THE CLIMATES of ALASKA by EDITHM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rain Shadows
WEB TUTORIAL 24.2 Rain Shadows Text Sections Section 24.4 Earth's Physical Environment, p. 428 Introduction Atmospheric circulation patterns strongly influence the Earth's climate. Although there are distinct global patterns, local variations can be explained by factors such as the presence of absence of mountain ranges. In this tutorial we will examine the effects on climate of a mountain range like the Andes of South America. Learning Objectives • Understand the effects that topography can have on climate. • Know what a rain shadow is. Narration Rain Shadows Why might the communities at a certain latitude in South America differ from those at a similar latitude in Africa? For example, how does the distribution of deserts on the western side of South America differ from the distribution seen in Africa? What might account for this difference? Unlike the deserts of Africa, the Atacama Desert in Chile is a result of topography. The Andes mountain chain extends the length of South America and has a pro- nounced influence on climate, disrupting the tidy latitudinal patterns that we see in Africa. Let's look at the effects on climate of a mountain range like the Andes. The prevailing winds—which, in the Andes, come from the southeast—reach the foot of the mountains carrying warm, moist air. As the air mass moves up the wind- ward side of the range, it expands because of the reduced pressure of the column of air above it. The rising air mass cools and can no longer hold as much water vapor. The water vapor condenses into clouds and results in precipitation in the form of rain and snow, which fall on the windward slope. -
Climate Divisions for Alaska Based on Objective Methods Peter A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Drought Mitigation Center Faculty Publications Drought -- National Drought Mitigation Center 2012 Climate Divisions for Alaska Based on Objective Methods Peter A. Bieniek University of Alaska Fairbanks, [email protected] Uma S. Bhatt University of Alaska Fairbanks Richard L. Thoman NOAA/National Weather Service/Weather Forecast Officea F irbanks Heather Angeloff University of Alaska Fairbanks James Partain NOAA/National Weather Service/Alaska Region See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/droughtfacpub Part of the Climate Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Hydrology Commons, Other Earth Sciences Commons, and the Water Resource Management Commons Bieniek, Peter A.; Bhatt, Uma S.; Thoman, Richard L.; Angeloff, Heather; Partain, James; Papineau, John; Fritsch, Frederick; Holloway, Eric; Walsh, John E.; Daly, Christopher; Shulski, Martha; Hufford, Gary; Hill, David F.; Calos, Stavros; and Gens, Rudiger, "Climate Divisions for Alaska Based on Objective Methods" (2012). Drought Mitigation Center Faculty Publications. 15. http://digitalcommons.unl.edu/droughtfacpub/15 This Article is brought to you for free and open access by the Drought -- National Drought Mitigation Center at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Drought Mitigation Center Faculty Publications by an authorized administrator -
North Pacific Research Board Project Final Report
NORTH PACIFIC RESEARCH BOARD PROJECT FINAL REPORT Synthesis of Marine Biology and Oceanography of Southeast Alaska NPRB Project 406 Final Report Ginny L. Eckert1, Tom Weingartner2, Lisa Eisner3, Jan Straley4, Gordon Kruse5, and John Piatt6 1 Biology Program, University of Alaska Southeast, and School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Hwy., Juneau, AK 99801, (907) 796-6450, [email protected] 2 Institute of Marine Science, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, (907) 474-7993, [email protected] 3 Auke Bay Lab, National Oceanic and Atmospheric Administration, 17109 Pt. Lena Loop Rd., Juneau, AK 99801, (907) 789-6602, [email protected] 4 University of Alaska Southeast, 1332 Seward Ave., Sitka, AK 99835, (907) 774-7779, [email protected] 5 School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Hwy., Juneau, AK 99801, (907) 796-2052, [email protected] 6 Alaska Science Center, US Geological Survey, Anchorage, AK, 360-774-0516, [email protected] August 2007 ABSTRACT This project directly responds to NPRB specific project needs, “Bring Southeast Alaska scientific background up to the status of other Alaskan waters by completing a synthesis of biological and oceanographic information”. This project successfully convened a workshop on March 30-31, 2005 at the University of Alaska Southeast to bring together representatives from different marine science disciplines and organizations to synthesize information on the marine biology and oceanography of Southeast Alaska. Thirty-eight individuals participated, including representatives of the University of Alaska and state and national agencies. -
CCN Characteristics During the Indian Summer Monsoon Over a Rain- Shadow Region Venugopalan Nair Jayachandran1, Mercy Varghese1, Palani Murugavel1, Kiran S
https://doi.org/10.5194/acp-2020-45 Preprint. Discussion started: 3 February 2020 c Author(s) 2020. CC BY 4.0 License. CCN characteristics during the Indian Summer Monsoon over a rain- shadow region Venugopalan Nair Jayachandran1, Mercy Varghese1, Palani Murugavel1, Kiran S. Todekar1, Shivdas P. Bankar1, Neelam Malap1, Gurunule Dinesh1, Pramod D. Safai1, Jaya Rao1, Mahen Konwar1, Shivsai 5 Dixit1, Thara V. Prabha1, 1Indian Institute of Tropical Meteorology, Pune, India. Correspondence to: V. Jayachandran ([email protected]) Abstract. Continuous aerosol and Cloud Condensation Nuclei (CCN) measurements carried out at the ground observational facility situated in the rain-shadow region of the Indian sub-continent are illustrated. These observations were part of the 10 Cloud-Aerosol Interaction Precipitation Enhancement EXperiment (CAIPEEX) during the Indian Summer Monsoon season (June to September) of 2018. Observations are classified as dry-continental (monsoon break) and wet-marine (monsoon active) according to air mass history. CCN concentrations measured for a range of supersaturations (0.2-1.2 %) are parameterized using Twomey’s empirical relationship. CCN concentrations even at low (0.2 %) supersaturation (SS) were high (>1,000 cm- 3) during continental conditions associated with high black carbon (BC~2,000 ng m-3) and columnar aerosol loading. During 15 the marine air mass conditions, CCN concentrations diminished to ~350 cm-3 at 0.3 % SS and low aerosol loading persisted (BC~900 ng m-3). High CCN activation fraction (AF) of ~0.55 (at 0.3 % SS) were observed before the monsoon rainfall, which reduced to ~0.15 during the monsoon and enhanced to ~0.32 after that. -
Semiarid Ethnoagroforestry Management: Tajos in the Sierra Gorda, Guanajuato, Mexico Vincent M
Hoogesteger van Dijk et al. Journal of Ethnobiology and Ethnomedicine (2017) 13:34 DOI 10.1186/s13002-017-0162-y RESEARCH Open Access Semiarid ethnoagroforestry management: Tajos in the Sierra Gorda, Guanajuato, Mexico Vincent M. Hoogesteger van Dijk1, Alejandro Casas1 and Ana Isabel Moreno-Calles2* Abstract Background: The semi-arid environments harbor nearly 40% of biodiversity, and half of indigenous cultures of Mexico. Thousands of communities settled in these areas depend on agriculture and using wild biodiversity for their subsistence. Water, soil, and biodiversity management strategies are therefore crucial for people’s life. The tajos, from Sierra Gorda, are important, poorly studied, biocultural systems established in narrow, arid alluvial valleys. The systems are constructed with stone-walls for capturing sediments, gradually creating fertile soils in terraces suitable for agriculture in places where it would not be possible. We analyzed biocultural, ecological, economic and technological relevance of the artificial oasis-like tajos, hypothesizing their high capacity for maintaining agricultural and wild biodiversity while providing resources to people. Methods: We conducted our research in three sections of the Mezquital-Xichú River, in three communities of Guanajuato, Mexico. Agroforestry management practices were documented through semi-structured and in-depth qualitative interviews. Vegetation composition of local forests and that maintained in tajos was sampled and compared. Results: Tajos harbor high agrobiodiversity, including native varieties of maize and beans, seven secondary crops, 47 native and 25 introduced perennial plant species. Perennial plants cover on average 26.8% of the total surface of plots. Tajos provide nearly 70% of the products required by households’ subsistence and are part of their cultural identity. -
Wrangellia Flood Basalts in Alaska, Yukon, and British Columbia: Exploring the Growth and Magmatic History of a Late Triassic Oceanic Plateau
WRANGELLIA FLOOD BASALTS IN ALASKA, YUKON, AND BRITISH COLUMBIA: EXPLORING THE GROWTH AND MAGMATIC HISTORY OF A LATE TRIASSIC OCEANIC PLATEAU By ANDREW R. GREENE A THESIS SUBMITTED iN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Geological Sciences) UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 ©Andrew R. Greene, 2008 ABSTRACT The Wrangellia flood basalts are parts of an oceanic plateau that formed in the eastern Panthalassic Ocean (ca. 230-225 Ma). The volcanic stratigraphy presently extends >2300 km in British Columbia, Yukon, and Alaska. The field relationships, age, and geochemistry have been examined to provide constraints on the construction of oceanic plateaus, duration of volcanism, source of magmas, and the conditions of melting and magmatic evolution for the volcanic stratigraphy. Wrangellia basalts on Vancouver Island (Karmutsen Formation) form an emergent sequence consisting of basal sills, submarine flows (>3 km), pillow breccia and hyaloclastite (<1 1cm), and subaerial flows (>1.5 km). Karmutsen stratigraphy overlies Devonian to Permian volcanic arc (—‘380-355 Ma) and sedimentary sequences and is overlain by Late Triassic limestone. The Karmutsen basalts are predominantly homogeneous tholeiitic basalt (6-8 wt% MgO); however, the submarine part of the stratigraphy, on northern Vancouver Island, contains picritic pillow basalts (9-20 wt% MgO). Both lava groups have overlapping initial and ENd, indicating a common, ocean island basalt (OIB)-type Pacific mantle source similar to the source of basalts from the Ontong Java and Caribbean Plateaus. The major-element chemistry of picrites indicates extensive melting (23 -27%) of anomalously hot mantle (‘—1500°C), which is consistent with an origin from a mantle plume head. -
Wrangell-St. Elias National Park and Preserve, Denali
Central Alaska Network Geologic Resources Evaluation Scoping Meeting Summary A geologic resources evaluation (GRE) scoping meeting was held from February 24 through 26, 2004 at the NPS regional office in Anchorage, Alaska to discuss geologic mapping in and around the parks and geologic resources management issues and concerns. The scoping meeting covered the three parks in the Central Alaska Network (CAKN) – Wrangell-St. Elias National Park and Preserve (WRST), Denali National Park and Preserve (DENA), and Yukon Charley Rivers National Preserve (YUCH). A summary of the status of geologic mapping and resource management issues is presented separately for each of these parks. The scoping summary is supplemented with additional geologic information from park planning documents, websites and NPS Geologic Resources Division documents. Purpose of the Geologic Resources Evaluation Program Geologic resources serve as the foundation of the park ecosystems and yield important information needed for park decision making. The National Park Service Natural Resource Challenge, an action plan to advance the management and protection of park resources, has focused efforts to inventory the natural resources of parks. The geologic component is carried out by the Geologic Resource Evaluation (GRE) Program administered by the NPS Geologic Resource Division. The goal of the GRE Program is to provide each of the identified 274 “Natural Area” parks with a digital geologic map, a geologic evaluation report, and a geologic bibliography. Each product is a tool to support the stewardship of park resources and each is designed to be user friendly to non-geoscientists. The GRE teams hold scoping meetings at parks to review available data on the geology of a particular park and to discuss the geologic issues in the park. -
Level III Ecoregions of the Continental United States 3
1. Coast Range 2. Puget Lowland Level III Ecoregions of the Continental United States 3. Willamette Valley 4. Cascades (Revised August 2002) 5. Sierra Nevada National Health and Environmental Effects Research Laboratory 6. Southern and Central California 77 Chaparral and Oak Woodlands 77 U.S. Environmental Protection Agency 7. Central California Valley 1 2 2 8. Southern California Mountains 9. Eastern Cascades Slopes and Foothills 15 41 42 10. Columbia Plateau 10 11. Blue Mountains 49 17 48 12. Snake River Plain 82 10 17 13. Central Basin and Range 1 3 17 14. Mojave Basin and Range 4 17 15. Northern Rockies 11 58 16. Idaho Batholith 16 17 17. Middle Rockies 43 50 17 58 18. Wyoming Basin 51 19. Wasatch and Uinta Mountains 50 9 46 51 58 20. Colorado Plateaus 17 21. Southern Rockies 83 59 78 12 17 84 22. Arizona/New Mexico 4 80 57 58 Plateau 52 60 42 53 62 23. Arizona/New Mexico 56 Mountains 62 84 24. Chihuahuan Deserts 18 44 47 25. Western High Plains 57 61 57. Huron/Erie Lake Plains 26. Southwestern Tablelands 64 84 58. Northeastern Highlands 5 19 69 27. Central Great Plains 54 59. Northeastern Coastal Zone 28. Flint Hills 13 60. Northern Appalachian Plateau 55 29. Central Oklahoma/Texas Plains 70 63 and Uplands 25 40 30. Edwards Plateau 1 7 61. Erie Drift Plain 20 31. Southern Texas Plains 21 27 62. North Central Appalachians 32. Texas Blackland Prairies 67 63. Middle Atlantic Coastal Plain 66 33. East Central Texas Plains 64. -
Fossil Pollen Records Indicate That Patagonian Desertification Was Not Solely a Consequence of Andean Uplift
ARTICLE Received 25 Oct 2013 | Accepted 4 Mar 2014 | Published 28 Mar 2014 DOI: 10.1038/ncomms4558 Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift L. Palazzesi1,2, V.D. Barreda1, J.I. Cuitin˜o3, M.V. Guler4, M.C. Tellerı´a5 & R. Ventura Santos6 The Patagonian steppe—a massive rain-shadow on the lee side of the southern Andes—is assumed to have evolved B15–12 Myr as a consequence of the southern Andean uplift. However, fossil evidence supporting this assumption is limited. Here we quantitatively estimate climatic conditions and plant richness for the interval B10–6 Myr based on the study and bioclimatic analysis of terrestrially derived spore–pollen assemblages preserved in well-constrained Patagonian marine deposits. Our analyses indicate a mesothermal climate, with mean temperatures of the coldest quarter between 11.4 °C and 16.9 °C (presently B3.5 °C) and annual precipitation rarely below 661 mm (presently B200 mm). Rarefied richness reveals a significantly more diverse flora during the late Miocene than today at the same latitude but comparable with that approximately 2,000 km further northeast at mid-latitudes on the Brazilian coast. We infer that the Patagonian desertification was not solely a consequence of the Andean uplift as previously insinuated. 1 Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Angel Gallardo 470 (C1405DJR), Buenos Aires, Argentina. 2 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK. 3 Universidad de Buenos Aires, Departamento de Ciencias Geolo´gicas, Facultad de Ciencias Exactas y Naturales. Intendente Gu¨iraldes 2160 (C1428EHA), Buenos Aires, Argentina. -
REGIONAL SUBSISTENCE BIBLIOGRAPHY Volume IV Southcentral Alaska Number I
REGIONAL SUBSISTENCE BIBLIOGRAPHY Volume IV Southcentral Alaska Number I Jan H. Overturf Alaska Department of Fish and Game Division of Subsistence Technical Paper No. 97 Juneau, Alaska 1984 Cover Drawing by Tim Sczawinski CONTENTS Acknowledgments .............................................. V Introduction ................................................. vii Abbreviations ................................................ xix Southcentral Regional Bibliography ........................... 1 Keyword Index ................................................ 111 Author Index ................................................. 131 iii ACKNOWLEDGEMENTS In compiling this bibliography I received help and suggestions from many sources. The help was eagerly sought after and accepted. I would like to thank the entire staff of the Alaska Department of Fish and Game Subsistence Division, Anchorage Office. Especially helpful were Dr. James A. Fall, Ron Stanek, Lee Stratton and Carolyn Reed. All of these people opened their professional research libraries for my perusal and supplied me with a nearly steady stream of papers to be read, referenced and included in the bibliography. Dr. James Fall was particularly supportive of the project. His enthusiasm and comments were greatly appreciated, and his final review of the rough draft was essential. Dr. William B. Workman of the University of Alaska, Anchorage, generously opened his research library supplying many important recent publications and hard-to- find papers. Dr. Robert Wolfe, Research Director, ADFG -
Pacific Ocean: Supplementary Materials
CHAPTER S10 Pacific Ocean: Supplementary Materials FIGURE S10.1 Pacific Ocean: mean surface geostrophic circulation with the current systems described in this text. Mean surface height (cm) relative to a zero global mean height, based on surface drifters, satellite altimetry, and hydrographic data. (NGCUC ¼ New Guinea Coastal Undercurrent and SECC ¼ South Equatorial Countercurrent). Data from Niiler, Maximenko, and McWilliams (2003). 1 2 S10. PACIFIC OCEAN: SUPPLEMENTARY MATERIALS À FIGURE S10.2 Annual mean winds. (a) Wind stress (N/m2) (vectors) and wind-stress curl (Â10 7 N/m3) (color), multiplied by À1 in the Southern Hemisphere. (b) Sverdrup transport (Sv), where blue is clockwise and yellow-red is counterclockwise circulation. Data from NCEP reanalysis (Kalnay et al.,1996). S10. PACIFIC OCEAN: SUPPLEMENTARY MATERIALS 3 (a) STFZ SAFZ PF 0 100 5.5 17 200 18 16 6 5 4 9 4.5 13 12 15 14 Potential 300 11 10 temperature Depth (m) 6.5 400 9 (°C) 8 7 3.5 500 8 Subtropical Domain Transition Zone Subarctic Domain Alaskan STFZ SAFZ Stream (b) 0 35.2 34.6 34 33 32.7 32.8 100 33.7 33.8 200 34.5 34.3 300 34 34.2 33.9 Depth (m) 34.1 400 34 34.1 Salinity 500 (c) 30°N 40°N 50°N 0 100 2 1 4 8 6 200 10 20 12 14 16 44 25 44 30 300 12 14 35 Depth (m) 16 400 20 40 Nitrate (μmol/kg) 500 (d) 30°NLatitude 40°N 50°N 24.0 Sea surface density Nitrate (μmol/kg) 24.5 θ σ 25.0 1 2 25.5 1 10 2 4 12 8 26.0 14 Potential density 10 12 16 16 26.5 20 25 30 40 35 27.0 30°N 40°N 50°N FIGURE S10.3 The subtropical-subarctic transition along 150 W in the central North Pacific (MayeJune, 1984). -
Geography of Alaska (4 Cr.) Alaska Field Study Spring Semester / May Term, 2013
NCE317A / ENV490A The Cultural and Environmental Geography of Alaska (4 cr.) Alaska Field Study Spring Semester / May Term, 2013 Instructor Dr. David Block, Associate Professor Emeritus, Environmental Science & Geography [email protected] 262-524-9111 (home) Office Hour: Maxon 303, Wed 3-4pm Course Description The purpose of this academic field study experience is to explore the environmental resources and cultural heritage of America’s final frontier – Alaska! Preparatory classes ground students in an understanding of Alaska’s history, physical landscape, Native American heritage, and current natural resource base. The environmental and economic impacts of such activities as commercial fishing, logging, mining, and tourism serve as a central theme for the course. The two week May Term itinerary includes cultural activities in Sitka, Fairbanks and Anchorage involving Tlingit, Athabascan, and other Alaskan Native groups, plus environmental field investigations of Kenai Fiords National Park, Prince William Sound, the historic Yukon mining region, and Mendenhall Glacier. NCEP Program Goals 1. Knowledge: Students will understand the historic, cultural, economic and political forces shaping contemporary society and articulate their own place in the world; understand the connections between power, privilege and acquisition of knowledge both locally and globally; understand how language frames our thinking and perspectives; and/or understand the interconnection and interdependence of global systems. 2. Attitudes: Students will develop cultural self-awareness; develop appreciation for and interest in learning about other cultures; recognize the value of seeing the world through the eyes of others; and/or recognize the value of active citizenship and individual responsibility both within and beyond U.S. borders.