First Order stations show positive departures from normal, with magnitudes ranging from +0.6 °F in Anchorage and Yakutat to up to +6.6 °F in Utqiaġvik (Barrow). While generally warmer than normal, 2017 remained below the record breaking temperature levels of 2016 by a relatively large margin when considering Alaska as a whole. However, at certain stations 2017 ranks close behind 2016 in terms of record mean annual air temperature: Utqiaġvik (Barrow) recorded the second warmest year behind 2016. Kotzebue recorded the third warmest year behind 2014 and 2016. Table A lists the mean annual air temperature at the 19 First Order stations, as well as the normal for 1981-2010 and the departure from normal at each station. Figure 1 shows the departure from normal at, and the location of, the 19 First Order stations, and indicates in a general sense that the positive departure from normal was higher at higher latitudes, particularly so in Utqiaġvik (Barrow). Table A: Mean temperature for 2017, normal temperature (1981-2010) and deviations from the mean for the 19 First Order meteorological stations in Alaska. * marks stations with more than five days of missing data. Missing data are ignored in the computation of the mean. Station Observed T (°F) Normal (°F) Delta (°F) Anchorage 37.6 37.0 0.6 Annette* 47.7 46.6 1.1 Bethel 33.2 30.6 2.6 Bettles 25.5 23.4 2.2 Cold Bay 39.4 38.8 0.7 Delta Junction 31.1 28.9 2.2 Fairbanks 29.5 27.6 2.0 Gulkana 29.6 28.1 1.6 Homer* 40.2 38.7 1.5 Juneau 41.3 42.1 -0.7 King Salmon 36.4 35.1 1.3 Kodiak 41.6 40.9 0.7 Kotzebue 26.8 22.7 4.1 McGrath 31.1 27.2 3.9 Nome 29.3 27.4 2.0 St.
    [Show full text]
  • Forced Migration of Alaskan Indigenous Communities Due to Climate Change: Creating a Human Rights Response
    FORCED MIGRATION OF ALASKAN INDIGENOUS COMMUNITIES DUE TO CLIMATE CHANGE: CREATING A HUMAN RIGHTS RESPONSE By: Robin Bronen University of Alaska Resilience and Adaptation Program ABSTRACT Forced migration due to climate change will present one of the most severe challenges to the resilience of communities forced to migrate as well as to local and national governments. The Intergovernmental Panel on Climate Change (IPCC) has identified the regions of the world most vulnerable to climate change and predicts that 150 million people will be displaced by 2050. Erosion, flooding, and sea level rise will be the primary causes of displacement. Water and food security issues, due to drought and salt water intrusion, will also impact the sustainability of communities. This paper outlines a legal and institutional framework, based in human rights doctrine, to respond to climate-induced human migration. An appropriate legal framework and institutional responses are critical to prevent a global humanitarian crisis. 1. DEFINING THE DISPLACEMENT CATEGORY OF CLIMATE- INDUCED MIGRATION In Alaska, climate change is evident. Temperatures have increased 2 to 3.5 degrees Celsius since 1974, arctic sea ice is decreasing in extent and thickness, wildfires are increasing in size and extent and permafrost is thawing. These ecological phenomena are creating a humanitarian crisis for the indigenous communities that have inhabited the arctic and boreal forest for millennia. Four Alaskan indigenous communities must relocate immediately and dozens of others are at risk. There is currently no organized institutional system in place, and government agencies are struggling to meet the enormous new needs of these communities. In order to create an appropriate humanitarian response, the first step is to define the displacement category of climate-induced migration and profile the population groups that must move.
    [Show full text]
  • Wildlife Response to Environmental Arctic Change
    U.S. Fish & Wildlife Service Wildlife Response to Environmental Arctic Change Predicting Future Habitats of Arctic Alaska Workshop Sponsors University of Alaska Fairbanks (UAF) International Arctic Research Center ABR Inc. UAF Institute of Arctic Biology Wildlife Conservation Society Workshop and Report Coordination The Arctic Research Consortium of the U.S. (ARCUS) coordinated workshop planning and implementation, and report layout and editing. rctic Res l A ea a r n c o h i t C a e n r n t e e t r n I U s k n n iv a er rb sity ai of Alaska F Workshop Speakers David Atkinson, Erik Beever, Eugenie Euskirchen, Brad Griffith, Geoffrey Haskett, Larry Hinzman, Torre Jorgenson, Doug Kane, Peter Larsen, Anna Liljedahl, Vladimir Romanovsky, Martha Shulski, Matthew Sturm, Amy Tidwell, and Mark Wipfli. Report Reviewers Brian Lawhead, Anna Liljedahl, Wendy Loya, Neil Mochnacz, Larry Moulton, Stephen Murphy, Tom Paragi, Jim Reist, Vladimir Romanovsky, John Walsh, Matthew Whitman, and Steve Zack. Photo Contributors Doug Canfield, Stephanie Clemens, Bryan Collver, Fred DeCicco, Elizabeth Eubanks, Richard Flanders, Larry Hinzman, Marie-Luce Hubert, Benjamin Jones, M. Torre Jorgenson, Jean-Louis Klein, Catherine Moitoret, Mitch Osborne, Leslie Pierce, Jake Schaas, Ted Swem, Ken Tape, Øivind Tøien, Ken Whitten, Chuck Young, Steve Zack, and James Zelenak. Cover Image Ice floating in a lagoon near Collinson Point in the Arctic National Wildlife Refuge. Photo by Philip Martin. Suggested Citation Martin, Philip D., Jennifer L. Jenkins, F. Jeffrey Adams, M. Torre Jorgenson, Angela C. Matz, David C. Payer, Patricia E. Reynolds, Amy C. Tidwell, and James R.
    [Show full text]
  • Synoptic Climatology of Extreme Snow and Avalanche Events in Southern Alaska Kristy C
    University of South Carolina Scholar Commons Theses and Dissertations 2016 Synoptic Climatology Of Extreme Snow And Avalanche Events In Southern Alaska Kristy C. Carter University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Geography Commons Recommended Citation Carter, K. C.(2016). Synoptic Climatology Of Extreme Snow And Avalanche Events In Southern Alaska. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/3764 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. SYNOPTIC CLIMATOLOGY OF EXTREME SNOW AND AVALANCHE EVENTS IN SOUTHERN ALASKA by Kristy C. Carter Bachelor of Science Iowa State University, 2013 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Geography College of Arts and Sciences University of South Carolina 2016 Accepted by: Cary J. Mock, Director of Thesis April L. Hiscox, Reader Edsel A. Pena, Reader Lacy Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by Kristy C. Carter, 2016 All Rights Reserved. ii DEDICATION I would like to dedicate this thesis to my late grandparents Dwayne and Marge Shoemaker. Without their initial support and encouragement, I would not have discovered the joy and excitement of studying meteorology at the undergraduate and now graduate level. iii ACKNOWLEDGEMENTS I would like to thank the members of my thesis committee for their support and encouragement, Dr. Cary Mock, Dr. April Hiscox and Dr.
    [Show full text]
  • Climate-Induced Displacement of Alaska Native Communities
    Climate-Induced Displacement of Alaska Native Communities January 30, 2013 Robin Bronen Alaskan Immigration Justice Project Cover image: Winifried K. Dallmann, Norwegian Polar Institute. http://www.arctic-council.org/index.php/en/about/maps. TABLE OF CONTENTS Executive Summary ....................................................................................................................................... i Introduction ................................................................................................................................................... 1 An Overview of Climate Change in Alaska .................................................................................................. 1 The Impact of Climate Change on Alaska Native Rural Villages ................................................................ 4 Gradual Forced Displacement of Communities ............................................................................................ 9 Climate Risks in Eight Communities ...................................................................................................... 10 Communities Requiring Relocation in Their Entirety ............................................................................ 12 Government Response to Climate-Threatened Communities ..................................................................... 18 Conclusion .................................................................................................................................................. 19 References: .................................................................................................................................................
    [Show full text]
  • Alaska Climate Dispatch Sept 2015
    WINTER 2015-16 BROUGHT TO YOU BY THE ALASKA CENTER FOR CLIMATE ASSESSMENT AND POLICY IN PARTNERSHIP WITH THE ALASKA CLIMATE RESEARCH CENTER, SEARCH SEA ICE OUTLOOK, NATIONAL CENTERS FOR ENVIRONMENTAL PREDICTION, AND THE NATIONAL WEATHER SERVICE THE NEW WINTER SEVERITY INDEX IN ALASKA By Brian Brettschneider, Borealis Scientific, LLC, Anchorage Analyses of a broad range of data relating to Alaska climate and weather are available on the Alaska Climate Info Facebook page: https://www.facebook.com/AlaskaClimateFacts. The winter of 2015-16 in Alaska will be remembered as one of the mildest on Circumstances beyond our control made record. In fact, according to the newly developed Accumulated Winter Season it impossible to complete the Autumn and Severity Index (AWSSI), it was the least severe winter on record for many Winter 2015 issues of the Alaska Climate locations in Alaska (Figure 1). Dispatch on schedule. We apologize to our Before delving into this new winter severity index, let’s examine how we readers and hope they will enjoy this special describe the intensity, or lack thereof, of winter conditions. At the qualitative 3-season issue, which covers September level, we usually describe winter as being either cold or warm, and either snowy 2015 to May 2016. or not snowy. IN THIS ISSUE During the winter of 2015-16, air temperatures were substantially warmer than normal across the entire state, and snowfall was well below normal in Winter Severity Index ................pages 1-5 most, but not all, places (details pages 16-19). Rivers were slow to freeze up in Weather Impacts ....................................6-8 the fall, and many reported their earliest spring breakup on record—some by large margins.
    [Show full text]
  • A Toolbox for Resilience and Adaptation in Coastal Arctic Alaska 2017 Guide for Alaska Communities, Tribes, Agencies and Citizens Strategies, Actions and Resources
    A Toolbox for Resilience and Adaptation in Coastal Arctic Alaska 2017 Guide for Alaska Communities, Tribes, Agencies and Citizens Strategies, Actions and Resources Coast photo courtesy of Molly Mylius. King Salmon Workshop courtesy of Landscape Conservation Cooperatives. Contents Credits ........................................................................................................................................................... 7 Introduction ................................................................................................................................................. 9 Resilience .................................................................................................................................................... 9 Adaptation .................................................................................................................................................. 9 About this Guide ............................................................................................................................................ 10 Toolbox 1: Resilience and Adaptation Strategies ................................................................................. 11 Resilience and Adaptation in a Changing World ....................................................................................... 11 We all have the power to do something. .............................................................................................. 11 Leadership and Communication ............................................................................................................
    [Show full text]